用户名: 密码: 验证码:
硅胶转轮的空气净化能力研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究旨在考察硅胶除湿转轮的空气净化能力,并找出影响净化能力的因素和优化转轮净化能力的方法,为开发以硅胶转轮除湿机为核心的热湿处理及空气净化技术提供一些依据。
     硅胶转轮的空气净化能力首先用两个实验进行了考察。一个实验测量了转轮改善可察觉空气品质的能力,另一个实验测量了转轮清除室内各种VOC类污染物的能力。两个实验的结果都证明了硅胶转轮具有显著的净化空气的能力,而且对各种性质的VOC类污染物没有选择性,还证实了硅胶转轮除湿机在运行参数会随时变化的除湿冷却空调系统中能够保持它的净化作用。
     针对室内VOC的多样性和实验的局限性,研究中还建立了各种VOC类污染物和热量、水分在转轮中的综合传递模型,用理论的方法来分析转轮对各种污染物的净化机理。经研究发现,延长普通除湿转轮的再生时间有利于VOC污染物的充分脱附。另外,从整体上来说,当再生温度处于常用除湿再生温度范围内的较高值时,转轮对于VOC有较好的净化能力。
     研究中还提供了选择有利于发挥空气净化效果的除湿冷却空调设备的方法,并推荐了两种有良好空气净化效果的除湿冷却空调系统,然后又将这些系统的能耗与传统的压缩冷却空调系统进行了比较。经计算发现,在新风量一样时,以热能形式为基准的两种系统的能耗已经低于压缩冷却系统。当新风量降为压缩冷却系统的25%时,两种系统的能耗分别降为原来的74%和65%,而且从理论上讲此时的室内空气品质仍然优于压缩冷却系统。但是如果都是以电能形式比较,则仍然是压缩冷却系统具有优势。
This research aims to investigate the air cleaning effect of silica gel rotors, find and optimize the factors impacting on the air cleaning effect, and provide technical support for developing air processing technology with silica gel rotor as a component to offer thermal comfort environment and clean air.
     Two experiments were conducted to investigate the air cleaning effect of silica gel rotors. One experiment measured a rotor’s ability to improve perceived air quality, and the other measured its ability to remove VOC pollutants. The results of both the experiments showed that the silica gel rotor was very effective to clean the indoor air. It was also reflected that the rotor was not selective to VOCs which had different chemical properties, and the rotor kept its air cleaning effect in parameters-changing desiccant cooling systems.
     Seeing to the variety of VOCs and the limit of experiments, a comprehensive transfer model of VOCs, heat and water in the rotor was built, so that the transfer mechanism and performance of all kinds of VOCs in the rotor could be predicted. It is suggested by the calculated results that the regeration time needs to be longer than the rotor only used to dehumidify air to fully desorb the VOCs on the rotor, and the regeneration temperature should as well be kept higher to get better air cleaning effect in the premise that thermal comfort indoor is ensured.
     The strategy to choose desiccant cooling equipment to get better air cleaning effect is offered at the end. Two kinds of desiccant cooling system which can take full advantage of the rotor’s air cleaning effect are recommended, and the energy consumption of them is compared with traditional refrigeration air conditioning systems. It is found by calculation that the energy consumption based on heat of the desiccant cooling systems is lower than that of refrigeration air conditioning systems. When the fresh air rate of desiccant cooling systems is lowered to 25% of the original rate, the energy consumption of the two desiccant cooling systems reduced to 74% and 65% of the origin, while they can offer better air quality than the refrigeration system. But the two desiccant cooling systems consume more energy based on electricity than the refrigeration system.
引文
[1] WHO (World Health Organization. Indoor air pollutants exposure and health effects. EURO Reports and Studies, WHO, Geneva, 1983: 78.
    [2]姚志棋等,环境卫生学(第二版),北京:人民卫生出版社,1993: 10。
    [3] McMillan, Lorel, Ernst & Young Calculates a High Return from Hoteling and High-Tech, Facilities Design and Management. 1995, 14 (4): 32-37.
