用户名: 密码: 验证码:
鼹鼠(Scaptochirus moschatus)爪趾切削机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
结合金属切削原理,从切削刀具(爪趾)和切削运动(爪趾与洞壁的相对运动)两方面对鼹鼠挖掘机理进行研究。在研究过程中,从爪趾形态和材料性能两个方面进行了切削刀具(爪趾)的分析。利用体视显微镜对鼹鼠爪趾宏观几何形态进行了分析,并拟合了爪趾边缘曲线。使用游标卡尺测量了鼹鼠前爪爪趾的几何尺寸。基于逆向工程技术,使用基于点一线一面方法对鼹鼠爪趾进行了生物体表模型重构。在前爪爪爪趾表面建模的基础上,对爪趾表面特征进行了量化分析。使用体视显微镜和扫描电子显微镜对鼹鼠爪趾的断面结构进行了观察,通过显微硬度和纳米硬度试验研究了爪趾的表面硬度、断面各层硬度和弹性模量等力学性能。运用金属切削原理分析了鼹鼠爪趾的运动特性,获得爪趾的运动轨迹、切削运动、切削用量、爪趾切削结构及其几何参数,建立鼹鼠爪趾仿生切削原理,为建立仿生挖掘与切削理论奠定了基础。
The mole rats are good at digging and can dig through a 300-foot long tunnel in just one night. In addition, moles have a peculiar digging mechanism, humeral rotation digging. Their manus are the main tools for digging soils. The wide and shovel-like manus has five digits and grows outwards. All these above result from the long-term evolution in the soil environment. The claw of the manus is the bionic prototype for the soil cutting tools and excavation tools. Studies on them can provide the useful biologic information for the bionic cutting technology and the design of soil cutting tools and excavation tools.
     Coupled with the metal cutting theory, the cutting process used by the mole rats was studied from the claw and the relative movement between claws and tunnel wall, and the studies of claws included their morphology and material performance.
     1. Aspect of claw
     The macro-geometry of claws for the mole rats was made the qualitative and quantitative analysis using the stereomicroscopy and the reverse engineering. The claws of manus are similar in shape. Among them the three middle claws are a little round and the two outer claws are a little tip. All the claws are obviously curved in the transverse and longitudinal direction. They are thin at the tip and thick at the root. In addition, the three middle claws have a larger value in length, width and thickness than the two outer claws. The dorsal surface of claws is smoother than the ventral surface. The lower edge of front section is smoother than the upper edge for the claw 1 and 2; they are approximately symmetrical for claw 3; on the contrary for the claw 4 and 5. The lower and upper edges of hind section can be considered as the straight line through the fitting for all claws.
     The data clouds of ventral and dorsal surface of the claw for the mole's manus were obtained with 3-D laser scanning system. The surface reconstruction was made using the point-line-surface method after they were reduced and made the smoothing processing. Moreover, the model precision of surface reconstruction was analyzed. The results showed that the precision was satisfactory and the surface reconstruction can be used for the quantitative analysis of geometric shape for the mole's claw.
     Based on the claw's model, the quantitative analysis of surface characteristic was made. The second derivative and curvature of contour curves were calculated, accordingly the surface characteristic of claws was concluded. The results showed that the dorsal and ventral surface have the smaller vertical bending and more lateral bending. The dorsal surface is smoother than ventral surface. The ventral surface characteristic influenced the cutting performances of the claw.
     The section structure of claw was examined by carrying out the stereomicroscopy and scanning electronic microscopy (SEM). It was found that the claw mainly comprises four layers: the dorsal layer (DL), the ventral layer (VL), the intermediate layer (IL) and strengthening layer (SL). The mechanical properties were studied in micro- and nano-indentation experiments, including the surface hardness, section hardness and elastic modulus. The results showed that the dorsal hardness (DH) of the claw is harder than the ventral hardness (VL), that the tip hardness is harder than the central hardness, and that the claw is consist of a hard core covered by the softer layers.
     2. Aspect of relative movement between claws and tunnel wall
