用户名: 密码: 验证码:
超燃冲压发动机一体化流道设计优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文采用数值仿真和直连式试验等手段深入研究了超燃冲压发动机一体化流道设计优化问题,并全面地探讨了各设计因素对发动机部件和系统性能的影响。
     发展了基于替代模型的复杂系统渐进优化流程,比较了多项式响应面、Kriging函数、神经网络等替代模型对高度非线性问题的近似能力和迭代优化效果。在复杂非线性系统的渐进优化中,可同时采用多种替代模型进行迭代,有利于充分利用各替代模型对设计空间近似的优势,提高优化效率。
     建立了进气道/前体性能评估方法,采用渐进优化方法在全空间和缩减空间内对进气道/前体进行了两轮优化,优化效果比较显著;根据优化中建立的数据库,深入分析了各构型参数对进气道/前体性能的影响,结果表明外罩构型参数和隔离段高度对进气道/前体综合性能有相对较大的影响。
     建立了直连式试验中燃烧室性能评估方法,通过大规模的直连式试验获得了燃烧室性能改善的燃烧室优化构型及最佳燃料喷注分布,并建立了燃烧室性能关于燃烧室型面扩张角、燃料喷注分布以及当量比的数据库。
     系统地研究了燃烧室扩张角、燃料喷注分布和当量比对燃烧室性能的影响;比较了改变喷注点喷油分配比例、燃料喷注周向分布、增减凹腔等几种情况时燃烧室性能的变化。
     设计了具有一定适应性和扩展性的燃烧室控制回路,根据反馈的推力和隔离段交互监控点压强等测量数据,通过可调气蚀文氏管动态调节燃料流量实现了燃烧室推力增益和燃烧室-隔离段干扰控制。
     建立了发动机/机体流道一体化构型的性能评估方法,采用渐进优化方法获得了在设计状态和非设计状态下性能均有较大改善的优化构型,研究了燃料喷注分布和主要构型参数对发动机性能的影响。
     论文为深入研究各设计因素对超燃冲压发动机性能的影响、获取关键设计因素、提高发动机性能奠定了一定基础。
The issue of the integrated scramjet flowpath design and optimization was studied particularly by means of a new method with numerical simulation and direct-connect test, and the effects of design factors on the performance of the components and engine were discussed comprehensively.
     A successive optimization process based on surrogate models was developed for complex system optimization. The approximate and iterative capabilities of several kinds of surrogate models including polynomial response surface, Kriging model, and neural network were compared. During the optimization iteration of complex system, better optimization efficiency will be achieved when several surrogate models are adopted at the same time by synthesizing their advantages of space fitness.
     The parameters were defined to evaluate the general performance of inlet/forebody. Two circles of successive optimization of inlet/forebody were executed on the global space and reduced space respectively with the relative remarkable performance improvement. Then, the effects of configuration parameters on performance of inlet/forebody were discussed in detail according the database built during optimization, and the result shows the cowl parameters and isolater height have more important effect on the general performance of inlet/forebody.
     The analysis method was developed to evaluate the performance of scramjet combustor in direct-connect test. The optimal scramjet combustor configuration and fuel distribution were obtained by abundant direct-connect tests, and the database of combustor performance were built with respect to the divergence angles of combustor shape, distribution of fuel injection and equivalence ratio.
     The effects of divergence angles of combustor shape, distribution of fuel injection and equivalence ratio on the combustor performance were studied systemically. The variations of combustor performance were discussed for three cases of altering injection proportions for each injection, the circumferential fuel injection distribution, and adding/reducing cavities.
     An available and extensible combustor control loop was designed to perform the control of thrust force increment and combustor-isolator interaction by feedback of force and isolator pressure measurements, where the fuel mass flow was regulated dynamically by fuel mass flow control system based on controllable cavitaing venturi.
     The evaluation method was presented to analyze the performance of scramjet engine/airframe flowpath. The successive optimization of scramjet engine/airframe was executed, and the optimal configuration was obtained with remarkable performance improvement at on-design state and off-design state, further more, the effects of fuel injection distritution and main configuration parameters on the general performance of engine/airframe were discussed in detail.
     This work has established a foundation to further study the effects of design factors on scramjet performance, to obtain the dominating factors, and to improve the scramjet performance.
引文
[1] Curran E T. Scramjet Engines: The First Forty Years [J]. Journal of Propulsion and Power, 2001, 17 (6): 1138-1148
    
    [2] Heiser W H, Pratt D T, Deley D H, Mchta U B. Hypersonic Airbreathing Propulsion [M]. Washington, D.C: American Insititute of Aeronautics and Astronautics Inc, 1994
    [3] Curran E T, Murthy S N B. Scramjet Propulsion [M]. Progress in Astronautice and Aeronautics, Vol.189, 2000
    [4] Hallion R P. The History of Hypersonics: or, "Back to the Future-Again and Again" [R]. AIAA 2005-329, 2005
    [5] Sosounov V. Research and Development of Ram/Scramjet and Turbojets in Russia [R]. AGARD Lecture Ser. 194, 1993
    [6] Chinzei N, Kanda T. Scramjet Engine Tests at NAL of Japan [C]. International Colloquium on Hypersonic Propulsion, Beijing, China, 2003
    [7] Falepin F H, Lacaze H. Reference and Generic Vehicle for the French Hypersonic Technology Program [R]. AIAA 95-6038 1995
    [8] Novelli, Koschel W. FAPHAR: A Joing ONERA-DLR Research Project for High-speed Airbreathing Propulsion [R]. ISABE 99-7091, 1999
    [9] Roudakov A S, Semenov V L, Hicks J W. Recent Flight Test Results of the Joint CIAM-NASA Mach 6.5 Scramjet Flight Program [R]. NASA/TP-1998-206548,1998
    [10] Roudakov A S, Semenov V L, Kopchenov V I, Hicks J W. Future Flight Test Plans of an Axisymmetric Hydrogen-Fueled Scramjet Engine on the Hypersonic Flying Laboratory [R]. AIAA 96-4572, 1996
    
    [11] Voland R T, Auslender A H, Smart M K, Roudakov A S, Semenov V L,Kopchenov V. CIAM/NASA Mach 6.5 Scramjet Flight and Ground Test [R].AIAA 99-4848, 1999
    
    [12] Paull A, Alesi H, Anderson S. The HyShot Flight Program and How it was Developed [R]. AIAA 2002-4393, 2002
    [13] Gardner A D, Hannemann K, Steelant J, Paull A. Ground Testing of the HyShot Supersonic Combustion Flight Experiment in HEG and Comparison with Flight Data [R]. AIAA 2004-3345, 2004
    [14] McClinton C R, Rausch V L, Nguyen L T, Sitz J R. Preliminary X-43 Flight Test Results [C]. 55th International Astronautical Congress 2004, Vancouver, Canada,2004
