用户名: 密码: 验证码:
不确定性温度场和结构的分析方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在实际工程结构的分析与设计中,除了要考虑结构的力学行为外,有时还需要考虑结构的热效应(如热变形,热应力)、结构的温度不能超过某一设定值等方面。然而实际工程结构中存在着大量的误差和不确定性,使得结构的物理参数、几何参数以及载荷等具有不确定性,从而导致结构的响应也具有不确定性。因此,研究这些不确定性对结构响应的影响具有重要的工程意义和理论意义。本文对不确定温度场和结构的分析方法进行了系统研究,主要内容如下:
     1、稳态随机温度场分析
     考虑稳态热传导中的导热系数、换热系数、热流密度、环境温度以及内热源等参数同时具有随机性时,首先,利用Neumann展开Monte-Carlo随机有限元法对温度场的响应问题进行分析,并给出节点温度响应的均值、变异系数和节点温度落在某一区间内的概率计算公式,考察随机变量的变异性大小对节点温度响应的影响。其次,对稳态随机温度场响应的统计特性问题,提出了渐进法与最大熵原理相结合的求解方法,该法利用拉普拉斯多维积分的渐近展开以及函数的泰勒级数展开等方法,求得了节点温度响应的任意阶原点矩的近似解析表达式,之后利用最大熵原理获得节点温度响应的概率密度函数表达式。
     2、瞬态随机温度场分析
     考虑瞬态热传导中物理参数和边界条件的随机性,利用随机因子法和求解随机变量函数数字特征的代数综合法导出随机瞬态温度场响应的数字特征——均值和方差的拟解析计算表达式,并考察任意参数的随机性对温度场响应的影响。该方法具有只进行一次随机温度场分析便可以获得其响应的数字特征的优点。
     3、温度场的非概率凸集合理论模型的摄动数值解法
     将结构导热的物理参数、温度场的初始和边界条件等不确定性参数以凸模型加以描述,基于矩阵摄动理论和处理不确定问题的凸集合理论模型的结合,导出有界不确定参数瞬态温度场响应所在集合的上、下界摄动计算公式。
     4、具有区间参数的瞬态温度场数值分析
     考虑结构瞬态热传导问题的不确定性,将结构各物理参数和温度的初、边值条件均视为区间变量。对具有区间参数的热传导抛物型方程的求解,在空间域上利用有限单元离散,在时间域上利用差分离散,将区间分析和常规的有限元法相结合,建立了求解不确定温度场的基于单元的区间有限元方法。利用矩阵摄动公式求解结构的区间有限元方程,获得了结构瞬态温度场响应的范围。此外,对结构静力区间有限元方程组提出了一种简而易行的解法。该法将含区间变量的整体刚度矩阵在区间变量的中值处进行一阶泰勒展开,并对刚度矩阵展开式进行近似处理,将刚度矩阵的逆矩阵用一系列的Neumann展开级数来表示。为减小区间运算的扩张,利用区间运算的次分配律和相关运算规则,导出不确定结构响应量上、下界的计算式。
     5、基于广义密度函数模糊随机温度场分析
     考虑热传导中的诸参数同时具有模糊变量和随机变量的混合模型。利用广义密度函数将模糊变量转化为等价随机变量,应用随机变量数字特征的计算式求出了转化后的随机变量的均值和方差,从而原模糊随机温度场问题转换为纯随机温度场问题。利用随机摄动法求解,获得了原模糊随机混合温度场响应的均值和方差。通过算例考察各个不确定性参数的不确定性对温度场响应的影响。
     6、基于分解法的最大熵随机有限元法
     在分解法的基础之上,对求解随机结构的静力响应问题提出了最大熵分析方法。该法利用单变量分解将多维随机响应函数表述为多个单维随机响应函数的组合形式,将求解随机结构响应统计矩的多维积分表达式转化为单维积分式,对单维积分采用高斯-埃尔米特积分格式求解。在获得结构响应的统计矩之后,利用最大熵原理求得结构响应的概率密度函数解析表达式。
     7、随机结构系统固有频率特性分析
     考虑随机结构系统固有频率的统计特性,利用单变量分解将高维随机变量特征值函数分解成单维随机变量特征值函数的组合形式,将求解随机结构特征值统计矩的多维积分表达式转化为单维积分式,对单维积分采用8点高斯-埃尔米特积分格式数值求解。在获得随机结构系统固有频率的前四阶原点矩之后,利用最大熵原理求得结构固有频率概率密度函数的解析表达式。
In the process of analysis and design of practical structures, it is necessary to consider the thermal effect(such as thermal distortion, thermal stress, the temperature value smaller than the seted value,and so on) besides considering the structural mechanical behavior. But there are a large errors and uncertainties in the practical structures, which cause the physical parameters, geometrical parameters and loads taking on uncertainties. Consequently, studying the influence of these uncertainties on structural responses has important engineering meaning and academic meaning. The systemic studies on analysis methods of uncertain temperature fields and structures are maded in this dissertation. The main research work can be described as follows.
     1. The analysis for static random temperature field
     Considering the randomness of heat conduction coefficient, heat exchange coefficient, heat flux density and environmental temperature, and so on, Firstly, the Neumann expansions Monte-Carlo stochastic finite element method is employed to analyse the temperature response. Giving the computing formulas of the mean、variance and possibility in some interval of node temperature. The effects of the amount of variances of random variables on node temperature responses are considered. Secondly, Asymptotic-Maximum Entropy Principle for solving the statistical characteristics of static random temperature response is presented. In this method, the asymptotic approximation of Laplace multidimensional integrals and functions'Taylor expansions are employed, then the approximate analytical expressions of the arbitrary order original moments of node temperature response are obtained. On the basis of maximum entropy principle, the Probability Density Function(PDF) of nodal temperature response are developed.