     The test results show that the movement trajectory of mole rats' foreleg has three vectors: vector X, in the direction of body width; vector Y, in the direction of body length; vector Z, in the direction of body hight. The cutting amount in the direction of body width is larger than that in the direction of body hight.
     By means of the metal cutting theory, the cutting theory of mole rat's claw was preliminary established. During the soil cutting process, the cutting movement of claws is composed of one main movement V_c, the rotation of humerus around the axis of humerus, and two feeding movements V_(f1) and V_(f2), the forward movement of body and the rotation of elbow respectively. The cutting amount and cutting structure parameters of claws were defined. Moreover, the applications of the cutting theory of mole rat's claw were discussed.
     By the help of the cutting theory of metal, the cutting mechanism of claws of the mole-rat was studied from the shape, material performance and cutting behavior of the claw, which has the significance for building the bionic excavating and cutting theory.
引文
1.任露泉,崔相旭.典型土壤动物爪趾形态的初步分析[J].农业机械学报,1990,21(2):44-49
    2.Tong J,Sun J Y,Chen D H,Zhang S J.Geometrical features and wettability of dung beetles and potential biomimetic engineering applications in tillage implements[J].Soil & Tillage Research,2005,80(1-2):1-12.
    3.陈秉聪,任露泉,徐晓波.典型土壤动物体表形态减粘脱土的初步研究[J].农业工程学报,1990,6(2):1-6.
    4.丛茜,李安琪.几何非光滑生物体表形态的分类学研究[J].农业工程学报,1992,8(2):7-12.
    5.任露泉,王云鹏.典型生物柔性非光滑体表的防粘研究[J].农业工程学报,1996,12(4):31-36.
    6.吴娜.面向仿生应用的金龟子外型测量及量化分析[D].长春:吉林大学,2006.
    7.朱凤武.金龟子形态分析及深松耕作部件仿生设计[D].,长春:吉林大学,2005.
    8.施新泉.原来如此--千姿万态的动物[M].上海:上海科学技术文献出版社,2005.
    9.Dang J.Useless Facts[EB/OL].[2006-05-15].http://www.ldcsb.on.ca/schools/jp2/news paper/Christmas2003.pdf.
    10.盛和林,王培潮,陆厚基,祝龙彪 哺乳动物学概论[M].上海:华东师范大学出版社,1985.
    11.[EB/OL].[2006-05-15].http://202.198.5.21/pms/lib3/info_channal/beiyao/byzy/dwzy_more 2.htm.
    12.Jarvis J U M,Bennett N C,Spinks A C.Food availability and foraging by wild colonies of Damaraland mole-rats(Cryptomys damarensis):implications for sociality[J].Oecologia,1998,113(2):290-298.
    13.Heth G.Burrow patterns of the mole rat Spalax ehrenbergi in two soil types(terra-rossa and rendzina) in Mount Carmel,Israel[J].Journal of Zoology,1989,217(1):39-56.
    14.Heth G,Yodrank J,Begall S,Koch R,Zilbiger Y,Nevo E,Braude S H,Burda H.Odours underground:subterranean rodents may not forage" blindly"[J].Behavioral Ecology and Sociobiology,2002,52(1):53-58.
    15.Barnett M,Bennett N C,Telford S R,Jarvis J U M.Foraging in the subterranean social Damaraland mole-rat,Cryptomys damarensis:an investigation into size-dependent geophyte utilization and foraging patterns[J].Canadian Journal of Zoology,2003,81(4):743-752.
    16.Brett R A.The ecology of naked mole-rat colonies:burrowing,food,and limiting factors.The biology of the naked mole-rat[M].Princeton University Press,1991.
    17.Brett R A.The ecology and behaviour of the naked mole rat Heterocephalus glaber (R(u|¨)ppell)(Rodentia:Bathyergidae)[D].University of London,1986.
    18.Sumbera R,Burda H,Chitaukali W N,Kubová J.Silvery mole-rats(Heliophobius argenteocinereus,Bathyergidae) change their burrow architecture seasonally[J].Naturwissenschaften,2003,90(8):370-373.
    19.Spinks AC.Sociality in the common mole-rat,Cryptomys hottentotus hottentotus:the effects of aridity[D].Cape Town:University of Cape Town,1998.
    20.Jarvis J U M,Sale J B.Burrowing and burrow patterns of East African mole-rats Tachyoryctes,Heliophobius and Heterocephalus[J].J.Zool.(Lond.),1971,163:451-479.
    21.Lovegrove B G,Painting S.Variations in the foraging behaviour and burrow structures of the Damara molerat Cryptomys damarensis in the Kalahari Gemsbok National Park[J].Koedoe,1987,30:149-163.
    22.Kimchi T,Terkel J.Seeing and not seeing[J].Current Opinion in Neurobiology,2002,12(6):728-734.
    23.Janssen J W H,Bovee-Geurts P H M,Peeters Z P A,Bowmaker J K,Cooper H M, David-Gray Z K, Nevo E, DeGrip W J. A Fully Functional Rod Visual Pigment in a Blind Mammal A CASE FOR ADAPTIVE FUNCTIONAL REORGANIZATION?[J] Journal of Biological Chemistry, 2000, 275(49): 38674-38679.
    