    [15] Bahm C, Baumann E, Martin J, Bose D, Beck R E, Strovers B. The X-43A Hyper-X Mach 7 Flight 2 Guidance, Navigation, and Control Overview and Flight Test Results [R]. AIAA 2005-3275, 2005
    [16] Morelli E A, Deny S D, Smith M S. Aerodynamic Parameter Estimation for the X-43A (Hyper-X) from Flight Data [R]. AIAA 2005-5921, 2005
    [17]Marshall L A,Bahm C,Corpening G P,Sherrill R.Overview With Results and Lessons Learned of the X-43A Mach 10 Flight[R].AIAA 2005-3336,2005
    [18]Bowcutt K G.Hypersonic Technology Status and Development Roadmap[R].Presentation to AIAA HyTASP Program Committee,Dec.18,2003
    [19]Peschke W O.Approach to In Situ Analysis of Scramjet Combustor Behavior[J].Journal of Propulsion and Power,1995,11(5):943-949
    [20]Rubert K F,Lopez H J.The NASA Hypersonic Research Engine Program.[R].NASA-TM-92-21521,1992
    [21]Andrews E H,Mackley E A.Review of NASA's Hypersonic Engine Project[R].AIAA 93-2323,1993
    [22]Billig F S.SCRAM:A Supersonic Combustion Ramjet Missile[R].AIAA 93-2329 1993
    [23]Waldman B,Harsha P.NASP- A Maturing Technology Base[R].AIAA 93-5173,1993
    [24]Chase R L,Tang M H.A History of the NASP Program from the Formation of the Joint Program Office to the Termination of the HySTP Scramjet Performance Demonstration Program[R].AIAA 95-6051,1995
    [25]Boudreau A H.Status of the U.S.Air Force HyTech Program[R].AIAA 2003-6947,2003
    [26]Faulkner R F.The Evolution of the Hyset Hydrocarbon Fueled Scramjet Engine [R].AIAA 2003-7005,2003
    [27]Norris R B.Freejet Test of the AFRL HySET Scramjet Engine Model at Mach 6.5 and 4.5[R].AIAA 2001-3196,2001
    [28]Wishart D P,Fortin T B,Guinan D,Modroukas D.Design,Fabrication and Testing of an Actively Cooled Scramjet Propulsion System[R].AIAA 2003-0015,2003
    [29]Boudreau A H.Hypersonic Air-Breathing Propulsion Efforts in the Air Force Research Laboratory[R].AIAA 2005-3255,2005
    [30]Kazmar R R.Airbreathing Hypersonic Propulsion at Pratt & Whitney - Overview [R].AIAA 2005-3256,2005
    [31]Mercier R,McClinton C.Hypersonic Propulsion-Transforming the Future of Flight[R].AIAA 2003-2732,2003
    [32]Freeman D C,Reubush D E,McClinton C R,Rausch V L,Crawford J L.The NASA Hyper-X Program[R].NASA TM- 1997-207243,1997
    [33]Rausch V L,McClinton C R,Crawford J L.Hyper-X:Flight Validation of Hypersonic Airbreathing Technology[R].ISABE Paper 97-7024,1997
    [34]Rausch D R,McClinton C R.Hyper-X Program Overview[R].ISABE 99-7213,1999
    [35]McClinton C R,Rausch D R.Hyper-X Program Status[R].AIAA 2001-1910,2001
    [36]Joyce P J,Pomroy J B,Grindle L.The Hyper-X Launch Vehicle:Challenges and Design Considerations for Hypersonic Flight Testing[R].AIAA 2005-3333, 2005
    [37] McClintona C R, Rauscha V L, Shawb R J, Methac U, Nafteld C. Hyper-X:Foundation for Future Hypersonic Launch Vehicles [J]. Acta Astronautica, 2005,57: 614-622
    [38] Marshall L A, Corpening G P, Sherrill R. A Chief Engineer's View of the NASA X-43A Scramjet Flight Test [R]. AIAA 2005-3332, 2005
    [39] Hunt J L, McClinton C R. Scramjet Engine/Airframe Integration Methodology [C]. AGARD Conference Palaiseau. France, 1997
    [40] Lockwood M K, Petley D H, Martin J G, Hunt J L. Airbreathing Hypersonic Vehicle Design and Analysis Methods and Interactions [J]. Progress in Aerospace Sciences 35, 1999: 1-32
    [41] Cockrell C E, Engelund W C, Bittner R D, Dilley A D, Jentink T N, Frendi A.Integrated Aero-Propulsive CFD Methodology for the Hyper-X Flight Experiment [R]. AIAA 2000-4010, 2000
    [42] Engelund W C, Holland S D, Cockrell C E, Bittner R D. Aerodynamic Database Development for the Hyper-X Airframe Integrated Scramjet Propulsion Experiments [R]. AIAA 2000-4006, 2000
    [43] Engelund W C, Holland S D, Cockrell C E, Bittner R D. Aerodynamic Database Development for the Hyper-X Airframe-Integrated Scramjet Propulsion Experiments [J]. Journal of Spacecraft and Rockets, 2001, 38 (6): 803-810
    [44] Parikh P, Engelund W, Armand S, Bittner R. Evaluation of a CFD Method for Aerodynamic Database Development using the Hyper-X Stack Configuration [R].AIAA 2004-5385, 2004
    [45] Engelund W C, Holland S D, Cockrell C E, Bittner R D. Propulsion System Airframe Integration Issues and Aerodynamic Database Development for the Hyper-X Flight Research Vehicle [R]. ISOABE 99-7215, 1997
    [46] Davidson J, Lallman F, McMinn J D, Martin J, Pahle J, Sephenson M, et al.Flight Control Laws for Hyper-X [R]. AIAA-99-4124, 1999
    [47] Reubush D E, Martin J G, Robinson J S, Bose D M, Strovers B K. Hyper-X Stage Separation—Simulation Development and Results [R]. AIAA 2001-1802, 2001
    [48] Huebner L D, Rock K E, Ruf E G, Witte D W, Andrews E H. Hyper-X Flight Engine Ground Testing for X-43 Flight Risk Reduction [R]. AIAA 2001-1809,2001
    [49] Leonard C P, Amundsen R M, Bruce III W E. Hyper-X Hot Structures Design and Comparison With Flight Data [R]. AIAA 2005-3438, 2005
    [50] Huebner L D, Rock K E, Witte D W, Ruf E G, Andrews E H. Hyper-X Engine Testing in the NASA Langley 8-Foot High Temperature Tunnel [R]. AIAA 2000-3605, 2000
    [51] Meyer B M. Tip to Tail CFD Analysis of the Mach 7 X-43 Flight 2 Aerodynamics at Tare and Powered Conditions [C]. 28th JANNAF Air-breathing Propulsion Subcommittee Meeting, Charleston, SC, June 13-17, 2005
    [52] Blocker W D, Reubush D E. X-43A Stage Separation System - A Flight Data Evaluation [R]. AIAA 2005-3335, 2005
    [53] Karlgaard C D, Martiny J G, Tartabiniz P V, Thornblomx M N. Hyper-X Mach 10 Trajectory Reconstruction [R]. AIAA 2005-5920, 2005
    [54] Ferlemann P G. Comparison of HYPER-X Mach 10 Scramjet Preflight Predictions and Flight Data [R]. AIAA 2005-3352, 2005
    [55] Tartabini P V, Bose D M, Thornblom M N, Lien J P, Martin J G. Mach 10 Stage Separation Analysis for the X43-A [R]. AIAA 2006-1038, 2006
    [56] McClinton C R. X-43-Scramjet Power Breaks the Hypersonic Barrier Dryden Lectureship in Research for 2006 [R]. AIAA 2006-0001, 2006