     2. The analysis for transient random temperature field
     Considering the randomness of physical parameters and boundary conditions of transient heat transfer, the quasi-analytical expressions of numerical characteristics (the mean value and variance) of random temperature field response are derived by the random factor method and the algebra synthesis method which is employed to obtain the random variable’s functional moments. The influence of the randomness of each parameter on the temperature field response is investigated. The proposed method has the merit that the numerical characteristics of stochastic temperature field response can be obtained by analyzing the random temperature field just in one time.
     3. Perturbed numerical algorithm of nonprobabilistic convex set theoretical models on the temperature field
     The uncertain parameters of physical parameters and initial boundary conditions of heat conduction are described by the convex model. The perturbation formulas of the upper and lower bounds of temperature field response with unknown-but-bounded parameters are given via the combination of matrix perturbation theory and the convex set theory model.
     4. Numerical analysis for transient temperature field with interval parameters
     Considering the uncertainties of the transient heat transfer, the physical parameters and initial boundary conditions are regarded as interval variables. In order to solve parabolic equation of heat conduction with interval parameters, the regions of space are discretized by finite elements and the regions of time are discretized by finite difference. The interval finite element method based on the element is established via the combination of interval analysis and the traditional finite element method. Then the interval finite equation of structure is solved by matrix perturbation formulas, and the range of temperature field response of the structure is obtained. In addition, a simple method for solving the structural static interval finite element equations is presented. In this method, the global stiffness matrix is first order expanded at the middle value of interval variables by Taylor. And the expansion expression of stiffness matrix is dealt approximatively, the inverse matrix of uncertain stiffness matrix is expressed as a series of Neumann expansion series. The full use of sub-distribution law and other arithmetic rules of interval analysis are made to reduce the extension caused by interval analysis. Finally, the computational formulas of the upper and lower boundaries of the uncertain structures responses are developed.
     5. The analysis for temperature field with fuzzy-random parameters based on general density function
     The mixture modeling of fuzzy and random variables in heat transfer is discussed. The fuzzy variables are transformed into random variables based on general density function method. The mean values and variance values of transformed random variables are obtained using the formulas for solving random variables’numerical characteristics. So the fuzzy-random temperature field is converted to the pure random temperature field, correspondingly. The mean values and variance values of the random temperature field responses are obtained by employing the conventional stochastic perturbation method. The influence of the uncertainty of each parameter on the structural temperature field responses is analyzed through the example.
     6. The maximum entropy stochastic finite element method based on the dimension-reduction method
     The maximum entropy analysis method for solving the static response of random structures is presented on basis of dimension-reduction method. In this method, the multi-dimensional random response functions are decomposed into the combination of one-dimensional response functions by the univariate dimension-reduction method, so the multi-dimensional integration which is employed to calculate statistical moments of response of stochastic structures is transformed into one-dimensional integration, and the one-dimensional integration is numerically calculated by the Gauss-Hermite integration. After getting the statistical moments of response of structures, the explicit expression of probability density function of structure's response is obtained using the Maximum Entropy Principle.
     7. The eigenfrequencies characteristic analysis for random structure systems
     Considering the statistical characteristic of eigenfrequencies of random structure systems, the multi-dimensional random eigenvalues functions are decomposed into the combination of one-dimensional random eigenvalues functions by the univariate dimension-reduction method, so the multi-dimensional integrations which are employed to calculate statistical moments of eigenvalues of random structure systems are transformed into one-dimensional integrations, and the one-dimensional integration is calculated by the Gauss-Hermite 8-point numerical integration. Once getting the first four origin moments of eigenfrequencies of stochastic structure systems, the explicit expressions of probability density function of eigenvalues of structures can be obtained employing the Maximum Entropy Principle.
引文
[1]李杰.随机结构系统─分析与建模(第一版).北京:科学出版社, 1996.
    [2] Chen J J, Che J W, Sun H A, et al. Probabilistic dynamic analysis of truss structures. Structural Engineering & Mechanics, 2002, 13(2): 231-239.
    [3] Dai J, Chen J.J., Li Y G. Dynamic response optimization design for engineering structures based on reliability. Applied Mathematics and Mechanics, 2003, 24(1): 43-52.
    [4] Gao W., Chen J. J., Ma H. B. Dynamic response analysis of closed loop control system for intelligent truss structures based on probability. Structural Engineering & Mechanics, 2003, 15(2): 239-248.
    [5] Li Jie, Chen Jianbing. Dynamic response and reliability analysis of structures with uncertain parameters. International Journal for Numerical Methods in Engineering, 2005, 62(2): 289-315.
    [6] Zhao Lei, Chen Qiu. Neumann dynamic stochastic finite element method of vibration for structures with stochastic parameters to random excitation. Computers and Structures, 2000, 77(6): 651-657.
    [7]朱位秋.随机振动.北京:科学出版社, 1992.
    [8]陈塑寰.随机参数结构的振动理论.长春:吉林科学技术出版社, 1992.
    [9] Nagpal V K, et al. Probabilistic structural analysis to quantify uncertainties associated with turbopump blades. AIAA Journal, 1989, 27(6): 809-813.
    [10] Hien T D, Kleiber M. Finite element analysis based on stochastic Hamilton variation principle. Computer and Structures, 1990, 37(6): 893-902.
    [11]刘宁,吕泰仁.随机有限元及其工程应用.力学进展, 1996, 25(4): 437-452.