    24. Rado R, Gev H, Goldman B D, Terkel J. Light and circadian activity in the blind mole rat. Photobiology (ed. by E. Rikklis), Plenum, New York, 1991: 581-589.
    
    25. Kimchi T, Terkel J. Spatial learning and memory in the blind mole-rat in comparison with the laboratory rat and Levant vole[J]. Animal Behaviour, 2001, 61(1): 171-180.
    
    26. Kimchi T, Terkel J. Comparison of the role of somatosensory stimuli in maze learning in a blind subterranean rodent and a sighted surface-dwelling rodent[J]. Behavioural Brain Research, 2004, 153(2): 389-395.
    
    27. Kimchi T. A subterranean mammal uses the magnetic compass for path integration[J].Proceedings of the National Academy of Sciences, 2004,101(4): 1105-1109.
    
    28. Kimchi T, Terkel J. Magnetic compass orientation in the blind mole rat Spalax ehrenbergi[J]. J Exp Biol, 2001, 204(4): 751-758.
    
    29. Heffner, R.S. and H.E. Heffner, Vestigial hearing in a fossorial mammal, the pocket gopher (Geomys bursarius). Hear Res, 1990,46(3): 239-52.
    
    30. Heffner R S, Heffner H E. Hearing and sound localization in blind mole rats(Spalax ehrenbergi)[J]. Hearing research, 1992, 62(2): 206-216.
    
    31. Heffher R S, Heffner H E. Degenerate hearing and sound localization in naked mole rats (Heterocephalus glaber), with an overview of central auditory structures[J]. J Comp Neurol,1993, 331(3): 418-433.
    
    32. Bruns, V, et al., Inner ear structure and electrophysiological audiograms of the subterranean mole rat, Spalax ehrenbergi. Hear Res, 1988. 33(1): p. 1-9.
    
    33. Burda H, Bruns V, Hickman G C. The Ear in Subterranean Insectivora and Rodentia in Comparison With Ground-Dwelling Representatives. I. Sound Conducting System of the Middle Ear[J]. Journal of Morphology, 1992, 214(1): 49-61.
    
    34. Burda H, Bruns V, Muller M. Sensory adaptations in subterranean mammals[J]. Prog Clin Biol Res, 1990,335:269-93.
    
    35. Burda H, Bruns V, Nevo E. Middle ear and cochlear receptors in the subterranean mole-rat,Spalax ehrenbergi[J]. Hear Res, 1989, 39(3): 225-30.
    