    [4] Wyon DPEvaluating IAQ effects on people (Invited plenary paper). In:Proceedings of the Healthy Buildings 2003 conference, Singapore, 5-8 December, 2003, 1: 51-60.
    [5] Fisk W.J., Rosenfeld A.H., Estimates of improved productivity and health from better indoor environments, Indoor Air, 1997, 7: 158-172.
    [6] Wyon D.P., Indoor environmental effects on productivity, Keynote Address to "IAQ '96", Baltimore, October 1996: 6-8.
    [7] Wargocki P. et al., Perceived air quality, Sick Building Syndrome (SBS) symptoms and productivity in an office with two different pollution loads, Indoor Air, 1999, 9(3): 165-179.
    [8] Wargocki P. et al., The effects of outdoor air supply rate in an office on perceived air quality, Sick Building Syndrome (SBS) symptoms and productivity". Indoor Air, 2000, 10(4): 222-236.
    [9] Sundell J., Wickman M., Pershagen G., Nordvall S.L., Ventilation in homes infested by house-dust mites, Allergy, 1995, 50: 106-112.
    [10] Wargocki P., Sundell J., Bischof W., Brundrett G., Fanger P.O., Gyntelberg F., Hanssen S.O., Harrison P., Pickering A., Sepp?nen O., Wouters P., Ventilation and health in non-industrial environments: report from a European Multidisciplinary Scientific Consensus Meeting (EUROVEN), Indoor Air, 2002, 12: 113-128.
    [11] Alm O., Clausen G., Fanger P.O., Exposure-response relationships for emissions from used ventilation filters. Proc. of Healthy Buildings 2000, Helsinki, 2000, 2: 245-250.
    [12] Schleibinger H., Ruden H., Air filters from HVAC systems as possible source of volatile organic compounds (VOC) - laboratory and field assays, Atmospheric Environment, 1999, 33 (28): 4571-4577.
    [13] Higdon H.L., Graves J.E., Blackhurst D.W., Boone W.R., Air quality within the incubator: will volatile organic compound (VOC) filters make a difference in in vitro fertilization?, Fertility and Sterility, 2003, 80: 260.
    [14] WHO (World Health Organization), Indoor air quality: organic pollutants. Euro Reports and Studies No.111. Copenhagen: World Health Organization, regional Office for Europe, 1989.
    [15] M?have L, Volatile organic compounds, indoor air quality and health, Walkinshaw, D. S. (ed.) Proceedings of Indoor Air’90, Ottawa, Canada Mortgage and Housing Corporation, 1990, 1: 15-33.
    [16] Seifert B, Regulating indoor air, Walkinshaw, D. S. (ed.) Proceedings of Indoor Air’90, Ottawa, Canada Mortgage and Housing Corporation, 1990, 5: 35-49.
    [17] Berglund B., The role of sensory reaction as guides for non-industrial indoor air quality. In: D. M. Weekes & R. B. Gammage (Eds.), The practitioners approach to indoor air quality investigations. Akron, Ohio: American Industrial Hygiene Association, 1990: 113-130.
    [18] Cain W.S., Perception of odor intensity and the time course of olfactory adaptation, ASHRAE Transactions, 1974, 80: 53-75.
    [19] Otto D. A., M?have L., Rose G., Hudnell H.K., House D., Neurobehavioral and sensory irritant effects of controlled exposure to a complex mixture of volatile organic compounds, Neurotoxicol, Teratol, 1990, 12: 649-652.
    [20] Berglund B., Brunekreef B., Kn?ppel H., Lindvall T., Maroni M., M?have L., and Skov P., Effects of indoor air pollution on human health, Indoor air, 1992, 2: 2-25.
    [21] Berglund B., Berglund, U., Lindvall, T., Psychological processing of odor mixtures, Psychological Review, 1976, 83: 432-441.