    [57] Tretyakov P K. The Study of Supersonic Combustion for a Scramjet [M].Experimentation, Modeling and Computation in Flow, Turbulence, and Combustion, Vol.1, 1996
    [58] Shchetinkov E S. Piecewise-One-Dimensional Models of Supersonic Combustion and Pseudo Shock in a Duct [J]. Fizika Goreniya i Vzryva, 1973, 9(4): 473-483
    [59] Roudakov A, Schickhman Y, Semenov V, Novell P, Fourt O. Flight Testing an Axisysmmetric Scramjet: Russian Recent Advances [R]. IAF 93-S.4.485, 1993
    [60] Bouchez M, Roudakov A S, Kopchenov V I, Semenov V L. French-Russian Analysis of Kholod Dual-mode Ramjet Flight Experiments [R]. AIAA 2005-3320, 2005
    [61] Roudakov A S, Semenov V L, Strokin M V, Relin V L, Tsyplkov V V, Kondralov A A. The Prospects of Hypersonic Engines In-flight Testing Technology Development [R]. AIAA 2001-1807, 2001
    [62] Kislykh V V, Kondratov A A, Semenov V L. The Program for the Complex Investigation of the Hypersonic Flight Laboratory (HFL) 'IGLA' in the PGU of TSNIIMASH [R]. AIAA 2001-1875, 2001
    [63] Sacher P W, Zellner B. Flight Testing Objectives for Small Hypersonic Flight Test Vehicles Featuring a Ramjet Engine [R]. AIAA 95-6014, 1995
    [64] Berens T M, Bissinger N C. Forebody Precompression Performance of Hypersonic Flight Test Vehicles [R]. AIAA 98-1574, 1998
    [65] Gurijanov E P, Harsha P T. AJAX: NewDirections in Hypersonic Technology [R].AIAA 96-4609, 1996
    [66] Bityurin V A, Lineberry J T, Potebnia V G, Alferov V I, Kuranov A L, Sheikin E G. Assessment of Hypersonic MHD Concepts [R]. AIAA 97-2393, 1997
    [67] Kuranov A L, Korabelnicov A V, Kichinskiy V V, Sheiken E G. Fundamental Techniques of the "Ajax" Concept - Modern State of Research [R]. AIAA 2001-1915,2001
    [68] Kuranov A L, Kuchinsky V V, Sheikin E G. Scramjet with MHD Control under "Ajax" Concept - Requirements for MHD Systems [R]. AIAA 2001-2881, 2001
    [69] Kuranov A L, Sheikin E G. MHD Control by External and Internal Flows in Scramjet under "AJAX" Concept [R]. AIAA 2003-0173, 2003
    [70] Sheikin E G, Kuranov A L. MHD Controlled Inlet for Scramjet with Various Configurations of Magnetic Field [R]. AIAA 2004-1195, 2004
    [71] Sheikin E G. Parametric and Numerical Investigations of Scramjet with MHD Bypass [R]. AIAA 2005-1336, 2005
    [72] Sheikin E G, Kuranov A L. Scramjet with MHD Controlled Inlet [R]. AIAA 2005-3223, 2005
    [73] Shneider M N, Macheret S O. Modeling Plasma and MHD Effects in Hypersonic Propulsion Flowpath [R]. AIAA 2005-5051, 2005
    [74] Kaminaga S, Tomioka S, Yamasaki H. Feasibility Study on MHD Energy Bypass Scramjet Engine [R]. AIAA 2005-3226, 2005
    [75] Tang J-F, Bao W, Yu D-R. The Influence of Energy-bypass on the Performance of AJAX [R]. AIAA 2006-1376, 2006
    [76] Debout B, Mathieu C. French PREPHA Program - Status Report Programs of Resarch and Technology or Airbreathing Hypersonic Propulsion [R]. AIAA 92-5107, 1992
    [77] Sancho M. The French Hypersonic Research Program PREPHA - Progress Review[R]. AIAA 93-5160, 1993
    [78] Falempin F, Scherrer D, Laruelle G, Rostand P, Fratacci G, Schultz J L. French Hypersonic Propulsion Program PREPHA - Results, Lessons and Perspectives [R]. AIAA 98-1565, 1998
    [79] Auneau I, Garnero P, Duveau P. Design and Optimization Methods for Scramjet Inlets [R]. AIAA 95-6017, 1995
    [80] Bouchez M, Kergaravat Y, Saucereau D, Penanhoat O, Patrone F, Scherrer D.Scramjet Combustor Design in French PREPHA Program - Final Status in 1998 [R]. AIAA 98-1534, 1998
    [81] Le Bozec A, Rostand P, Rouy F, Dessornes O, Fontaine J, Hallard R et al.Afterbody Testing and Comparison to CFD Simulations [R]. AIAA 98-1596,1998
    [82] Reijasse P, Bur R, Chanetz B. The French Program PREPHA - Experimental Analysis of Aerodynamical Interactions Occurring on a Hypersonic Spacecraft [R]. AIAA 99-0610, 1999
    [83] Dufour A. Some Single Expansion Ramp Nozzles Studies [R]. AIAA 93-5061,1993
    [84] Jourdren C, Dessornes O. One Strut Scramjet Chamber Studies in the Frame of the PREPHA Program [R]. AIAA 98-1560, 1998
    [85] Chevalier A, Falempin F. Review of New French Facilities for PREPHA Program [R]. AIAA 95-6128, 1995
    [86] Falempin F. Ramjet/Scramjet Technology French Capabilities [R]. AIAA 99-2377, 1999
    [87] Novelli P, Koschel W. Progress of the JAPHAR Cooperation between ONERA and DLR on Hypersonic Airbreathing [R]. AIAA 2001-1870, 2001
    [88] Dessornes O, Scherrer D, Novelli P. Tests of the JAPHAR Dual Mode Ramjet Engine [R]. AIAA 2001-1886, 2001
    [89] Dessornes O, Scherrer D. Tests of the JAPHAR Dual Mode Ramjet Engine [J].Aerospace Science and Technology 9, 2005: 211-221
    [90] Eggers T, Novelli P, Haupt M. Design studies of the JAPHAR Experimental Vehicle for Dual Mode Ramjet Demonstration [R]. AIAA 2001-1921, 2001
    [91] Duveau P, Hallard R, Novelli P, Eggers T. Aerodynamic Performance Analysis of the Hypersonic Airbreathing Vehicle JAPHAR [R]. ISABE 99-7286, 1999
    [92] Falempin F, Levine V, Avrashkov V, Davidenko D, Bouchez M. French-Russian Partnership on Hypersonic Wide Range Ramjets - Status in 1998 [R]. AIAA 98-1545, 1998
    
    [93] Bouchez M, Falempin F, Levine V, Avrashkov V, Davidenko D. French-Russian Partnership on Hypersonic Wide Range Ramjets - Status in 1999 [R]. AIAA 99-4845,1999
    
    [94] Bouchez M, Falempin F, Levine V, Avrashkov V, Davidenko D. French-Russian Partnership on Hypersonic Wide Range Ramjets - Status in 2001 [R]. AIAA 2001-1872,2001
    
    [95] Bouchez M, Falempin F, Minard J-P, Levine V, Avrashkov V, Davidenko D.French-Russian Partnership on Hypersonic Wide Range Ramjets: Status in 2002 [R]. AIAA 2002-5254, 2002
    [96] Falempin F, Serre L. The French PROMETHEE Program - Main Goals and Status in 1999 [R]. AIAA 99-4814, 1999
    [97] Falempin F, Serre L. The French PROMETHEE Program Status in 2000 [R].AIAA 2000-3341 2000
    [98] Serre L, Falempin F. The French PROMETHEE Program on Hydrocarbon Fueled Dual Mode Ramjet - Status in 2001 [R]. AIAA 2001-1871, 2001