    36. Burda H, Mueller M, Bruns V. The auditory system in subterranean mammals[A]. Proceeding of the 16th Gottingen Neurobiology Conference[C]. Georg Thieme Verlag, Stuttgart, New York, 1988
    
    37. Bronchti G, Heil P, Scheich H, Wollberg Z. Auditory pathway and auditory activation of primary visual targets in the blind mole rat (Spalax ehrenbergi): I. 2-deoxyglucose study of subcortical centers[J]. J Comp Neurol, 1989, 284(2): 253-74.
    
    38. Rado R, Himelfarb M, Arensburg B, Terkel J, Wollberg Z. Are seismic communication signals transmitted by bone conduction in the blind mole rat?[J] Hear Res, 1989,41(1): 23-9.
    
    39. Muller M, Laube B, Burda H, Bruns V. Structure and function of the cochlea in the African mole rat (Cryptomys hottentotus): evidence for a low frequency acoustic fovea[J]. Journal of Comparative Physiology A: Sensory, Neural, and Behavioral Physiology, 1992, 171(4):469-476.
    
    40. Heth G, Frankenberg E, Nevo E. Adaptive optimal sound for vocal communication in tunnels of a subterranean mammal (Spalax ehrenbergi)[J]. Cellular and Molecular Life Sciences (CMLS), 1986,42(11): 1287-1289.
    
    41. Muller M, Burda H. Restricted hearing range in a subterranean rodent, Cryptomys hottentorus[J].Naturwissenschaften, 1989, 76(3): 134-135.
    
    42. Kossl M, Frank G, Burda H, Muller M. Acoustic distortion products from the cochlea of the blind African mole rat, Cryptomys spec[J]. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1996, 178(3): 427-434.
    
    43. Zuri, I, Terkel J. Summer tunneling activity of mole rats(Spalax ehrenbergi) in a sloping field with moisture gradient[J]. Mammalia(Paris), 1997, 61(1): 47-54.
    
    44. Zuri I, Gazit I, Terkel J. Effect of Scent-Marking in Delaying Territorial Invasion in the Blind Mole-Rat Spalax Ehrenbergi[J]. Behaviour, 1997, 134(11-12): 867-880.
    
    45. Nevo E, Bodmer M, Heth G. Olfactory discrimination as an isolating mechanism in speciating molerats[J]. Cellular and Molecular Life Sciences (CMLS), 1976,32(12): 1511-1512.
    