    [12]朱位秋.非线性随机振动理论的近期进展.力学进展, 1994, 24(2): 163-172.
    [13]庄表中,陈乃立,高瞻.非线性随机振动理论及应用.杭州:浙江大学出版社, 1989.
    [14]刘先斌,陈虬,陈大鹏.非线性随机动力系统的稳定性和分岔研究.力学进展, 1996, 26(4): 437-452.
    [15]赵雷,陈虬.随机有限元动力分析方法的研究进展.力学进展, 1999, 29(1): 9-18.
    [16] Gao W, Chen J J, Ma H B et al. Optimal placement of active bars in active vibration control for piezoelectric intelligent truss structures with random parameters. Computers & Structures, 2003, 81(1): 53-60.
    [17] Gao W, Chen J J, Ma J, Liang Z T. Dynamic response analysis of stochastic frame structures under nonstationary random excitation. AIAA Journal, 2004, 42(9): 1818-1822.
    [18] Gao W, Chen J J, Ma H B et al. Dynamic response analysis of closed loop control system forintelligent truss structures based on probability. Structural Engineering and Mechanics, 2003, 15(2): 239-248.
    [19] Gao W, Chen J J, Hu T B, et al. Optimization of active vibration control for random intelligent truss structures under non-stationary random excitation. Structural Engineering and Mechanics, 2004, 18(2): 137-150.
    [20] Soong T T, Bogdanoff J. On the natural frequencies of a disordered linear chain of n degree of freedom. International Journal of Mechanical Science, 1963, 5(2): 237-265.
    [21] Boyce, E W, Goodwin B E. Random transverse vibration of elastic beams. SIAM Journal, 1964, 12(3): 613-629.
    [22] Collins J D, Thompson W T. The eigenvalue problem for structural system with uncertain parameters. AIAA Journal, 1969, 7(4): 642-648.
    [23]刘宁,吕泰仁.随机有限元及其工程应用.力学进展, 1995, 25(1): 114-126.
    [24]冯蕴雯.结构、机构可靠性若干重要专题研究.西北工业大学博士学位论文, 2000.
    [25]张湘伟.结构分析中的概率方法.北京:科学出版社, 2000.
    [26] Yamazaki F, Shinozuka M, Dasgupta G. Neumann expansion for stochastic finite element analysis. Journal of Engineering Mechanics.1988, 114(8): 1335-1354.
    [27] Adomian G. Applied stochastic processes. New York: Academic Press, 1980.
    [28] Adomian G. Stochastic systems. New York: Academic Press, 1980.
    [29] Grigoriu M. Statistically equivalent solutions of stochastic mechanics problems. ASCE Journal of Engineering Mechanics 1991, 117(8): 1906-1918.
    [30] Hong HP. An efficient point estimate method for probabilistic analysis. Reliability Engineering and System Safety, 1998, 59(3): 261-267.
    [31] Rosenblueth E. Two-point estimates in probabilities. Applied Mathematical Modelling, 1981, 5(5): 329-335.
    [32] Rubinstein RY. Simulation and the Monte Carlo method. New York: Wiley, 1981.
    [33] Niederreiter H, Spanier J. Monte Carlo and quasi-Monte Carlo methods. Berlin: Springer, 2000.
    [34] Sobol IM. On quasi-Monte Carlo integrations. Mathematics and Computers in Simulation, 1998, 47(2-5): 103-112.
    [35] Entacher K. Quasi-Monte Carlo methods for numerical integration of multivariate Haar series. BIT3, 1997, 4: 845-860.
    [36] Engelund S, Rackwitz R. A benchmark study on importance sampling techniques in structural reliability. Structural Safety, 1993, 12(4): 255–276.
    [37] Melchers RE. Importance sampling in structural systems. Structural Safety 1989, 6(1): 3–10.
    [38] Bjerager P. Probability integration by directional simulation. Journal of EngineeringMechanics 1988, 114(8): 1285–1302.
    [39] Nie J, Ellingwood BR. Directional methods for structural reliability analysis. Structure Safety 2000, 22(3): 233–49.
    [40] McKay MD, Conover WJ, Beckman RJ. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 1979, 21(2): 239–245.
    [41] Stein M. Large sample properties of simulations using latin hypercube sampling. Technometrics 1987, 29(2):143–151.
    [42] Gilks WR, Richardson S, Spiegelhalter DJ. Markov chain Monte Carlo in practice. London: Chapman-Hall, 1996.
    [43] Nelson BL. Decomposition of some well-known variance reduction techniques. Journal of Statistical Computation and Simulation. 1986, 23: 183–209.
    [44]韩大建,陈太聪,苏成.随机结构数值模拟分析的神经网络法.工程力学, 2004, 21(3): 49-54.
    [45]杨杰,陈虬. Legendre积分法在随机有限元法中的应用.计算力学学报, 2005, 22(2): 214-216.
    [46]杨杰,陈虬,高芝晖.基于Hermite积分的非线性随机有限元法.重庆大学学报, 2003, 26(12): 15-17.
    [47] Zhao Yan-yang, Tetsureo Ono. New point estimates for probability moments. Journal of Engineering Mechanics, 2000, 126(4): 433-436.
    [48] Genz AC, Keister BD. Fully symmetric interpolatory rules for multiple integrals over infinite regions with Gaussian weight. Journal of Computational and Applied Mathematics. 1996, 71(2):299–309.
    [49] Genz AC, Monahan J. A stochastic algorithm for high-dimensional integrals over unbounded regions with Gaussian weight. Journal of Computational and Applied Mathematics. 1999, 112(1-2):71–81.