    [99] Serre L, Falempin F. PROMETHEE: the French Military Hypersonic Propulsion Program Status in 2002 [R]. AIAA 2002-5426, 2002
    [100] Serre L, Falempin F. PROMETHEE: The French Military Hypersonic Propulsion Program [R]. AIAA 2003-6950, 2003
    
    [101] Sicard M, Raepsaet B, Ser F, Masson C. Determination of the Decomposition Products of a n-alkane Endothermic Fuel under Supercritical Conditions [R].AIAA 2005-3402, 2005
    
    [102] Daniau E, Bouchez M, Herbinet O, Marquaire P M, Gascoin N, Gillard P. Fuel Reforming for Scramjet Thermal Management and Combustion Optimization [R].AIAA 2005-3403, 2005
    
    [103] Gascoin N, Gillard P, Bernard S, Bouchez M, Daniau E, Dufour E, et al.Numerical and Experimental Validation of Transient Modelling for Scramjet Active Cooling with Supercritical Endothermic Fuel [R]. AIAA 2006-4028, 2006
    
    [104] Bouquet C, Fischer R, Thebault J, Soyris P, Uhrig G. Composite Technologies Development Status for Scramjet [R]. AIAA 2005-3431, 2005
    
    [105] Bouchez M, Beyer S. PTAH-SOCAR Fuel-cooled Composite Materials Structure for Dual-Mode Ramjet and Liquid Rocket Engines - 2005 status [R]. AIAA 2005-3434, 2005
    [106] Beyer S, Schmidt S, Peres P, Bouchez M. Advanced Ceramic Matrix Composite Materials for Current and Future Propulsion System Applications [R]. AIAA 2005-3644, 2005
    [107] Heitmeir F, Lederer R, Herrmann O. German Hypersonic Technology Programme Airbreathing Propulsion Activities [R]. AIAA 92-5057, 1992
    [108] Kuczera H, Hauck H, Krammer P, Sacher P. The German Hypersonics Technology Programme - Status 1993 and Perspectives [R]. AIAA 93-5159, 1993
    [109] Weingertner S. SAENGER - The Reference Concept of the German Hypersonics Technology Program [R]. AIAA 93-5161, 1993
    [110] Kania P. The German Hypersonics Technology Program - Overview [R]. AIAA 95-6005, 1995
    [111] Heitmeir F J, Bissinger N C. Development and Test of an Airbreathing Propulsion System for Hypersonic Speeds [R]. AIAA 1995-6027, 1995
    [112] Voss N H. Ram Combustor Development within the German Hypersonics Technology Program [R]. AIAA 95-6030, 1995
    [113] Koschel W W. Basic Hypersonic Propulsion Reserch in German Universities [R].AIAA 1998-1634, 1998
    [114] Boyce R R, Paull A. Scramjet Intake and Exhaust CFD Studies for the HyShot Scramjet Flight Experiment [R]. AIAA 2001-1891, 2001
    [115] Boyce R, Gerard S, Paull A. The HyShot Scramjet Flight Experiment - Flight Data and CFD Calculations Compared [R]. AIAA 2003-7029, 2003
    [116] Hass N E, Smart M K, Paull A. Flight Data Analysis of HyShot 2 [R]. AIAA 2005-3354, 2005
    [117] Brindle A, Boyce R R, Neely A J. CFD Analysis of an Ethylene-Fueled Intake-Injection Shock-Induced-Combustion Scramjet Configuration [R]. AIAA 2005-3239, 2005
    [118] Karl S, Hannemann K, Steelant J, Mack A. CFD Analysis of the HyShot Supersonic Combustion Flight Experiment Configuration [R]. AIAA 2006-8041,2006
    [119] Neuenhahn T, Olivier H, Paull A. Development of the HyShot Stability Demonstrator [R]. AIAA 2006-2960, 2006
    [120] Chinzei N. Progress in Scramjet Engine Tests at NAL-KRC [R]. AIAA 2001-1883,2001
    [121] Kanda T, Chinzei N, Kudo K, Murakami A. Dual-mode Operation in a Scramjet Combustor [R]. AIAA 2001-1816,2001
    [122] Hiraiwa T, Mitani T, Kanda T, Enomoto Y. Experiments on a Scramjet Engine with Ramp-compression Inlet at Mach 8 Condition [R]. AIAA 2002-4129, 2002
    [123] Kanda T, Hiraiwa T, Izumikawa M, Mitani T. Measurement of Mass Capture Ratio of Scramjet Inlet Models [R]. AIAA 2003-0011, 2003
    [124] Arai T, Masuda S, Sakima F. Intake Fuel Injection and Shock Induced Combustion in a Scramjet Engine Model [R]. AIAA 2003-6910, 2003
    [125] Kobayashi K, Tomioka S, Kanda T, Tani K, Hiraiwa T, Saito T. Modified Water-cooled Scramjet Engine Tested under M8 Condition [R]. AIAA 2001-3202,2001
    [126] Kodera M, Sunami T, Nakahasi K. Numerical Study of Mixing and Combustion Process of a Scramjet Engine Model [R]. AIAA 2001-1868, 2001
    [127] Mitani T, Kobayashi K, Hiraiwa T, Tomioka S, Masuya G. Evaluation of Internal Aerodynamic Performance in Scramjet Engines [R]. AIAA 2001-1885, 2001
    [128] Mashio S, Kurashina K, Bamba T, Okimoto S, Kaji S. Unstart Phenomenon due to Thermal Choke in Scramjet Module [R]. AIAA 2001-1887, 2001
    [129] Kanda T, Kudo K. A Conceptual Study of a Combined Cycle Engine for an Aerospace Plane [R]. AIAA 2002-5146, 2002
    [130] Mitani T, Tomioka S, Kanda T, Chinzei N, Kouchi T. Scramjet Performance Achieved in Engine Tests from M4 to M8 Flight Conditions [R]. AIAA 2003-7009, 2003
    [131] Takahashi M, Sunami T, Tanno H, Komuro T, Kodera M, Itoh K. Performance Characteristics of a Scramjet Engine at Mach 10 to 15 Flight Condition [R].AIAA 2005-3350, 2005
    [132] Kodera M, Tomioka S, Kanda T, Mitani T, Kobayashi K. Mach 6 Test of a Scramjet Engine with Boundary-Layer Bleeding and Two-Staged Fuel [R]. AIAA 2003-7049, 2003
    [133] Kobayashi K, Tomioka S, Kato K, Murakami A, Kudo K, Mitani T. Performance of a Dual-Mode Combustor with Multi-Staged Fuel Injection [R]. AIAA 2004-3482, 2004
    [134] Ueda S, Tomioka S, Ono F, Sakuranaka N, Tani K, Murakami A. Mach 6 Test of a Scramjet Engine with Multi-Staged Fuel Injection [R]. AIAA 2006-1027, 2006
    [135] Kitamura E, Mitani T, Sakuranaka N, Masuya G. Evaluating the Aerodynamic Performance of Scramjet Engines by Pressure Measurement [R]. AIAA 2003-7053, 2003
    [136] Kouchi T, Mitani T, Kodera M, Masuya G. Numerical Experiments of Scramjet Combustion with Boundary-Layer Bleeding [R]. AIAA 2003-7038, 2003
    [137] Kouchi T, Mitani T, Masuya G. Problems Of Numerical Diffusion Found In Scramjets [R]. AIAA 2005-3216, 2005
    [138] Saito T, Ono F, Hayasaka O, Ueda S, Tomike J-i, Wakamatsu Y. Heating Evaluation Test of a Duct-shaped Cooling Structure Simulating Scramjet Combustors [R]. AIAA 2004-2174, 2004
    [139] Saito T, Ono F, Kobayashi K, Kudo K, Takegoshi M, Ueda S. Firing Tests of a Liquid-Hydrogen-Cooling Scramjet Engine in the Ramjet Engine Test [R]. AIAA 2005-3821,2005