    46. Zuri I. The behavior of the mole rat (Spalax ehrenbergi) in laboratory and field[D]. Tel Aviv University,1993.
    47.Shanas U,Terkel J.Grooming expresses harderian gland materials in the blind mole rat[J].Aggressive behavior(Print),1995,21(2):137-146.
    48.Klauer G,Burda H,Nevo E.Adaptive Differentiations of the Skin of the Head in a Subterranean Rodent,Spalax ehrenbergi[J].JOURNAL OF MORPHOLOGY,1997,233:53-66.
    49.Bennett N C,Faulkes C G African Mole-Rats:Ecology and Eusociality[M].Cambridge:University Press,2000.
    50.Gormann M L,Stone R D.The Natural History of Moles[M].London:Comell University Press,1990.
    51.Kimchi T,Terkel J.Importance of touch for the blind mole rat(Spalax ehrenbergi) in learning a complex maze.Israel Journal of Zoology,2000,46:165.
    52.Catania K C,Remple F E.Tactile Foveation in the Star-Nosed Mole[J].Brain,Behav Evol,2004,63(1):1-12.
    53.老克利夫兰P·希克曼等.动物学大全(上册)[M].北京:科学出版社,1988.
    54.刘凌云and郑光美,普通动物学[M].北京:高等教育出版社,1997.
    55.动物小百科[EB/OL].[2006-05-15].http://www.fangshengxue.com/list.asp?unid=339.
    56.Exploring Urban Integrated Pest Management[EB/OL].[2006-05-15].http://www.pested.msu.edu/CommunitySchoolIpm/curriculumpdf/wholedoc.pdf.
    57.The marsupials and mammals[EB/OL].[2006-05-15].http://evolution-facts.org/Ev-V3/3evl ch32.htm.
    58.罗泽殉,陈卫,高武.中国动物志兽纲第六卷啮齿目(下册) 仓鼠科[M].北京:科学出版社,2000.
    59.van der Wal P,Giesen H J,Videler J J.Radular teeth as models for the improvement of industrial cutting devices[J].Materials Science & Engineering C,2000,7(2):129-142.
    60.Ren L Q,Tong J,Li J Q,Chen B C.Soil adhesion and biomimetics of soil-engaging components:a review[J].Journal of agricultural engineering research,2001,79(3):239-263.
    61.任露泉,陈德兴.土壤动物减粘脱土规律初步分析[J].农业工程学报,1990,6(1):15-20.
    62.任露泉,丛茜.几何非光滑典型生物体表防粘特性的研究[J].农业机械学报,1992,23(2):29-35.
    63.郭志军.土壤深松部件高效节能仿生设计及有限元分析[D].长春:吉林大学,2002.
    64.郭志军,周志立,任露泉.达乌尔黄鼠爪趾几何特征分析[J].河南科技大学学报:自然科学版,2003,24(1):1-4.
    65.Just S,Gronenberg W.The control of mandible movements in the ant Odontomachus[J].Journal of Insect Physiology,1999,45(3):231-240.
    66.Paul J.Mandible movements in ants[J].Comparative Biochemistry and Physiology,Part A,2001,131(1):7-20.
    67.张维球,戴宗廉,张之光.农业昆虫学[M].北京:农业出版社,1981.
    68.颜忠诚.昆虫的口器[J].生物学通报.2005,40(9):6-9.
    69.爱德华兹C A,洛大蒂J R.蚯蚓生物学[M].北京:科学出版社,1984.
    70.李安琪,任露泉.蚯蚓体表液的组成及其减粘脱土机理分析[J].农业工程学报,1990,6(3):3.
    71.Brown P E,Anderson M.Morphology and ultrastructure of sense organs on the ovipositor of Trybliographa rapae,a parasitoid of the cabbage root fly[J].Journal of Insect Physiology,1998,44(11):1017-1025.
    72.Vincent J F V,King M J.The Mechanism of Drilling by Wood Wasp Ovipositors[J].BIOMIMETICS,1995,3:187-201.
    73.丛茜,吴连奎.非光滑表面电渗减粘脱土原理的试验研究[J].农业工程学报,1995,11(3):19-23.
    74.陈日耀.金属切削原理[M].北京:机械工业出版社,1985.
    75.Size E Hardmetals research gets some biting advice from King Rat[J].Metal Powder Report,2005,60(3):18.
    76.郭志军,周志立,佟金,任露泉.抛物线型切削面刀具切削性能二维有限元分析[J].洛阳工学院学报,2002,23(4):1-4.
    77.郭志军,周志立,任露泉.仿生弯曲形切削工具切削性能的二维有限元分析[J].机械工 程学报,2003,39(9):106-109.