    [50] Rahman S, Xu H. A univariate dimension-reduction method for multi-dimensional integration in stochastic mechanics. Probabilistic Engineering Mechanics, 2004, 19(4): 393-408.
    [51] Xu H, Rahman S. A generalized dimension-reduction method for multidimensional integration in stochastic mechanics. International Journal for Numerical Methods in Engineering, 2004, 61(12):1992-2019.
    [52] Rahman S. A solution of the random eigenvalue problem by a dimensional decomposition method. International Journal for Numerical Methods in Engineering, 2006, 67(9): 1318-1340.
    [53] Xu H, Rahman S. Decomposition methods for structural reliability analysis. Probabilistic Engineering Mechanics, 2005, 20(3): 239-250.
    [54] Rahman S, Wei D. A univariate approximation at most probable point for higher-order reliability analysis. International Journal of Solids and Structures, 2006, 43(9): 2820-2839.
    [55] Wei D, Rahman S. Structural reliability analysis by univariate decomposition and numerical integration. Probabilistic Engineering Mechanics, 2007, 22(1):27-38.
    [56] Rahman S, Wei D. Design sensitivity and reliability-based structural optimization by univariate decomposition. Structural and Multidisciplinary Optimization, 2008, 35(3): 245-261.
    [57] Rahman S. A dimensional decomposition method for stochastic fracture mechanics. Engineering Fracture Mechanics, 2006, 73(15): 2093-2109.
    [58] Ghanem RG, Spanos PD. Stochastic finite elements: a spectral approach. New York: Springer, 1991.
    [59] Li Jie, Roberts J B. An expanded system method for the stochastic dynamic analysis. Research Report No.1 in Univ. of Sussex, Brighton, 1993.
    [60]李杰,随机结构分析的扩阶系统方法. (I)扩阶系统方程,地震工程与工程振动,1995, 15(3): 111-118.
    [61]李杰.随机结构分析的扩阶系统方法. (II)结构动力分析,地震工程与工程振动,1995, 15(4): 27-35.
    [62]李杰,随机结构动力分析的扩阶系统方法.工程力学, 1996, 13(1): 93-102.
    [63]李杰.复合随机振动分析的扩阶系统方法.力学学报, 1996, 28(1): 66-75.
    [64]李杰,陈建兵.随机结构反应的概率密度演化分析.同济大学学报(自然科学版), 2003, 31(12): 1387-1391.
    [65]李杰,陈建兵.随机结构动力反应分析的概率密度演化方法.力学学报, 2003, 35(4): 437-441.
    [66]李杰,陈建兵.随机结构非线性动力响应的概率密度演化分析.力学学报, 2003, 35(6): 716-722.
    [67]陈建兵,李杰.随机结构复合随机振动分析的概率密度演化方法.工程力学, 2004, 21(3): 90-95.
    [68]黄斌.一种新的谱随机有限元方法.武汉理工大学学报, 2004, 26(5): 42-45.
    [69]黄斌.随机参数结构的统计特征对.固体力学学报, 2005, 26(1): 121-124.
    [70]黄斌,索建臣,毛文药.随机杆系结构几何非线性分析的递推求解方法.力学学报, 2007, 39(6): 835-842.
    [71]车建文.基于可靠性的结构动力优化设计研究.西安电子科技大学硕士学位论文, 1998.
    [72]马洪波,陈建军,崔明涛.随机参数桁架结构的有限元与可靠性分析.西安电子科技大学学报, 2003, 30(1): 103-107.
    [73]高伟,陈建军,刘伟.随机参数智能桁架结构动力特性分析.应用力学学报, 2003, 20(1): 123-127.
    [74]戴君,陈建军,马洪波,崔明涛.随机参数结构在随机和在激励下的动力响应分析.工程力学, 2002, 19(3): 64-68.
    [75] Dai J, Chen J.J., Li Y G. Dynamic response optimization design for engineering structures based on reliability. Applied Mathematics and Mechanics, 2003, 24(1): 43-52.
    [76] Gao W., Chen J. J., Ma H. B. Dynamic response analysis of closed loop control system for intelligent truss structures based on probability. Structural Engineering & Mechanics, 2003, 15(2): 239-248.
    [77]高伟,陈建军,刘伟,等.随机参数智能桁架结构在随机力下的闭环控制动力响应分析.机械科学与技术, 2002, 21(6): 909-912.
    [78]高伟,陈建军.线性随机结构的平稳随机响应分析,应用力学学报, 2003, 20(3):92-95.
    [79] Gao W., Chen J. J., Ma J., Liang Z. T. Dynamic response analysis of stochastic frame structures under nonstationary random excitation. AIAA Journal, 2004, 42(9): 1818-1822.
    [80]郭书祥,吕震宙,冯立富.模糊运算和模糊有限元静力控制方程的求解.应用数学和力学, 2002, 23(9): 936-942.
    [81]禹智涛,吕恩琳,王彩华.结构模糊有限元平衡方程的一种解法.重庆大学学报, 1996, 19(1): 53-58.
    [82]吕恩琳.结构模糊有限元平衡方程的一种新解法.应用数学和力学, 1997, 18(4): 361-366.
    [83]雷震宇,陈虬.模糊结构有限元分析的一种新方法.工程力学, 2001, 18(6): 47-53.
    [84]高伟,陈建军,马娟,等.基于信息熵模糊桁架结构有限元分析.西安电子科技大学学报, 2004, 31(3): 413-416.
    [85] S. Valliappan and T.D. Pham. Fuzzy finite element analysis on an elastic soil medium. International Journal for numerical and analytical methods in geomechanics, 1993, 17(11), 771-789.