    [22] Berglund B., Olsson M. J., A theoretical and empirical evaluation of perceptual and psychophysical model for odour-intensity interaction. Reports from the Department of Psychology, Stockholm University, No. 764, 1993.
    [23] M?have L., Indoor air quality in relation to sensory irritation due to volatile organic compounds. ASHRAE Transactions, 1986, 92(1): 1-12.
    [24] Kj?rgaard S.K., M?have L., Pedersen O.F., Human reactions to a mixture of indoor air volatile organic compounds. Atmospheric Environment, 1991, 25a: 1417-1426.
    [25] Otto D.A., M?have L., Rose G., Hudnell H.K., and House D., Neurobehavioral and sensory irritant effects of controlled exposure to a complex mixture of volatile organic compounds. Neurotoxicol. Teratol., 1990, 12: 649-652.
    [26] Otto D. A., Hudnell H.K., Goldstein G. and O’Neil J., Indoor air-Health. Neurotoxic effects of controlled exposure to a complex mixture of volatile organic compounds. Report EPA/600/1-90/001. Research Triangle Park. NC 27711: HERL, U.S. Environmental Protection Agency, 1990.
    [27] Andersson K, Bakke JV, Bj?rseth O, Bornehag CG, Clausen G, Hongslo JK, Kjellman M, Kj?rgaard S, Levy F, M?lhave L, Skerfving S, Sundell J, TVOC and health in non-industrial indoor environments: report from a Nordic Scientific Consensus Meerting at L?angholmen in Stockholm, 1996, Indoor Air, 1997, 7: 78-91.
    [28] World Health Organization Regional Office for Europe, Air Quality Guidelines for Europe, 2000.
    [29]国家环境保护总局,GB / T 18883-2002,室内空气质量标准,中国标准出版社,2003年4月。
    [30] ECA (European Concerted Action "Indoor Air Quality & its Impact on Man")., Determination of VOCs emitted from indoor materials and products. Interlaboratory comparison of small chamber measurements, Report No. 13 (EUR 15054 EN) Luxembourg: Office for Official Publications of theEuropean Communities, 1993.
    [31] Hov O, Sorteberg A, Schmidbaue N, Lattila H, Solberg S, Heidam N Z., Stordal F, Simpson D, Lindskog A, Areskoug H, Oyola P, European VOC Emission Estimates Evaluated by Measurements and Model Calculations, Journal of Atmospheric Chemistry, 1997, 28 (3): 173-193.
    [32] WHO, Formaldehyde, 2-Butoxyethanol and 1-tert-Butoxy-2-propanol, IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, June 2004, 88: 2-9.
    [33] Lee C. -S., Haghighat F., Ghaly W. S., A study on VOC source and sink behavior in porous building materials - analytical model development and assessment , Indoor Air, 2005 , 15: 183-196.
    [34] Zhu J.P., Zhang J.S., Shaw C.Y., Comparison of models for describing measured VOC emissions from wood-based panels under dynamic chamber test condition, Chemosphere, 2001, 44: 1253–1257.
    [35] Little J.C., Hodgson A.T., Gadgil A.J., Modeling emissions of volatile organic compounds from new carpets, Atmosphere Environment, 1994, 28 (2): 227–234.
    [36] Haghighat F., Huang H., Integrated IAQ model for prediction of VOC emissions from building material, Building and Environment, 2003, 38 (8): 1007-1017.
    [37] Zhang Y., Xu Y., Characteristics and correlations of VOC emissions from building materials, International Journal of Heat and Mass Transfer, 2003, 46 (25): 4877-4883.
    [38] Weschler Charles J., Shields Helen C., Potential reactions among indoor pollutants, Atmospheric Environment, 1997, 31 (21): 3487-3495.
    [39] Seppanen O., Fisk W. J., Association of ventilation system type with SBS symptoms in office workers, Indoor Air, 2002, 12(2): 98-112.