    78.郭志军,周志立,徐东,张毅,牛毅,任露泉.高效节能仿生深松部件的试验[J].河南科技大学学报:自然科学版,2003,24(3):3.
    79.丛茜,李安祺.凸包形推土板减粘降阻的仿生研究[J].工程机械,1995,26(11):14-16.
    80.任露泉,丛茜.仿生非光滑推土板减粘降阻的试验研究[J].农业机械学报,1997,28(2):1-5.
    81.Ren L Q,Han Z W,Li J Q,Tong J.Experimental investigation of bionic rough curved soil cutting blade surface to reduce soil adhesion and friction[J].Soil & Tillage Research,2006,85(1-2):1-12.
    82.李建桥,任露泉.减粘降阻仿生犁壁的研究[J].农业机械学报,1996,27(2):2.
    83.任露泉,丛茜.非光滑表面电渗减粘降阻应用研究[J].农业工程学报,1995,11(3):24-28.
    84.李燕.仿蚯蚓在土质环境下拱洞机器人的研究[D].西安:西北工业大学,2004.
    85.孟庆鑫,魏洪兴.基于蠕动原理拱泥机器人方案研究[J].中国造船,2001,42(1):64-68.
    86.王岚,孟庆鑫,拱泥机器人运动学模型的建立及仿真[J].机械与电子,2003,(1):16-18.
    87.魏洪兴,孟庆鑫.拱泥机器人原理样机的研制[J].中国造船,2003,44(1):89-93.
    88.张英,孙虎,胡勇,朱美琪.水下仿生拱泥机器人方案研究[J].武汉理工大学学报:信息与管理工程版,2005,27(4):43-46.
    89.尚涛,王昕.开发减粘降阻仿生钻具的可行性[J].吉林大学学报:工学版,2002,32(3):101-104.
    90.张毅,孙友宏.钻头泥包的土壤动物仿生学分析研究[J].探矿工程,2003,(2):41-43.
    91.陈福顺.鼹鼠对人参的危害及防治[J].人参研究,2003,15(3):47-48.
    92.Hamrick M W.Functional and adaptive significance of primate pads and claws:Evidence from New World anthropoids[J].American Journal of Physical Anthropology,1998,106(2):113-127.
    93.金涛,童水光.逆向工程技术[M].北京:机械工业出版社,2003.
    94.王宵,刘会霞,梁佳洪.逆向工程技术及其应用[M].北京:化学工业出版社,2004.
    95.李江雄.复杂曲面反求工程CAD建模技术研究[D].杭州:浙江大学,1998.
    96.唐朝伟,梁锡昌.三维曲面激光精密测量技术[J].计量学报,1994,15(2):99-103.
    97.Kim S W,Choi Y B,Oh J T.Reverse engineering:high speed digitization of free-form surfaces by phase-shifting grating projection moire topography[J].International Journal of Machine Tools and Manufacture,1999,39(3):389-401.
    98.周剑,杨玉孝.层析三维数字化测量原理及层析图像边缘精度分析与标定[J].西安交通大学学报,1999,33(7):84-88.
    99.Peng Q,Loft-us M.Using image processing based on neural networks in reverse engineering[J].International Journal of Machine Tools and Manufacture,2001,41(5):625-640.
    100.王丽萍.基于快速成型的逆向工程技术集成[EB/OL].[2006-05-15]http://www.doule.net/teacher/zyjy/jxsj/200508/15428.html.
    101.陈宏远,刘东.实物逆向工程中的关键技术及其最新发展[J].机械设计,2006,23(8):1-5.
    102.姜元庆,刘配军.UG/Imageware逆向工程培训教程[M].北京:清华大学出版社,2003.
    103.苏步青,刘鼎元.计算几何[M].上海:上海科学技术出版社,1981.
    104.刘保嘉,徐宗俊,王巍,王诗杨.曲线及曲面的光顺性研究[J].机械与电子,2001(5):49-52.
    105.Klass R.Correction of local surface irregularities using reflection lines[J].Computer-Aided Design,1980,12(2):73-77.
    106.Beier K P,Chen Y.Highlight-line algorithm for realtime surface-quality assessment[J].Computer-Aided Design,1994,26(4):268-277.
    107.Poeschl T.Detecting surface irregularities using isophotes[J].Computer Aided Geometric Design,1984,1(2):163-168.
    108.徐涛.数值计算方法[M].吉林:吉林科学技术出版社,1998.
    109.沈毅,张庆军.超高溫烧结条件下氧化铝板状晶体的形貌[J].河北理工学院学报,2000,22(1):36-40.
    110.曾晓飞,赵红英.纳米CaCO3-PVC复合材料微观结构利力学性能研究[J].北京化工大学学报:自然科学版,2001,28(4):1-3.
    111.李国平,黄群策,秦广雍.用激光扫描共聚焦显微镜观察雪松花粉利花粉管[J].激光生物学报,2006,15(1):1-8.
    112.Zook E G.Anatomy and physiology of the perionychium[J].Clinical Anatomy,2003,16(1):1-8.
    113.Ditre C M,Howe N R.Surgical anatomy of the claw unit[J].J Dermatol Surg Oncol,1992,18(8):665-671.
    114.Dykyj D.Anatomy of the claw[J].Clin Podiatr Med Surg,1989,6(2):215-228.