    [140] Kanda T, Kudo K, Kato K, Murakami A. Scramjet Mode Tests of a Combined Cycle Engine Combustor [R]. AIAA 2003-7051, 2003
    [141] Kato K, Kanda T, Kudo K, Murakami A. Experimental Study of Combined Cycle Engine Combustor in Scramjet-Mode [R]. AIAA 2005-3316, 2005
    [142] Kim J-H, Sim J, Kim J, Yoon Y, Jeung I-S. Mixing Enhancement of Hydrogen Diffusion Flames in Supersonic Air using Shock Waves[R].AIAA 99-2785,1998
    [143]Lee S-H,Kim Y-J,Mitani T.Mixing Augmentation of Transverse Injection in SCRamjet Combustor[R].AIAA 2000-0090,2000
    [144]Lee S-H,Shin H-B,Mitani T.Mixing and Combustion Augmentations of Transverse Injection in Scramjet Combustor[R].AIAA 2001-0384,2001
    [145]Moon G-W,Jeung I-S,Choi J-Y.Numerical Study of Thermal Choking Process in a Model Scramjet Engine[R].2000
    [146]Jeong E,Jaung I-S,Choi J-Y.Numerical Study on Combustion Process of Model Scramjet Engine with a Backward Step JR].AIAA 2002-4278,2002
    [147]Jeong E,Won S-H,Jeung I-S,Choi J-Y.Numerical Simulation Study of Supersonic Combustion in Model Combustors[R].AIAA 2005-3972,2005
    [148]Kim J-H,Roh T-S,Choi J-Y,Koo J-Y.Numerical Analysis of Unsteady Combustion in Scramjet Engine[R].AIAA 2004-1039,2004
    [149]Choi J-Y,Ma F,Yang V.Dynamics Combustion Characteristics in Scramjet Combustors with Transverse Fuel Injection[R].AIAA 2005-4428,2005
    [150]Furudate M,Lee B-J,Jeung I-S.Computation of HyShot Scramjet Flows in the T4 Experiments[R].AIAA 2005-3353,2005
    [151]刘陵.超音速燃烧与超音速超燃冲压发动机[M].西安:西北工业大学出版社,1993
    [152]刘陵,张榛.超音速燃烧冲压发动机最佳设计参数[J].推进技术,1988,9(1):73-78
    [153]刘陵,张榛,牛海发,刘敬华.超音速燃烧室燃烧效率数学模型及气流状态参数的计算[J].推进技术,1989,10(2):1-7
    [154]刘陵,张榛,唐明,刘敬华.氢燃料超音速燃烧室实验研究[J].航空动力学报,1991,6(3):267-270
    [155]刘兴洲,刘敬华,王裕人.超声速燃烧实验研究(Ⅰ)[J].推进技术,1991,12(2):1-8
    [156]刘兴洲,刘敬华,王裕人.超声速燃烧实验研究(Ⅱ)[J].推进技术,1993,14(4):1-7
    [157]朱守梅,刘陵,刘敬华.超音速气流中横向喷射氢气流场数值模拟[J].推进技术,1993,14(2):1-7
    [158]胡欲立,刘陵,张榛,刘敬华,朱守梅.超音速燃烧二元流场的数值模拟[J].推进技术,1995,16(4):7-13
    [159]刘陵,唐明,张榛,刘敬华.氢气超音速燃烧非定常过程数值模拟[J].推进技术,1996,17(3):1-5
    [160]袁生学.论超声速燃烧[J].中国科学(A辑),1998,28(8):735-741
    [161]唐亚林,张德良,王琳琳,袁生学,王发民.碳氢燃料超声速燃烧的化学动力学研究(Ⅰ)甲烷超声速燃烧的简化化学动力学模型[J].推进技术,1999, 20(5):91-94
    [162]Yu G,Li J-G;Zhao J-R,Qian D-X,Han B,Li.Y.Hydrogen-Air Supersonic Combustion Study by Strut Injectors[R].AIAA 98-3275,1998
    [163]李建国,俞刚,李英,钱大兴.氢/空气超音速燃烧自燃规律的实验研究[J].推进技术,1997,18(2):11-15
    [164]Yu G,Li J-G,Zhao J-R,Qian D-X,Han B,Li Y.Hydrogen-Air Supersonic Combustion Study by Strut Injectors[R].AIAA 98-3275,1998
    [165]胡欲立,刘陵,刘敬华.超音速混合及燃烧的强化技术[J].推进技术,1994,15(5):23-27
    [166]刘敬华,刘兴洲,胡欲立,凌文辉,刘陵,张榛.超音速气流中氢燃料强化混合的燃烧试验研究[J].推进技术,1996,17(1):1-7
    [167]俞刚,李建国,陈立红,黄庆生.煤油.氢双燃料超声速燃烧点火特性研究[J].流体力学实验与测量,2000,14(1):63-71
    [168]张新宇,陈立红.高焓高超声速自由射流风洞的建设与初步实验结果[C].第十届全国激波与激波管学术讨论会,2001
    [169]张新宇,陈立红,顾洪斌,俞刚.超燃冲压模型发动机实验设备和实验技术[J].力学进展,2003,33(4):491-498
    [170]刘小勇.冲压发动机双模态燃烧的理论与试验研究[R].国防科技报告.航天科工集团三院三十一所,2000
    [171]贺伟,刘伟雄,白菡尘,丛京伟,李向东,乐嘉陵.脉冲燃烧风洞及其在超燃冲压发动机试验研究中的应用[C].第十届全国激波与激波管学术讨论会,2001
    [172]刘伟雄,谭字,白菡尘,乐嘉陵.激波风洞超燃发动机试验初步研究[C].第十届全国激波与激波管学术讨论会,2001
    [173]谭宇.直连式超燃冲压发动机燃烧室煤油火初步试验研究[R].国防科技报告.中国空气动力研究与发展中心.2000
    [174]刘卫东,梁剑寒.超燃冲压模型发动机试验研究[R].国防科技报告.国防科技大学,2003
    [175]刘伟强,邹建军.单模块超燃冲压发动机试验样机方案及试验技术方案研究[R].国防科技报告.国防科技大学,2003
    [176]Li J-G,Yu G,Li Y,Qian D-X.Experimental Studies of Self-Ignition of Hydrogen/Air Supersonic Combustion[R].AIAA 96-3139,1996
    [177]Yu G,Li J-G,Chang X-Y,Chen L-H,Sung C-J.Experimental Studies on H2/Air Model Scramjet Combustor[R].AIAA 99-2449,1999
    [178]俞刚,李建国.氢/空气超声速燃烧研究[J].流体力学实验与测量,1999,13(1):1-12
    [179]俞刚,张新宇.燃烧室构型对超燃冲压发动机性能影响研究[J].流体力学实验与测量,2000,14(1):73-80
    [180]Yu G,ZHang X-Y.The Effect of Combustor Configuration on Performance of Scramjet[J].Experiments and Measurements in Fluid Mechanics,2000,14(1):73-80
    [181]俞刚,张新宇,李建国.超声速气流中的煤油喷雾研究[J].流体力学实验与测量,200l,14(4):12-14
    [182]Yu G,Li J-G,Chang X-Y,Chen L-H,Sung C-J.Investigation of Fuel Injection and Flame Stabilization in Liquid Hydrocarbon-Fueled Supersonic Combustors [R].AIAA 2001-3608,2001
    [183]袁生学,赵伟,黄志澄.激波风洞中超声速燃烧现象的初步实验研究[J].燃烧科学与技术,2001,7(2):149-152
    [184]张鹏,俞刚.超燃燃烧室一维流场分析模型的研究[J].流体力学实验与测量,2003,17(1):88-92
    [185]岳连捷,俞刚.超声速气流中横向煤油射流的数值模拟[J].推进技术,2004,25(1):11-14
    [186]孙英英,司徒明,傅维镳.煤油-空气预混气流超声速燃烧数值研究[J].推进技术,2004,25(2):101-106
    [187]林然,陈立红,张新宇.直联式超燃实验台超声速燃气取样分析[J].实验流体力学,2006,20(1):67-79
    [188]Situ M,Sun Y-Y,Zhang S-D,Wang C.Investigation of Supersonic Combustion of Hydrocarbon Fuel-riched Hot Gas in Scramjet Combustor[R].AIAA 99-2245,1999
    [189]张树道,韩肇元,徐胜利,司徒明.双燃式(超燃)冲压发动机中激波与边界层之间相互作用对内部流动的影响[J].流体力学实验与测量,1999,13(2):16-21
    [190]司徒明,陆惠萍,王春.高超声速进气道中壁龛式预燃室进气特性[J].推进技术,2000,21(6):56-58
    [191]司徒明,王春,陆惠萍,李建国,俞刚.一种研究煤油超燃的新方案[J].流体力学实验与测量,2001,15(3):8-12
    [192]司徒明,王春,陆惠萍.双燃式冲压发动机中富油燃气射流的超燃研究[J].推进技术,2001,22(3):237-240
    [193]Situ M,Wang C,Zhuang F-G.Investigation of Supersonic Combustion of Kerosene Jets with Hot Gas Piloted Energy and Dual-Cavity[R].AIAA 2002-0804,2002
    [194]司徒明.煤油超燃冲压发动机性能分析[J].推进技术,1998,19(2):18-22
    [195]路艳红,凌文辉,刘敬华,叶中元,马祥辉.双模态超燃燃烧室计算[J].推进技术,1999,20(13):57-60
    [196]刘敬华,凌文辉,马祥辉,刘陵,张榛,王新月.超声速燃烧室流场的数值模拟研究[J].推进技术,1999,20(2):28-32
    [197]王春,司徒明,马继华,杨茂林.高温富油燃气超声速燃烧数值模拟[J].推 进技术,2000,21(2):60-63
    [198]李丽,叶中元,刘兴洲.壁龛稳焰超声速燃烧室流场的数值模拟[J].推进技术,2003,24(6):520-523
    [199]乐嘉陵,刘陵.高超声速飞行器的碳氢燃料双模念超燃冲压方案研究[J].流体力学试验与测量,1999,11(2):1-13
    [200]乐嘉陵,胡欲立,刘陵.双模态超燃冲压发动机研究进展[J].流体力学试验与测量,2000,14(1):1-12
    [201]白菡尘,刘伟雄,贺伟,曾来荣,李向东,乐嘉陵.氢燃料双模态超燃冲压发动机研究M6的试验研究[J].流体力学试验与测量,2002,16(4):1-6
    [202]白菡尘,刘开胜,苟永华,焦伟,乐嘉陵.Ma双模态模型发动机氢燃料的燃烧试验研究[J].南京航空航天大学学报,2003,35(1):53-57
    [203]Le J-L,Liu W-X,Tan Y,He W.Performance Study of Model Scramjet with Fuel of Kerosene in Pulse Facility JR|.AIAA 2003-6936,2003
    [204]王晓栋,乐嘉陵.前缘对进气道性能影响的数值模拟[J].推进技术,2002,23(6):460-462
    [205]郑忠华,乐嘉陵.Scramjet燃烧室流场的三维并行数值模拟及试验比较[J].流体力学实验与测量,2002,16(2):9-15
    [206]张毅锋,陈坚强.二维凹槽超声速湍流流动数值模拟[J].空气动力学学报,2003,21(2):231-236
    [207]沈清,杨晓辉,张涵信.二维超声速混合层流动稳定性的数值分析与并行计算[J].空气动力学学报,2002,20(增刊):27-33