    [40]章燕豪编著,吸附作用,上海科学技术文献出版社, 1989: 3。
    [41] Sun Y.X., Fang L., Wyon D.P. et al., Experimental research on photocatalytic oxidation air purification technology applied to aircraft cabins, Proceedings of the 10th international conference on indoor air quality and climate (Indoor Air 2005), 2005, 4: 3015-3019.
    [42] Wieczorek-Ciurowa K., Gamrat K., Shirokov Ju. G., An attempt on the VOC oxidation using mechanically activated catalyst, Journal of Thermal Analysis and Calorimetry, 2003, 72 (1): 323-328.
    [43] Burgos N, Paulis M, Mirari Antxustegi M., Montes M, Deep oxidation of VOC mixtures with platinum supported on Al/sub 2/O/sub 3//Al monoliths, Applied Catalysis B: Environmental, 2002, 38 (4): 251-258.
    [44] Chi-Sheng Wu J., Chang T.-Y., VOC deep oxidation over Pt catalysts using hydrophobic supports, Catalysis Today, 1998, 44 (1): 111-118.
    [45] Rudolph R., Francke K.-P., Miessner H., Concentration Dependence of VOC Decomposition by Dielectric Barrier Discharges, Plasma Chemistry and Plasma Processing, 2002, 22 (3), 401-412.
    [46] Sungkono I.E., Kameyama H., Koya T., Development of catalytic combustion technology of VOC materials by anodic oxidation catalyst, Applied Surface Science, 1997, 121-122: 425-428.
    [47] Ichiura H., Kitaoka T., Tanaka H., Removal of indoor pollutants under UV irradiation by a composite TiO/sub 2/-zeolite sheet prepared using a papermaking technique, Chemosphere, 2003, 50 (1): 79-83.
    [48] Daniels Stacy L. , On the Ionization of Air for Removal of Noxious Effluvia (Air Ionization of Indoor Environments for Control of Volatile and Particulate Contaminants With Nonthermal Plasmas Generated by Dielectric-Barrier Discharge), IEEE Transactions on Plasma Science, 2002, 30(4): 1471-1481.
    [49] Chen W., Zhang J.S. and Zhang Z., Performance of Air Cleaners for Removing Multiple Volatile Organic Compounds in Indoor Air, ASHRAE Transactions, 2005, 111(1): 1101-1114.
    [50] ASHRAE, ASHRAE Handbook Fundamendals. American Society of Heating, Refrigerating and Air-Conditioning Engineers. Inc., Atlanta, 2005, 22: 4.
    [51] Hines A. L., Ghosh T. K., Loyalka S.K., and Warder R.C., Investigation of Co-Sorption of Gases and Vapors as a Means to Enhance Indoor Air Quality– Phase 2: A summary of Pollutant Removal Capabilities of Solid and Liquid Desiccants from Indoor Air, Report of Gas Research Institute: GRI-92/0157.1, Chicago,1993.
    [52] Hines A. L., Ghosh T. K., water vapor uptake and removal of chemical pollutants by solid adsorbents, Gas Research Institute, GRI contract No. 5089-246-1821, 1992.
    [53] Popescu M. and Ghosh T. K., Dehumidification and Simutaneous Removal of Selected Pollutants from Indoor Air by a Desiccant Wheel Using a 1M Type Desiccant, Journal of Solar Energy Engineering, 1999, 121: 1-13.
    [54]蒙特空气处理设备北京有限公司,ML系列干燥除湿机手册(中文), 2004。
    [55] Lee Song-Yng, Ghosh Tushar K., Hines Anthoney L., Davor Novosel, Impact of environmental tobacco smoke on the water adsorption capacity of desiccant materials, Gas. Sep. Purif. , 1995, 9(4): 285-291.
    [56] Daou K., Wang R.Z., Xia Z.Z., Desiccant cooling air conditioning: a review, Renewable and Sustainable Energy Reviews, 2006, 10 (2): 55-77.