    115.Le Gros Clark W E.The problem of the claw in primates[J].Proc.zool.Soc.,Lond,1936:1-24.
    116.Lewin K.The normal finger claw[J].Br J Dermatol,1965,77(8):421-430.
    117.Thorndike E E.A microscopic study of the marmoset claw and claw[J].American Journal of Physical Anthropology,1968,28(3):247-261.
    118.Soligo C,M(u|¨)ller A E.Claws and claws in primate evolution[J].Journal of Human Evolution,1999,36:97-114.
    119.Dai Z D,Gorb S N,Schwarz U.Roughness-dependent friction force of the tarsal claw system in the beetle Pachnoda marginata(Coleoptera,Scarabaeidae)[J].Journal of Experimental Biology,2002,205(16):2479-2488.
    120.Farren L,Shayler S,Ennos A R.The fracture properties and mechanical design of human fingerclaws[J].Journal of Experimental Biology,2004,207(5):735-741.
    121.Baden H R The physical properties of claw[J].Journal of Investigative Dermatology,1970,55(2):115-122.
    122.孙霁宇.臭蜣螂表皮纳米力学测试方法和纳米力学行为[D].长春:吉林大学,2005.
    123.中国大百科全书总编辑委员会《力学》编辑委员会.中国大百科全书(力学卷)[M].北京:中国大百科全书出版社,1985.
    124.曲敬信,汪泓宏.表面工程手册[M].北京:化学工业出版社,1998.
    125.杨迪,李福欣.显微硬度试验[M].北京:中国计量出版社,1988.
    126.Boussinesq J.Applications des potentiels à l'étude de l'équilibre et du mouvement des solides élastiques[M].Paris:Gauthier-Villars,1885.
    127.Doerner M E Nix W D.A method for interpreting the data from depth-sensing indentation instruments[J].Journal of Materials Research,1986,1(4):601-609.
    128.Pharr G M,Oliver W C,Brotzen F R.On the generality of the relationship among contact stiffness,contact area,and elastic modulus during indentation[J].Journal of Materials Research,1992,7(3):613-617.
    129.Oliver W C,Pharr G M.Improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments[J].Journal of Materials Research,1992,7(6):1564-1583.
    130.Li X D,Bhushan B.A review of nanoindentation continuous stiffness measurement technique and its applications[J].Materials Characterization,2002,48(1):11-36.
    131.邹俭鹏,阮建明,黄伯云.生物材料学[M].北京:科学出版社,2004.
    132.Bell T J,Field J S,Swain M V,Elastic-plastic characterization of thin films with spherical indentation[]J.Thin Solid Films,1992,220(1):289-94.
    133.Hysitron Inc.TriboIndenter Users Mannual.2001,98-102.
    134.Bobji M S,Biswas S K,Estimation of hardness of nanoindentation of rough surfaces[J].Journal of Materials Research,1998.13(11):3227-3233.
    135.Bobji M S,Biswas S K,Pethica J B.Effect of roughness on the measurement of nanohardness-a computer simulation study[J].Applied Physics Letters,1997,71(8):1059-1061.
    136.冯元桢.生物力学[M].北京:科学出版社,1983.
    137.Scott R G,Richardson R C.Realities of biologically inspired design with a subterranean digging robot example[A].Proceedings of the 6th IASTED International Conference on Robotics and Applications[C].Cambridge,MA,USA,2005,226-231.
    138.Yalden,D W.The anatomy of mole locomotion[J].J Zool,1966,149:55-64.
    139.Barnosky A D.Locomotion in Moles(Insectivora,Proscalopidae) from the Middle Tertiary of North America[J].Science,1982.216(4542):183-185.
    140.李华.机械制造技术[M].北京:机械工业出版社,1997.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700