    [86] S. S. Rao, L. Cao. Fuzzy boundary element method for the analysis of imprecisely defined-system. AIAA Journal, 2001, 39(9): 1788-1797.
    [87]陈原,钱江.含模糊参数结构有限元方程的一种新解法.力学季刊, 2002, 23(2): 210-217.
    [88] A Cherki, G Plessis, B Lallemand, T Tison and P Level. Fuzzy behavior of mechanical systems with uncertain boundary conditions. Computer Methods in Applied Mechanics and Engineering, 2000, 189(3): 863-873.
    [89]刘长虹.基于信息熵下的结构强度与外载的广义可靠度.机械科学与技术, 2003, 22(6):631-638.
    [90]吕玺琳,吕恩琳.结构系统模糊可靠性的一种分析方法.中国人工智能进展,北京邮电大学出版社, 2003.
    [91]郭书祥,吕震宙,冯立富.基于可能性理论的结构模糊可靠性方法.计算力学学报, 2002, 19(1): 89-93.
    [92] Cai K Y, Wen C Y, Zhang M L. fuzzy variables as a basis for a theory of fuzzy reliability in the possibility context. Fuzzy Sets and systems, 1991, 42(2): 145-172.
    [93] Utkin L V, Gurov S V. A general formal approach for fuzzy reliability analysis in the possibility context. Fuzzy Sets and systems, 1996, 83(2): 203-213.
    [94] Cremona C, Gao Y. The possibilistic reliability theory: theoretical aspects and applications. Structural Safety, 1997, 19(2): 173-201.
    [95] Sawyer J P, Rao S S. Strength-based reliability and fracture assessment of fuzzy mechanical and structural systems. AIAA Journal, 1999, 37(1): 84-92.
    [96]王光远,王文泉.抗震结构的模糊优化设计.土木工程学报, 1985, 2: 50-58.
    [97]王光远,王文泉.抗震结构的模糊可靠性分析.力学学报, 1986, 5: 69-75.
    [98] Juan Ma, Jian-jun Chen, Wei Gao, Ying-ying Zhao. Dynamic response analysis of closed loop control system for intelligent fuzzy truss under fuzzy excitation. 2005 IEEE Conference on Networking, Sensing and Control.
    [99] Juan Ma, Jian-jun Chen, Wei Gao. Stationary Random Response Analysis of Linear Fuzzy Truss. Structural Engineering & Mechanics, 2006, 22(4): 469-481.
    [100] Juan Ma, Jian-jun Chen, Wei Gao, Tian-song Zhai. Nonstationary Stochastic Vibration Analysis of Fuzzy Truss System. Mechanical Systems and Signal Processing, 2006, 20(8): 1853-1866.
    [101]马娟,陈建军,高伟,等.基于模糊因子法的模糊桁架结构动力特性分析.振动与冲击, 2005, 24(2): 125-130.
    [102]马娟,陈建军,黄平,等.模糊桁架结构在模糊激励下的动力响应分析.力学学报, 2005, 37(3): 378-384.
    [103] Ben-Haim Y, Elishakoff I. Covex models of uncertainty in applied mechanics. Amsterdam, Elsevier Science Publisher, 1990.
    [104]邱志平.非概率集合理论凸方法及其应用.北京:国防工业出版社, 2005.
    [105] Schweppe F C. Recursive state estimation: unknown but bounded errors and system inputs. IEEE Transaction, 1992, AC-13: 22-28.
    [106] Ben-Haim Y, Elishakoff I. Convex models of vehicle response to unknown but bounded terrain. Journal of Applied Mechanics, 1991, 58(2): 355-361.
    [107] Givoli D, Elishakoff I. Stress concentration at a nearly circular hole with uncertainirregularities. Journal of Applied Mechanics, 1992, 59(2): 67-71.
    [108] Elishakoff I, Fang J J. Diagnosis of local uncertain modifications rectangular plate via convex modeling. Computer Methods in Applied Mechanics and Engineering, 1995, 124(4): 303-319.
    [109] Elishakoff I, Cai G Q. Non-liear buckling of a column with initial imperfection via stochastic and non-stochastic convex models. International Journal of Non-liear Mechanics, 1994, 29(1): 71-82.
    [110] Lindberg H E. Convex models for uncertain imperfection control in multimode dynamic buckling. Journal of Applied Menchanics, 1992, 59(4): 937-945.
    [111] Elishakoff I, Elisseeff P, Glegg S A L. Non-probabilistic, convex-theoretic modeling of scatter in material properties. AIAA Journal, 1994, 32(4): 843-849.
    [112] Elishakoff I, Li, Y W, Starnes Jr J H. A deterministic method to predict the effect of unknown-but-bounded elastic moduli on the buckling of composite structures. Computer Methods in Applied Mechanics and Egineering, 1994, 111(1-2): 155-167.
    [113]邱志平,顾元宪.结构静力位移的非概率凸集合理论模型的摄动数值算法.固体力学学报, 1997, 18(1): 86-89.
    [114]张海联,周建平.固体推进剂药柱结构分析的非概率凸集合理论模型.国防科技大学学报, 2002, 24(2): 1-5.
    [115]邱志平,陈吉云,王晓军.结构鲁棒优化的非概率集合理论凸方法.力学学报, 2005, 37(3): 295-300.
    [116]曹鸿钧,段宝岩.基于凸集模型的多学科耦合系统不确定性分析.西安电子科技大学学报, 2005, 32(3): 335-338.
    [117]苏永华,何满潮,曹文贵.岩体地下结构围岩稳定非概率可靠性的凸集合模型分析方法.岩石力学与工程学报, 2005, 24(3): 377-383.