    [57] Pennington N. A., Humidity changer for air conditioning, U.S. Patent No.2700537, January 1955.
    [58] Collier R.K., Desiccant properties and their effect on cooling system performance, ASHRAE transactions, 1989, 11(1): 823-827.
    [59] Mazzei P., Minichiello F., Palma D., Desiccant HVAC systems for commercial buildings, Applied Thermal Engineering, 2002, 22: 545-560.
    [60] Belding William A., Delmas Marc P.F., Holeman William D., Desiccant aging and its effects on desiccant cooling system performance, Applied Thermal Engineering, 1996, 16 (5): 447-459.
    [61]杨英,李心刚,李惟毅等,液体除湿特性的实验研究,太阳能学报,2000, 21(2): 155-159。
    [62] Joudi Khalid A., Madhi Shakir M., Experimental Investigation into a Solar Assisted Desiccant-Evaporative Air-Conditioning System, Solar Energy, 1987, 39 (2): 97-107.
    [63] Shih, J.S., Chuah Y.K., Solar desiccant dehumidification and cooling in Taiwan, Clean and Safe Energy Forever. Proceedings of the 1989 Congress of the International Solar Energy Society , 1989, 1: 512-516.
    [64] Dupont M, Celestine B, Nguyen P H, Merigoux J, Brandon B, Desiccant solar air conditioning in tropical climates: I--Dynamic experimental and numerical studies of silicagel and activated alumina, Solar Energy, 1994, 52 (6): 509-518.
    [65] Davanagere B S, Sherif S A, Goswami D Y, A Feasibility Study of a Solar Desiccant Air Conditioning System -- Part I: Psychrometrics and Analysis of the Conditioned Zone, International Journal of Energy Research, 1999, 23 (1): 7-22.
    [66]施明恒,杜斌,赵云,太阳能液体除湿空调系统再生和蓄能特性的研究,太阳能学报,2006, 27(1): 49-54。
    [67]丁云飞,丁静,杨晓西.液体干燥剂除湿式燃气空调系统及应用[J].煤气与热力, 2003, 23(12): 738-740.
    [68] Parsons B.K., Pesaran A.A., Bharathan D., Shelpuk B., Improving gas-fired heat pump capacity and performance by adding a desiccant dehumidification subsystem, ASHRAE transactions, CH-89-11-3, 1989: 835-844.
    [69] Casas W., Schmitz G., Experiences with a gas driven, desiccant assisted air conditioning system with geothermal energy for an office building, Energy and Buildings, 2005, 37 (5): 493-501.
    [70] Davanagere B S, Sherif S A, Goswami D Y, A Feasibility Study of a Solar Desiccant Air Conditioning System -- Part I: Psychrometrics and Analysis of the Conditioned Zone, International Journal of Energy Research, 1999, 23 (1): 7-22.
    [71] Robert V Z, Brian W, Desiccants the Future, CIBSE/ASHRAE Conference, 2003.
    [72] Howe R. R., Beckman W. A., Mitchell J. W., Commercial Applications for Solar Hybrid Desiccant Systems, Progress in Solar Energy, From Annual Meeting of the American Section of the International Solar Energy Society., 1983, 6: 253-258,
    [73] Sheridan J. C., Mitchell J. W., A hybrid solar desiccant cooling system, Solar Energy, 1985, 34 (2): 187-193.
    [74] Kinsara Adnan A., Elsayed Moustafa M., Al-Rabghi Omar M., Proposed energy-efficient air-conditioning system using liquid desiccant, Applied Thermal Engineering, 1996, 16 (10): 791-806.
    [75]徐景峰,周亚素,转轮除湿用于冷却顶板空调系统的探讨,暖通空调HV&AC, 2000, 30 (2): 69-71.
    [76] Sand J.R., Fischer J.C., Active desiccant integration with packaged rooftop HVAC equipment, Applied Thermal Engineering, 2005, 25 (17-18): 3138-3148.