    [208]陈坚强,张涵信,高树椿.激波诱导混合增强数值研究[J].计算物理,2002,19(5):408-412
    [209]刘卫东,梁剑寒,王振国.碳氢燃料超燃冲压发动机自由设计流试验研究[C].2003年高超声速技术研讨会,北京,2003
    [210]刘卫东,梁剑寒,王振国.单模块超燃冲压发动机试验样机方案及试验研究[R].国防科技报告.国防科技大学,2004
    [211]丁猛,余勇,梁剑寒,刘卫东,王振国.碳氢燃料超燃冲压发动机点火技术试验[J].推进技术,2004,25(6):566-569
    [212]余勇,丁猛,刘卫东,梁剑寒,沈赤兵,周进,et al.煤油超音速燃烧的试验研究[J].国防科技大学学报,2004,26(1):1-4
    [213]丁猛.基于凹腔的超声速燃烧火焰稳定技术研究[D].长沙:国防科学技术大学研究生院,2005
    [214]丁猛,吴继平,梁剑寒,刘卫东,王振国.文氏管流量调节技术在煤油燃料超燃冲压发动机中的应用[J].推进技术,2005,26(1):16-19
    [215]李大鹏,潘余,吴继平,刘卫东,王振国.几何可调喉道双模态冲压发动机点火过程试验研究[J].弹箭与制导学报,2006,26(4):210-213
    [216]潘余.李大鹏,刘卫东,梁剑寒,王振国.变几何喉道对超燃冲压发动机点 火与燃烧性能的影响[J].推进技术,2006,27(13):225-229
    [217]余勇.超燃冲压发动机燃烧室工作过程理论与试验研究[D].长沙:国防科技大学研究生院,2004
    [218]范晓樯.高超声速进气道的设计、计算与实验研究[D].长沙:国防科学技术大学研究生院,2006
    [219]李大鹏.煤油双模态冲压发动机燃烧室工作过程研究[D].长沙:国防科学技术大学研究生院,2006
    [220]罗世彬.高超声速飞行器机体/发动机一体化及总体多学科设计优化方法研究[D].长沙:国防科技大学研究生院,2004
    [221]梁剑寒,王承尧.超燃发动机燃烧室三维化学反应流场的数值模拟[J].航空学报,1998,19(3):269-274
    [222]梁剑寒,王承尧.超燃发动机激波增强混合的数值研究[J].空气动力学学报,1999,17(3):346-350
    [223]梁剑寒,王正华,王承尧.超燃发动机垂直燃料喷射的数值研究[J].推进技术,2000,21(1):12-14
    [224]梁剑寒,王正华,李桦,王承尧.超燃发动机化学非平衡流场的并行计算[J].空气动力学学报,2002,20(增刊):70-76
    [225]孙明波,梁剑寒,王振国.二维凹腔超声速流动的混合RANS/LES模拟[J].推进技术,2006,27(2):119-123
    [226]孙明波,梁剑寒,王振国.超声速燃烧火焰稳定凹腔质量交换特性的数值研究[J].力学学报,2007,39(2):188-193
    [227]徐胜利,岳朋涛,韩肇元,孙英英.雾化燃料在超声速气流中横向喷射混合的数值模拟[J].空气动力学学报,2000,18(1):39-45
    [228]徐胜利,Archer R D,Milton B E,岳朋涛.煤油在超声速气流中非定常横向喷射的实验观察[J].空气动力学学报,2000,18(3):272-279
    [229]徐胜利,Archer R D,Milton B E,岳朋涛.煤油在超声速气流中横向喷射的实现[J].中国科学(E辑),2000,30(2):179-186
    [230]孙英英,司徒明,韩肇元,罗喜胜,董绍彤,徐胜利.碳氢燃料超声速燃烧研究的新方法[J].推进技术,2001,22(1):69-71
    [231]孙英英,韩肇元,司徒明,王春.高温富油燃气作引导火焰的煤油超燃研究[J].推进技术,2001,22(2):157-161
    [232]黄生洪,徐胜利,刘小勇.煤油超燃冲压发动机两相流场数值模拟(Ⅰ)数值校验及总体流场特征[J].推进技术,2004,25(6):485-490
    [233]黄生洪,徐胜利,刘小勇.煤油超燃冲压发动机两相流场数值研究(Ⅱ)导流型凹槽对增强掺混和火焰稳定的影响初探[J].推进技术,2005,26(1):10-15
    [234]黄生洪,徐胜利,刘小勇.煤油超燃冲压发动机两相流场数值研究(Ⅲ)煤油 在超燃流场中的多步化学反应特征[J].推进技术,2005,26(2):101-105
    [235]黄生洪,徐胜利,刘小勇,董建明.支板布局对三维侧压式进气道特性的影响[J].推进技术,2006,27(1):52-57
    [236]胡欲立,钱志博,刘敬华,刘陵.双模态超音速燃烧室的实验研究[J].宇航学报,1998,19(2):55-60
    [237]刘欧子,蔡元虎,胡欲立,刘敬华,凌文辉.超声速气流中煤油燃烧的实验研究[J].推进技术,2005,26(3):276-279
    [238]宋文艳,黎明,刘伟雄,蔡元虎.超燃冲压发动机前体/进气道和隔离段气动设计[J].西北工业大学学报,2004,22(1):96-99
    [239]黎明,宋文艳,贺伟.高超声速二维混压式前体/进气道设计方法研究[J].航空动力学报,2004,19(4):459-565
    [240]王晓栎,宋文艳.燃料引射方式对超燃冲压燃烧室混合及燃烧效率的影响[J].航空学报,2004,25(6):556-559
    [241]王晓栋,乐嘉陵,宋文艳.带支板的冲压燃烧室的燃烧性能研究[J].空气动力学学报,2004,22(3):274-278
    [242]王晓栋,乐嘉陵,宋文艳.冲压燃烧室内的燃料扩散性能研究[J].空气动力学学报,2004,22(2):147-150
    [243]王晓栋,宋文艳.支板构型超燃冲压燃烧室流场数值模拟[J].推进技术,2005,26(1):5-9
    [244]赵志,宋文艳,曹玉吉.双台阶超燃冲压发动机燃烧室流场数值模拟[J].长春理工大学学报,2006,29(1):105-108
    [245]Song W-Y,Li M,Cai Y-H,Liu W-X,Bai H-C.Experimental Investigation of Hydrocarbon-fuel Ignition in Scramjet Combustor[J].Chinese Journal of Aeronautics,2004,17(2):65-71
    [246]徐旭,蔡国飙.超燃冲压发动机二维进气道优化设计方法研究[J].推进技术,2001,22(6):468-472
    [247]陈兵,徐旭,蔡国飙.二维超燃冲压发动机尾喷管优化设计[J].推进技术,2002,23(5):433-436
    [248]徐大军,孙冰,徐旭,王元光,陈兵.超燃冲压发动机一体化设计与优化方法研究[J].推进技术,2002,23(5):360-362
    [249]王元光,徐旭,蔡国飙.超燃冲压发动机燃烧室设计计算方法的研究[J].北京航空航天大学学报,2004,31(1):69-73
    [250]徐旭,蔡国飙.氢/碳氢燃料超声速燃烧的数值模拟[J].推进技术,2002,23(5):398-401
    [251]徐旭,蔡国飙.单模块超燃冲压发动机一体化流场数值计算[J].宇航学报,2004,25(1):114-118
    [252]王元光,徐旭,蔡国飙.超燃冲压发动机缩比燃烧室流场数值模拟[J].航空动力学报,2006 21(1):56-60
    [253]杨进军,张堃元,徐辉,徐惊雷.双模态冲压发动机高超进气道的实验研究[J].推进技术,2001,22(6):473-476
    [254]徐惊雷,张堃元,凌文辉,叶中元,张龙.马赫数对侧压式高超音速进气道及等直隔离段三维内流场的影响的数值分析[J].航空动力学报,2002,17(4):489-494
    [255]王成鹏,张堃元,杨建军.带进气道的隔离段流场实验研究与数值模拟[J].推进技术,2004,25(1):27-32
    [256]金志光,张堃元.带前体压缩的前掠侧压式进气道实验及数值研究[J].推进技术,2005,26(6):508-512
    [257]金志光.超燃冲压发动机高超侧压式进气道设计方法研究[D].南京:南京航空航天大学研究生院,2006
    [258]于达仁,崔涛,鲍文.高超声速发动机分布参数控制问题[J].航空动力学报,2004,19(2):259-264
    [259]鲍文,常军涛,牛文玉,于达仁.超燃冲压发动机磁控进气道设计影响因素分析[J].航空动力学报,2005,20(3):368-372
    [260]崔涛.超燃冲压发动机控制方法研究[D].哈尔滨:哈尔滨工业大学,2005
    [261]Molder S,Szpiro E J.Busemann Inlet for Hypersonic Speeds[J].Jouranl of Spacecraft and Rockets,1966,3(8):1303-1310
    [262]Van Wie D M,Molder S.Applications of Busemann Inlet Designs for Flight at Hypersonic Speeds[R].AIAA 92-1210,1992
    [263]Trexler C A,Souders S W.Design and Performance at Local Mach Number of 6of an Inlet for an Intergrated Scramjet Concept[R].NASA-TM-7944,1975
    [264]Trexler C A.Inlet Performance of the Integrated Langley Scramjet Module (Mach 2.3 to 7.6)[R].AIAA 75-1212,1975
    [265]Trexler C A.Tests of Two Sidewall-Compression Scramjet Inlet at Mach 18.1 to 21.6 in Helium[R].NASA-TM-1018,1988
    [266]Trexler C A.Inlet Starting Predictions for Sidewall Compression Scramjet Inlets [R].AIAA 88-3257,1988
    [267]Holland S D,Perkins J N.A Computational Parametric Study of Three-Dimensional Sidewall Compression Scramjet Inlets at Mach 10[R].AIAA 90-2131,1990
    [268]Holland S D.Mach 10 Computational Study of a Three-Dimensional Scramjet Inlet Flow Field[R].NASA-TM-4602,1995
    [269]Holland S D.Mach 10 Experimental Database of a Three-Dimensional Scramjet Inlet Flow Field[R].NASA-TM-4648,1995
    [270]张堃元,萧旭东,徐辉.非均匀流等溢流角设计高超侧压式进气道[J].推进技术,1998,19(1):20-24
    [271]张堃元,马燕荣,徐辉.非均匀流等压比变后掠角高超侧压式进气道研究[J].推进技术,1999,20(3):40-44
    [272]Hawboldt R J,Sullivan P A,Gottlieb J J.Experimental Study of Shock Wave and Hypersonic Boundary Layer Interactions Near a Convex Comer[R].AIAA 93-2980,1993
    [273]Van Wie D M,Ault D A.Internal Flowfield Characteristics of a Scramjet Inlet at Mach 10[J].Journal of Propulsion and Power,1996,12(1):158-164
    [274]黄国平,尤延铖,梁德旺.高超声速进气道流路特性分析研究[C].2003年高超声速技术研讨会,2003
    [275]卢燕,樊思齐,马会民,时瑞军.超声速进气道与发动机的匹配[J].推进技术,2003,24(4):323-325
    [276]鲍文,常军涛,郭新刚,崔涛.超燃冲压发动机进气道不起动仿真研究[J].航空动力学报,2005,20(5):731-735
    [277]Holland S D.Wind-Tunnel Blockage and Actuation Systems Test of a Two-Dimensional Scramjet Inlet Unstart Model at Mach 6[R].NASA TM-109152,1994
    [278]Van Wie D M,Kwork F T,Walsh R F.Starting Characteristics of Supersonic Inlets[R].AIAA 96-2914,1996
    [279]Tahir R B.Starting and Unstarting of Hypersonic Air Inlets[D].Toronto:Ryerson Polytechnic University(Marster Degree),2003