    [118]曹鸿钧,段宝岩.基于凸集合模型的非概率可靠性研究.计算力学学报, 2005, 22(5): 546-549.
    [119]张新锋,赵彦,施浒立.基于凸集的结构非概率可靠性度量研究.机械强度, 2007, 29(4): 589-592.
    [120] Chen S H, Qiu Z P. A New Method for Computing The Upper and Lower Bounds on Frequencies of Structures with Interval parameters. Mechanics Research Communication, 1995, 22(5): 431-439.
    [121] Qiu Z P, Chen S H, Elishakoff. Natural Frequencies of Structures with Uncertain-but-non-random Parameters. Journal of Optimization Theory and Applications, 1995, 86 (3): 669-683.
    [122] Qiu Z P, Chen S H, Elishakoff I. Bounds of Eigenvalues for Structures with An IntervalDescription of Uncertain-but-non-random Parameters. Chaos, Soliton, and Fractral, 1996, 7(3): 425-434.
    [123] Chen S H, Qiu Z P. Perturbation Method for Computing Eigenvalue Bounds in Vibration System with Interval Parameters. Communications in Numerical Methods in Engineering, 1994, 10(2): 121-134.
    [124]郭书样,吕震宙.线性区间有限元静力控制方程的组合解法.计算力学学报, 2003, 20(1): 34-38
    [125] Rao S S, Berke L. Analysis of uncertain structural system using interval analysis. AIAA Journal, 1997, 35(4): 727-735.
    [126] Mc William S. Anti-optimization of uncertain structures using interval analysis. Computers and Structures, 2001, 79(4): 421-430.
    [127]邱志平,顾元宪.有界不确定参数结构位移范围的区间摄动法.应用力学学报, 1999, 16(1): 1-10.
    [128]邱志平,顾元宪.有界不确定性参数结构静力位移范围的区间参数摄动法.兵工学报, 1998, 19(3): 255-258.
    [129] Chen S H, Lian H D and Yang X W. Interval static displacement analysis for structures with interval parameters. International Journal for Numerical Meihods in Engineering, 2002, 53(2): 393-407.
    [130]杨晓伟,陈塑寰,滕绍勇.基于单元的静力区间有限元法.计算力学学报, 2002, 19(2): 179-183.
    [131] Chen S H, Yang X W. Interval finite element method for beam structures. Finite Elements in Analysis and Design, 2000, 34(1): 75-88.
    [132]郭书祥,吕震宙.区间运算和区间有限元.应用数学和力学, 2001, 22(12): 1249-1254.
    [133] Qiu Z P. Comparison of static response of structures using convex models and interval analysis method. International Journal for Numerical Methods in Engineering, 2003, 56(12): 1735-1753.
    [134] Kylüoglu H U, Cakmak A S, Nielsen S R. Interval algebra to deal with pattern loading and structural uncertainty. Journal of Engineering Mechanics, ASMC, 1995, 121(11): 1149-1157.
    [135] Qiu Z P, Elishakoff I. Anti optimization of structures with large uncertain-but-nonrandom parameters via interval analysis. Comput Methods Appl Mech Engrg, 1998, 152(3-4): 361-372.
    [136] Markov S. An iterative method for algebraic solution to interval equations. Applied Numerical Mathematics. 1999, 30(2-3): 225 -239.
    [137] Dessombz O, Thouverez F, Laine J P, Jezequel L. Analysis of mechanical systems using interval computations applied to finite element methods. Journal of Sound and Vibration,2001, 239 (5) : 949-968.
    [138]郭书样,吕震宙.区间有限元静力控制方程的一种迭代解法.西北工业大学学报, 2002, 20(1): 20-23.
    [139]吕震宙,冯蕴雯,岳珠峰.改进的区间截断法及基于区间分析的非概率可靠性分析方法.计算力学学报, 2002, 19(3): 260-264.
    [140]陈怀海.非确定结构系统区间分析的直接优化法.南京航空航天大学学报, 1999, 31(2): 146-150.
    [141]王登刚,李杰.计算不确定结构系统静态响应的一种可靠方法.计算力学学报, 2003, 20(6): 662-669.
    [142]张建国,陈建军,马孝松.具有区间参数的不确定结构静力区间分析的一种算法.机械科学与技术, 2005, 24(10): 1158-1162.
    [143] Muhanna R L, Hao Zhang, Mullen R.L. Interval finite elements as a basis for generalized models of uncertainty in engineering mechanics. Reliable Computing, 2007, 13 (2): 173-194.
    [144]禹智涛,吕恩琳,王彩华.结构模糊有限元平衡方程的一种解法.重庆大学学报, 1996, 19 (11): 53-58.
    [145]吴晓,罗佑新,文会军,等.非确定结构系统区间分析的泛灰求解方法.计算力学学报, 2003, 20(3): 329-334.
    [146]王清印.灰色数学基础.武汉:华中理工大学出版社, 1996.
    [147]全凌云,杨钊.区间数和泛灰数在区间分析中的比较.河北工业大学学报, 2001, 30(4): 93-96.
    [148] Deif A S. Sensitivity Analysis in Linear Systems. Springer-Verlag, Berlin and Heidelberg. 1986.
    [149]陈塑寰,邱志平,宋大同,等.区间矩阵标准特征值问题的一种解法.吉林工业大学学报, 1993, 23(3): 1-8.
    [150]邱志平,陈塑寰,周振平.对称区间矩阵标准特征值问题的一种新算法.吉林工业大学学报, 1994, 4(3): 62-65.
    [151]陈塑寰.结构动态设计的矩阵摄动理论.北京:科学出版社. 1999.