    [77] Niu J.L., Zhang L.Z., Zuo H.G., Energy savings potential of chilled ceiling combined with dessicant cooling in hot and humid climates, Energy and buildings, 2002, 34: 487-495.
    [78] Howe R.R., Beckman W.A., Mitchell J.W., Factors influencing the performance of commercial hybrid desiccant air conditioning systems, Proceedings of the 18th Intersociety Energy Conversion Engineering Conference , 1983, 4: 1940-1945.
    [79] OliveiraA.C., Armando C., Afonso C.F., Clito F., Riffat S.B., Saffa B., Doherty P.S., Prince S., Thermal performance of a novel air conditioning system using a liquid desiccant, Applied Thermal Engineering, 2000, 20 (13): 1213-1223.
    [80] Subramanyam N., Maiya M.P., Murthy S.S., Parametric studies on a desiccant assisted air-conditioner, Applied Thermal Engineering, 2004, 24 (17-18): 2679-2688
    [81] Zhang H. F. and Yu J. D., The research and development of the key components for desiccant cooling system, Renewable Energy, 1996, 9 (1-4): 653-656
    [82] Jurinak J. J., Mitchell J. W., Beckman W. A., Open-Cycle Desiccant Air Conditioning as an Alternative to Vapor Compression Cooling in Residential Applications, Journal of Solar Energy Engineering, Transactions of the ASME, 1984, 106 (3): 252-260.
    [83]陈沛霖,蒸发冷却技术在非干燥地区的应用,暖通空调HV&AC, 1995, 4: 3-8。
    [84] Dhar P.L., Singh S.K., Studies on solid desiccant based hybrid air-conditioning systems, Applied Thermal Engineering, 2001, 21: 119-134.
    [85] Subramanyam N., Maiya M.P., Srinivasa Murthy, Application of desiccant wheel to control humidity in air-conditioning systems, Applied Thermal Engineering, 2004, 24 (17-18) : 2777-2788.
    [86] Sheridan J. C., Mitchell J. W., A hybrid solar desiccant cooling system, Solar Energy, 1985, 34 (2): 187-193.
    [87] Yong L, Sumathy K, Dai Y J, Zhong J H, Wang R Z, Experimental Study on a Hybrid Desiccant Dehumidification and Air Conditioning System, Transactions of the ASME - N - Journal of Solar Energy Engineering, 2006, 128 (1): 77-82.
    [88] MacLaine-Cross I.L., Banks P.J., Coupled heat and mass transfer in regenerators-prediction using an analogy with heat transfer, International Journal of Heat and Mass Transfer, 1972 , 15(6): 1225-1242.
    [89] Pesaran Ahmad A., Mills Anthony F., Moisture transport in silica gel packed beds - i. Theoretical study, International Journal of Heat and Mass Transfer, 1987, 30 (6): 1037-1049.
    [90] Majumdar P., Heat and mass transfer in composite desiccant pore structures for dehumidification, Solar energy, 1998, 62 (1): 1-10.
    [91] Zhang X.J., Dai Y.J., Wang R.Z., A simulation study of heat and mass transfer in a honeycombed rotary desiccant dehumidifier, Applied Thermal Engineering, 2003, 23 (8): 989-1003.
    [92]冯青,俞金娣,张鹤飞,转轮式干燥剂除湿器数学模型及RDEH程序[J],太阳能学报,1994,15(3): 209-217。
    [93]俞金娣,罗广,张鹤飞,干燥转轮除湿器的新数学模型与RDCS程序[J],太阳能学报,1995,16(4): 368-377。
    [94] San JY, Heat and mass transfer in a two-dimensional cross-flow regenerator with a solid conduction effect, International Journal of Heat and Mass Transfer, 1993, 36(3): 633-643.
    [95] Niu J.L., Zhang L. Z., Effects of wall thickness on the heat and moisture transfer in desiccant rotors for air dehumidification and enthalpy recovery, International Communications in Heat transfer, 2002, 29 (2): 255-268.