    [280]Van Keuk J,Ballmann J.Numberical Simulation of Hypersonic Inlet Flows[R].AIAA 98-125,1998
    [281]Tam C-J,Baurle R A,Streby G D.Numerical Analysis of Streamline-Traced Hypersonic Inlets[R].AIAA 2003-0013,2003
    [282]梁德旺,李博.某典型二元高超声速进气道的三维流动分析[C].2003高超声速技术研讨会.北京,2003
    [283]Smart M K,White A J.Computational Investigation of the Performance and Back-Pressure Limits of a Hypersonic Inlet[R].AIAA 2002-0508,2002
    [284]Auneau I,Gamero P,Duveau P.Design and Optimazation Methods for Scramjet Inlets[R].AIAA 95-6017,1995
    [285]Hasegawa S,Knight D.Application of Optimization Algorithms to Scramjet Inlet Design[R].AIAA 2005-3207,2005
    [286]罗世彬,罗文彩,丁猛,王振国.超燃冲压发动机二维进气道多级多目标优化设计方法[J].国防科技大学学报,2004,26(3):1-6
    [287]Tam C-J,Hagenmaier M A.Unsteady Analysis of Scramjet Inlet Flowfields Using Numerical Simulations[R].AIAA 99-0613,1999
    [288]Steffen C J,DeBonis J R.Numerical Analysis of the Trailblazer Inlet Flowfield for Hypersonic Mach Numbers[R].AIAA 2000-0889,2000
    [289]Akyurtlu A,Akyurtlu J,Gonor A L,Khaikine V A,Cutler A D,Blankson I M.Numerical and Experimental Tests of a Supersonic Inlet with Pylon Set and Fuel Injection through Pylons[R].AIAA 2006-1032,2006
    [290]Molder S,McGregor R J,Paisley T W.A Comparison of Three Hypersonic Air Inlets[C].Investigations in the Fluid Dynamics of Scramjet Inlets.Ryerson Polytechnical Univ.and Univ.of Toronto,Canada,1992
    [291]Van Wie D M,Ault D A.Internal Flowfield Characteristics of a Two-Dimensional Scramjet Inlet at Mach 10[R].AIAA 94-0584,1994
    [292]张垫元,金志光,王成鹏,杨建军,徐惊雷.四种高超侧压式进气道的对比研究[C].2003年高超声速技术研讨会.北京,2003
    [293]丁猛.超声速/高超声速进气道-隔离段流场的数值模拟[D].长沙:国防科学技术大学研究生院,(硕士学位论文),2000
    [294]范晓樯,李桦,丁猛.等截面矩形隔离段内流场的三维数值模拟[J].推进技术,2002,23(2):129-131
    [295]肖隐利,陈亮,宋文艳.扩张角对隔离段抗反压能力影响的数值模拟研究[J].机械设计与制造,2005,12:42-44
    [296]Wang C-P,Zhang K-Y,Cheng K-M.Pressure Distribution Measurements in Scramjet Isolators under Asymmetric Supersonic Flow[R].AIAA 2006-818,2006
    [297]Le D B,Goyne C P,Krauss R H,McDaniel J C.Experimental Study of a Dual-Mode Scramjet Isolator JR].AIAA 2005-23,2005
    [298]Taha A A,Tiwari S N,Mohieldin T O.Effect of Combustor Configuration on The Flame Holding in Scramjet[R].AIAA 2003-3544,2003
    [299]Gauba G,Haj-Hariri H,McDaniel J C.Numerical and Experimental Investigation of Hydrogen Combustion in a Mach 2 AirFlow with an Unswept Ramp Fuel Injector[R].AIAA 95-2562,1995
    [300]Eklund D R,Stouffer S D,Northam G B.Study of a Supersonic Combustor Employing Swept Ramp Fuel Injectors[J].Journal of Propulsion and Power,1997,13(6):697-704
    [301]Cox S K,Schetz R P,Walters R W.Vortical Interactions Generated by an Injector Array to Enhance Mixing in Supersonic Flow[R].AIAA Paper 94-0708,1994
    [302]Gruber M R,Donbar J,Jackson T,Mathur T.Performance of an Aerodynamic Ramp Fuel Injector in a Scramjet Combustor[R].AIAA 2000-3708,2000
    [303]Payne M D,J.W.Chrissis,E.A.Pohl,R.D.W.Bowersox,M.R.Gruber,R.P.Fuller.Optimizing Scramjet Fuel Injection Array Design[R].AIAA 99-2251,1999
    [304]Gruber M R,Baurle R A,Mathur T,Hsu K-Y.Fundamental Studies of Cavity-Based Flameholder Concepts for Supersonic Combustors[J].Journal of Propulsion and Power,2001,17(1):146-153
    [305]Ben-Yakar A,Hanson R K.Cavity Flame-Holders for Ignition and Flame Stabilization in Scramjets:An Overview[J].Journal of Propulsion and Power,2001,17(4):869-877
    [306]Rasmussen C C,Discoll J F,Hsu K Y.Blowout Limits of Supersonic Cavity-Stabilized Flames[R].AIAA 2004-3660,2004
    [307]Ikawa H.Rapid Methodology for Design and Performance Prediction of Integrated Supersonic Combustion Ramjet Engine[J].Journal of Propulsion and Power,1991,7(3):437-444
    [308]O'Brien T F,Starkey R P,Lewis M J.Quasi-One-Dimensional High-Speed Engine Model with Finite-Rate Chemistry[J].Journal of Propulsion and Power,2001,17(6):1366-1374
    [309]梁剑寒,王承尧.超燃发动机燃烧室流场的数值模拟[J].推进技术,1996.17(1):13-17
    [310]梁剑寒,王正华,王承尧.斜坡增强混合的数值研究[J].推进技术,1999,20(2):49-52
    [311]徐胜利,岳朋涛,孙英英,韩肇元.超声速气流中雾化燃料喷射的三维数值研究[J].应用力学学报,2000,17(2):19-23
    [312]McDaniel K S,Edwards J R.Three-Dimensional Simulation of Thermal Choking in a Model Scramet Combustor JR].AIAA 2001-0382,2001
    [313]刘敬华,凌文辉,马祥辉,刘陵,蔡元虎,张榛.设置空腔的超声速燃烧室流场数值模拟[J].推进技术,2000,21(2):56-59
    [314]王元光,徐旭,蔡国飙.自由射流超燃冲压发动机燃烧室流场对比计算研究[J].宇航学报,2006,27(5):826-829
    [315]Abdel-Salam T M,Carson R A.Three-Dimensional Numerical Study of a Dual-Mode Scramjet Combustor[R].AIAA 2004-2384,2004
    [316]耿辉.超声速燃烧室中凹腔上游横向喷注燃料的流动、混合与燃烧特性研究[D].长沙:国防科学技术大学研究生院,2007
    [317]Rowan S A.Viscous Drag Reduction in a Scramjet Combustor[D].Brisbane,Australia:The University of Queensland,School of Engineering,2003
    [318]Rowan S A,Paully A.Performance of a Scramjet Combustor with Combined Normal and Tangential Fuel Injection[J].Journal of Propulsion and Power,2005,22(6):1334-1338
    [319]Kobayashi K,Tomoioka S,Kato K,Murakami A,Kudo K.Performance of a Dual-Mode Combustor with Multistaged Fuel Injection[J].Journal of Propulsion and Power,2006,22(3):518-526
    [320]Hiraiwa T,Tomioka S,Izumikawa M,Mitani T.Performance of a Scramjet Nozzle in Hypersonic Flight Conditions JR].AIAA 95-2579,1995
    [321]Gambel E,Haid D.Improving Off-Design Nozzle Performance Using Fluidic Injection[R].AIAA 2004-1206,2004
    [322]Lee S-H,Mitani T.Reactive Flow in Scramjet External Nozzle[R].AIAA 99-0616,1999
    [323]A.G.Marathe,V.Thiagarajan.Effect of Geometric Parameters on the Performance of Single Expansion Ramp Nozzle[R].AIAA 2005-4429,2005
    [324]王晓栋,乐嘉陵.入口温度剖面对喷管流场结构的影响[J].推进技术,2002,23(4):283-286
    [325]李海燕,董维中,朱国林.高超声速喷管非平衡黏性流动的数值研究[J].航空学报,2006,127(2):204-207
    [326]Sobieszczanski-Sobieski J.Optimization by Decomposition:A Step from Hierarchic to Non-Hierarchic Systems[R].NASA-TM- 101494,NASA-CP-3031,1988
    [327]Giesing J P,Barthelemy J-F M.A Summary of Industry MDO Applications and Needs[R].AIAA 98-4737,1998
    [328]王振国,陈小前,罗文彩,张为华.飞行器多学科设计优化理论与应用研究[M].北京:国防工业出版社,2006
    [329]Safarik P,Polak A.Optimal Shock Wave Parameters for Supersonic Inlets[J].Journal of Propulsion and Power,1996,12(1):202-204