    [152] Chen S H, Qiu Z P. Perturbation method for computting eigenvalue bounds in vibration system with interval parameters. Communication in Numerical Methods in Engineering, 1994, 10(2): 121-134.
    [153]邱志平,王晓军,马一.结构复固有频率区域的区间摄动法.北京航空航天大学学报, 2003, 29 (5) : 406-409.
    [154]邱志平,顾元宪,王寿梅.有界参数结构特征值的上下界定理.力学学报, 1999, 31(4): 466-474.
    [155] Chen S H, Qiu Z P, Song D T. A new method for computing the upper and lower bounds on frequencies of structures with interval parameters. Mechanics Research Communications, 1995, 22(5): 431-439.
    [156] Qiu Z P, Chen S H, Elishakoff I. Natural frequences of structures with uncertain but nonrandom parameters. Journal of Optimization Theory and Applications, 1995, 86(3): 669-683.
    [157] Qiu Z P, Chen S H, Elishakoff I. Bounds of eigenvalues for structures with an description of uncertain-but-nonrandom parameters. Chaos, Solitons and Fractals, 1996, 7(3): 425-434.
    [158] Yang X W, Chen S H, Lian H D. Bounds of complex eigenvalues of structures with interval parameters. Engineering Mechanics, 2001, 23(5):557-563.
    [159]陈怀海,陈正想.求解实对称矩阵区间特征值问题的直接优化法.振动工程学报, 2000, 13(1): 117-121.
    [160]王登刚,李杰.计算具有区间参数结构特征值范围的一种新方法.计算力学学报, 2004, 21(1): 56-61.
    [161]王登刚.计算具有区间参数结构的固有频率的优化方法.力学学报, 2004, 36(3): 364-372.
    [162] Qiu Z P, Chen S H, Liu Z S. Matrix perturbation method for the vibration problem of structures with interval parameters. Applied Mathematics and Mechanics, 1994, 15(6): 551-560.
    [163] Qiu Z P, Wang X J. Comparison of dynamic response of structures with uncertain-but-bounded parameters using non-probabilistic interval analysis method and probabilistic approach. International Journal of Solids and Structures, 2003, 40(20): 5423-5439.
    [164]王晓军,邱志平.含不确定参数弹簧质量系统振动反问题的区间分析法.固体力学学报, 2004, 25 (4) : 461-466.
    [165]吴杰,陈塑寰.区间参数振动系统的动力优化.力学学报, 2003, 35(3): 373 -376.
    [166] Moms D, Vandepitte D. An interval finite element approach for the calculation of envelope frequency response functions. International Journal for Numerical Methods in Engineering, 2004, 61(14): 2480-2507.
    [167]孔祥谦.有限单元法在传热学中的应用.北京:科学出版社, 1998.
    [168]周晓琴,李华强,刘杰,等. ANSYS三维热分析及应用.武汉交通了科技大学学报, 1999, 23(1): 9-13.
    [169]张洪武,顾元宪,钟万勰.传热与接触两类问题耦合作用的有限元分析.固体力学学报, 2000, 21(3): 217-224.
    [170]闫相桥,武海鹏.正交各向异性三维热传导问题的有限元列式.哈尔滨工业大学学报,2003, 35(4): 405-409.
    [171]杨世铭,陶文铨.传热学.北京:高等教育出版社, 2002.
    [172]付桂翠,王香芬,姜同敏.高可靠性航空电子设备热分析中的有限体积法.北京航空航天大学学报, 2006, 32(6): 716-720.
    [173]沈惠申,朱湘赓.中厚板热后屈曲分析.应用数学和力学, 1995, 16(5): 443-450.
    [174]沈惠申,张建武.非线性弹性基础上矩形板热后屈曲分析.应用力学学报, 1997, 14(1): 29-35.
    [175]吴晓,马建勋.正交异性矩形板非线性的固有热振动.工程力学, 1999, 16(2): 127-133.
    [176]杨自春.受热复合材料层合板的非线性热振动——PartⅠ:理论及数值分析.复合材料学报2000, 17(2):74-78.
    [177]许杨健,赵志岗.梯度功能材料薄板瞬态热弹性弯曲有限元分析.工程力学, 2001, 18(1): 71-81.
    [178]黄小林,沈惠申.热环境下功能梯度材料板的自由振动和动力响应.工程力学, 2005, 22(3): 224-227.
    [179]程惠尔,杨卫华,施金苗等.折叠状航天器太阳电池阵在轨热分析(Ⅰ)——计算模型.宇航学报, 2002, 23(1): 12-16.
    [180]程惠尔,杨卫华,施金苗,等.折叠状航天器太阳电池阵在轨热分析(Ⅱ)——计算结果和分析.宇航学报, 2002, 23(2): 6-10.
    [181]朱敏波,曹峰云,刘明治,等.星载大型可展开天线太空辐射热变形计算.西安电子科技大学学报, 2004, 31(1): 28-31.
    [182]艾青,夏新林,唐尧.求解飞机蒙皮耦合热效应的壁面热流函数法.工程热物理学报, 2006, 27(4): 635-637.
    [183]吕胜利,吕国志.压电结构的热效应分析.振动与冲击, 1999, 18(2): 48-52.
    [184]龙慧,张光辉,罗文军.旋转齿轮瞬时接触应力和温度的分析模拟.机械工程学报, 2004, 40(8): 24-29.
    [185]吕永超,杨双根.电子设备热分析、热设计及热测试技术综述及最新进展.电子机械工程, 2007,23(1): 5-10.
    [186]陈飙松,顾元宪,张洪武,等.瞬态温度场灵敏度分析的精细积分法.机械强度, 2000,22(4): 270-274.