    [96] Clausen G., Sensory evaluation of emissions and indoor air quality. Proc. of Healthy Buildings 2000, Helsinki, 2000, 1: 53-62.
    [97] Fanger P.O., Discomfort caused by odorants and irritants in the air. Indoor Air, 1998, Suppl. 4: 81-86.
    [98] ECA-IAQ (European Collaborative Action“Indoor Air Quality and its Impact on Man”), Sensory evaluations of indoor air quality. Report N0. 20. EUR 18676 EN. Luxembourg: Office for Official Publications of the European Communities, 1999.
    [99] Clausen G. and Fernandes, E.O., European data base on indoor air pollution sources in buildings. Final report, volume 1. European Commission: Joule II Programme, Energy Conservation and Utilisation, 1997.
    [100] Brasche S., Bullinger M., Morfeld M., Gebhardt H. J. and Bischof W., Why Do Women Suffer From Sick Building Syndrome More Often Than Men? Subjective Higher Sensitivity Versus Objective Causes, Indoor Air, 2001, 11: 217-222.
    [101] Sundell J., Lindvall T., Indoor air humidity and sensation of dryness as risk indicators of SBS, Indoor Air, 1993, 3: 382-290.
    [102] Gunnarsen L. and Fanger P.O., Adaptation to indoor air pollution. Environment International, 1992, 18: 43-54.
    [103] Fanger P.O., Introduction of the olf and the decipol units to quantify air pollution perceived by humans indoors and outdoors. Energy and Buildings, 1988, 12: 1-6.
    [104]李隆章,实用非参数统计方法,中国财政经济出版社, 1989: 71-94。
    [105] Fang L., Clausen G. and Fanger P. O., Impact of Temperature and Humidity on Perception of Indoor Air Quality During Immediate and Longer Whole-Body Exposures, Indoor Air, 1998, 8(4): 276-284.
    [106]天津大学概率统计教研室,应用概率统计,天津大学出版社, 1990: 212-218。
    [107]叶振华,宋清等,化学工程手册第17篇——吸附及离子交换,化学工业出版社,1985: 14-37。
    [108]杨世铭,传热学,高等教育出版社,1987: 431。
    [109] Bank P.J., Close D.J. and Maclaine-Cross I.L., Coupled heat and mass transfer in fluid flow through porous media– An analogy with heat transfer. Heat Transfer 1970 (Proc. Of the 4th Int. Transfer Conf., Versailles, Sept., Vol 7, paper CT3.1, Elsevier, Amsterdam, 1970.
    [110] Hougen O.A. and Marshall W.R., Jr., Adsorption from a fluid stream flowing through a stationary granular bed, Chem. Engng Prog. , 1947, 43(4): 197-208.
    [111] Pesaran Ahmad A., Mills Anthony F., Moisture transport in silica gel packed beds - i. Theoretical study, International Journal of Heat and Mass Transfer, 1987, 30 (6): 1037-1049.
    [112]赵荣义,范存养,薛殿华等,空气调节,中国建筑工业出版社,1994: 4-8。
    [113] WHO, Air Quality Guidelines for Europe - Second Edition, WHO Regional Office for Europe, Copenhagen, Denmark, 2000.
    [114] Li Z., Liu X., Jiang Y., Chen X., New type of fresh air processor with liquid desiccant total heat recovery, Energy and Buildings, 2005, 37 (6): 587-593.
    [115]李岱森主编,简明供热设计手册,中国建筑工业出版社,1998: 571-609。
    [116]陆耀庆主编,实用供热空调设计手册,中国建筑工业出版社,1993: 728-730。
    [117] CEN CR 1752, Ventilation for Buildings: Design Criteria for the Indoor Environment. 1998: 23.
    [118] Amevican Society of Heating Refrigerating and Air -conditioning Engineers, ASHARE Handbook of Fundamentals, 2nd ED, New York: McGraw-Hill, 1985, 6: 2-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700