    [330]Smart M K.Optimization of Two-Dimensional Scramjet Inlets[J].Journal of Aircraft,1999,36(2):430-433
    [331]Korte J J,Singh D J,Kumar A,Auslender A H.Numerical Study of the Performance of Swept,Curved Compression Surface Scramjet Inlets[J].Journal of Propulsion and Power,1994:841-847
    [332]Carrier G,Knight D,Rasheed K,Montazel X.Multi-criteria Design Optimization of Two-Dimensional Supersonic Inlet[R].AIAA2001-1064,2001
    [333]Gaiddon A,Knight D D.Multicriteria Design Optimization of Integrated Three-Dimensional Supersonic Inlets[J].Journal of Propulsion and Power,2003,19(3):456-463
    [334]Edwards C L Q,Small W J,Weidner J P.Studies of Scramjet/airframe Integration Techniques for Hypersonic Aircraft[R].AIAA75-58,1975
    [335]Baysal O,Eleshaky M.Aerodynamic Design Optimization Using Sensitivity Analysis and Computational Fluid Dynamics[J].AIAA Journal,1992,30(3):718-725
    [336]Baysal O,Eleshaky M,Burgreen G.Aerodynamic Shape Optimization Using Sensitivity Analysis on Third-Order Euler Equations[J].Journal of Aircraft,1993,30(6):953-961
    [337]Burgreen G,Baysal O,Eleshaky M.Improving the Efficiency of Aerodynamic Shape Optimization[J].AIAA Journal,1994,32(1):69-76
    [338]Jacobs P A,Craddock C S.Simulation and Optimisation of Heated,Inviscid Flows in Scramjet Ducts[J].Journal of Propulsion and Power,1999,15(1):73-81
    [339]Hagenmaier M A,Davis D L.Scramjet Component Optimization Using CFD and Design of Experiments[R].AIAA2002-0544,2002
    [340]Waltrup P J,Billig F S,Stockbridge R D.A Procedure for Optimization the Design of Scramjet Engines[J].Journal of Spacecraft and Rockets,1979,16(3):163-172
    [341]McQuade P D,Eberhardt S,Livne E.CFD-Based Aerodynamic Approximation Concepts Optimization of a Two-Dimensional Scramjet Vehicle[J].Journal of Aircraft,1995,32(2):262-269
    [342]Craddock C S.Computational Optimization of Scramjets and Shock Tunnel Nozzles[D].Brisbane,Australia:Department of Mechanical Engineering,The University of Queensland,1999
    [343]Sobieszczanski-sobieski J,Agte J S,Sandusky R R.Bi-Level Integrated System Synthesis(BLISS)[R].AIAA 98-4916,1998
    [344]Sobieszczanski-sobieski J,Altus T D,Phillips M.Bi-Level Integrated System Synthesis(BLISS) for Concurrent and Distributed Processing[R].AIAA 2002-5409,2002
    [345]Xu X,Xu D-J,Wang Y-G,Chen B,Cai G-B.Flow Field Numerical Simulation and Optimization Design of Scramjet[C].International Colloquium on Hypersonic Propulsion.Beijing,China,2003
    [346]Bowcutt K G.Multidisciplinary Optimization of Airbreathing Hypersonic Vehicles[J].Journal of Propulsion and Power,2001,17(6):1184-1190
    [347]Lockwood M K,Petley D H,Hunt J L,Martin J G.Airbreathing Hypersonic Vehicle Design and Analysis Methods[R].AIAA96-0381,1996
    [348]J.N.Stemler,D.H.Petley,J.G.Martin.Current and Future State of the Vehicle Synthesis System 'HOLIST'[R].AIAA Paper 98-4742,1998
    [349]Zweber J V,Kabis H,Follett W W,Ramabadran N.Towards an Integrated Modeling Environment for Hypersonic Vehicle Design Synthesis[R].AIAA 2002-5172,2002
    [350]Baker M L,Munson M J,Alston K Y,Hoppus G W.Integrated Hypersonic Aeromechanics Tool(IHAT)[R].AIAA 2003-6952,2003
    [351]Baker M L,Munson M J,Hoppus G W,Alston K Y.Weapon System Optimization in The Integrated Hypersonic Aeromechanics Tool(IHAT)[R].AIAA 2004-4316,2004
    [352]Baker M L,Munson M J,Duchow E,Hoppus G W,Alston K Y.System Level Optimization in The Integrated Hypersonic Aeromechanics Tool(IHAT)[R].AIAA 2004-618,2004
    [353]Yeager W C.Hydrazine Based Propellant Experience at AiResearch Manufacturing Company[R].SAE Technical Paper Series,1985
    [354]Gruber M R.Active Combustion Instability Control During Scramjet Initiation Stage[R].F33615-00-C-2036.Taitech,Inc,2001
    [355]Fidan B,Mirmirani M,Ioannou P A.Flight dynamics and control of air-breathing hypersonic vehicles[R].AIAA 2003-7081,2003
    [356]张育林.变推力液体火箭发动机及其控制技术[M].北京:国防工业出版社,2001
    [357]吴继平.超声速气流中燃料雾化与超燃冲压发动机动态工作过程研究[D].长沙:国防科技大学研究生院,(硕士学位论文),2003
    [358]Reinartz B U,Keuk J v,Coratekin T,Ballmann J.Computation of Wall Heat Fluxes in Hypersonic Inlet Flows[R].AIAA 2002-0506,2002
    [359]Reinartz B U,Hermann C D,Ballmann J.Analysis of Hypersonic Inlet Flows with Internal Compression[R].AIAA 2002-5230,2002
    [360]Myers R H,Montgomery D C.Response Surface Methodology - Process and Product Optimization Using Designed Experiment[M].New York:John Wiley &Sons,1995
    [361]陈立周.稳健设计[M].北京:机械工业出版社,1999
    [362]Lin Y,Mistree F,Allen J K.Sequential Metamodeling in Engineering Design[R].AIAA 2004-4304,2004
    [363]Cressie N A C.Statistics for Spatial Data[M].New York:John Wiley & Sons,1993
    [364]Sacks J,Welch W J,Mitchell T J,Wynn H P.Design and Analysis of Computer Experiments[J].Statistical Science,1989,4(4):409-435
    [365]王松桂,史建红,尹素菊.线形模型引论[M].北京:科学出版社,2004
    [366]Lophaven S N,Nielsen H B,Sondergaard J.DACE A MATLAB Kriging Toolbox Version 2.0[R].Technical University of Denmark,Technical Report IMM-TR-2002-12,2002
    [367]阎平凡,张长水.人工神经网络与模拟进化计算[M].北京:清华大学出版社,2000
    [368]周开利,康耀红.神经网络模型及其MATLAB仿真程序设计[M].北京:清华大学出版社,2004
    [369]陈魁.试验设计与分析[M].北京:清华大学出版社,2005
    [370]iSIGHT Reference Guide(Version 8.0)[M].Engineous Software,Inc,2002
    [371]盛骤,谢式千,潘承毅.概率论与数理统计[M].北京:高等教育出版社,1989
    [372]Knill D L,Giunta A A,Baker C A.Response Surface Model Combining Linear and Euler Aerodynamics for Super Transport Design[J].Journal of AIAA,1999,36(1):75-86
    [373]Salas A O,Townsend J C.Framework Requirements for Multidisciplinary Application Development[R].AIAA 98-4740,1998
    [374]Haupt R L,Haupt S E.Practical Genetic Algorithms[M].John Wiley &Sons,Inc.,1998
    [375]Wie D M V,Ault D A.Internal Flowfield Characteristics of a Scramjet Inlet at Math 10[J].Journal of Propulsion and Power,1996,12(1):158-164
    [376]潘锦珊.气体动力学基础[M].北京:国防工业出版社,1988
    [377]方丁酉.液体火箭和液体冲压发动机热力计算软件原理和用户使用指南[R].长沙:国防科学技术大学航天技术研究所,1998
    [378]苏金明,阮沈勇,王永利.MATLAB工程数学[M].北京:电子工业出版社,2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700