    [187]顾元宪,刘涛,亢战,等.热结构瞬态响应的耦合灵敏度分析方法与优化设计.力学学报, 2004, 36(1): 37-42.
    [188]顾元宪,刘涛,亢战,等.热结构瞬态响应的耦合灵敏度分析方法与优化设计.计算力学学报, 2004, 21(5): 535-539.
    [189]韩玉阁,宣益民.卫星太阳能电池板热设计参数的灵敏度分析.南京理工大学学报, 2006, 30(2): 178-181.
    [190] Mahnken R. An inverse finite-element algorithm for parameter identification of thermoelastic damage models. International Journal For Numerical Methods In Engineering, 2000, 48(7): 1015-1036.
    [191]顾元宪,周业涛,陈飙松,等.基于灵敏度的热传导辨识问题求解方法.土木工程学报, 2002, 35(3): 94-98.
    [192]刘宁,刘光延.大体积混凝土结构温度场的随机有限元算法.清华大学学报(自然科学版). 1996, 36(1): 41-47.
    [193] Hien, Tran Duong; Kleiber, Michal. Stochastic finite element modelling in linear transient heat transfer. Computer Methods in Applied Mechanics and Engineering, 1997, 144(1-2): 111-124.
    [194]姚寿广,屠传经.固体温度场的随机边界元分析.华东船舶工业学院学报, 1999, 13(5): 10-12.
    [195] Emery.A.F, Solving stochastic heat transfer problems. Engineering Analysis with Boundary Elements, 2004, 28(3): 279-291.
    [196] Dongbin Xiu; Karniadakis, G.E. A new stochastic approach to transient heat conduction modeling with uncertainty. International Journal of Heat and Mass Transfer. 2003, 46(24): 4681-4693.
    [197]刘长虹,陈虬.在模糊随机因素影响下的多层圆筒结构的稳态热传导问题的区间数解法.应用数学和力学, 2005, 26(10): 1191-1197.
    [198] Emery. A.F, Some thoughts on solving the radiative transfer equation in stochastic media using polynomial chaos and Wick products as applied to radiative equilibrium. Journal of Quantitative Spectroscopy and Radiative Transfer. 2005, 93(1-3): 61-77.
    [199] SEBASTIAO C. PEREIRA. ULISSES T, etal. Uncertainty in Thermal Basin Modeling: An Interval Finite Element Approach. Reliable Computing, 2006, 12(6): 451–470.
    [200]李金平,陈建军,刘海锋,等.基于Neumann展开Monte-Carlo有限元法的随机温度场分析.西安电子科技大学学报, 2007, 34(3): 453-457.
    [201]王小兵,陈建军,李金平.层叠板瞬态随机温度场的分析.机械强度, 2007, 29(6): 964-969.
    [202]王小兵,陈建军,梁震涛,等.随机温度场Monte-Carlo法的一类近似处理.系统仿真学报, 2007, 19(10): 2156-2160.
    [203]王小兵,陈建军,谢永强,等.热机电耦合智能板结构的随机性分析.机械工程学报, 2008, 44(4): 21-28.
    [204] Papadimitriou C, Beck J L, Katafygiotis L S. Asymptotic expansions for reliability and moments of uncertain systems. Journal of Engineering Mechanics. 1997, 123(12): 1219-1229.
    [205]杨禄源.幂级数与渐近级数.长沙:国防科技大学出版社, 2001.
    [206]张义民,贺向东,刘巧伶,等.任意分布参数的梁结构刚度可靠性灵敏度分析.计算力学学报, 2007, 24(6): 785-789.
    [207]陈建军.机械与结构系统的可靠性.西安:西安电子科技大学, 1994.
    [208]林金木.瞬态温度场的新解法.湖南大学学报, 1996, 23(1): 78-84.
    [209]范九伦,裴继红,谢维信.聚类有效性函数:熵公式.模糊系统与数学, 1998, 12(3): 68-74.
    [210] Achintya Haldar and Rajasekhar K Reddy. A Random-Fuzzy of Existing Structures. Fuzzy Sets and Systems, 1992, (48): 201-210.
    [211]胡太彬,陈建军,马芳,等.基于广义密度函数的随机模糊结构广义可靠性分析.机械科学与技术, 2004, 23(9): 1022-1024.
    [212] Rackwitz R, Fiessler B. Structural reliability under combined random load sequences. Computer & Structure, 1978, 9(5):489-494.
    [213] Shinozuka M, A still C J. Random eigenvalue problems in structural analysis. AIAA Journal, 1972, 10(4): 456-562.
    [214] Vaicaitis R, Free vibrations of beams with random characteristics. Sound & Vibration, 1974, 35(1): 13-21.
    [215]李杰.随机结构系统建模问题的研究.振动工程学报, 1996, 9(1): 46-53.
    [216]张义民,刘巧玲,闻帮椿.随机结构系统的一般实矩阵特征值问题的概率分析.力学季刊, 2003, 24(4): 522-527.
    [217]雒卫廷,陈建军,胡太彬,等.基于完全概率的随机桁架固有频率的可靠性分析.振动与冲击, 2006, 25(3): 101-104.
    [218]胡太彬陈建军,王小兵,等.一种求解不均匀随机场结构频率特性的方法.振动与冲击, 2007, 26(12): 55-59.
    [219] Adhikari, S. Joint statistics of natural frequencies of stochastic dynamic systems. Computational Mechanics, 2007, 40(4): 739-752.
    [220]韦征,叶继红,沈世钊.最大熵法可靠度理论在工程中的应用.振动与冲击, 2007, 26(6): 146-151.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700