用户名: 密码: 验证码:
MPCVD法制备光学级多晶金刚石膜及同质外延金刚石单晶
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用MPCVD (Microwave Plasma Chemical Vapor Deposition)方法,在硅衬底上沉积多晶金刚石薄膜,通过优化生长条件,成功的制备了直径50 mm,红外透过率接近理论极限值的光学级多晶金刚石自支撑膜,系统研究了其生长规律及应力、杂质和光学特性。通过在生长气氛中添加少量氮气,实现了同质外延大尺寸CVD金刚石单晶的高速生长,生长速率达到了50μm/h以上,是传统方法生长多晶金刚石膜的10倍左右;研究了CVD金刚石单晶内部的氮分布。
Diamond is a new functional material with many excellent properties. It is the most important semiconductor, and has many applications. In the large-sized optical window area, CVD technique is the best method of producing diamond optical windows. In this thesis, optical-grade multi-crystalline diamond free-standing films were synthesized by MPCVD technique, and their growth properties, stress, impurities, and optical transmittance have been studied.
     Also, diamonds have the potential to become a new semiconductor by replacing silicon. Natural and HPHT diamonds can't fulfill the demands for their problems like size limitation, doping issue, and etc. So CVD technique becomes the most promising methond to synthesize large-sized single crystal diamonds. In this thesis, CVD homoepitaxial single-crystalline diamonds with high growth rate were deposited, and the nitrogen distribution in them has been investigated.
     The thesis includes three parts:
     I. Several main factors that affect the growth of diamond films, as well as the stress in them and impurity bonds on their surfaces, were studied and analyzed.
     1. During the process of deposition of diamond films by MPCVD, CH4 concentration affects their growth properties largely. The grow rate of the diamond films increases linearly, while their quality drops with increasing CH4 concentration. And 3% was confirmed to be the best CH4 concentration by compromising the film quality and its growth rate.
     2. Microwave power decides the color, shape and density of the plasma, and consequently influences the decomposition, initial energy and the ratio of different species in the reaction gases, and finally affects the growth of the films. With increasing microwave power, both their quality and growth rate increase. When the power is higher than 4500 w, their quality and growth rate becomes stable.
     3. The addition of oxygen largely improves the growth of diamond films, while keeping other conditions constant.
     4. The stress in the films has been investigated.①CH4 concentration has a big effect on the macro-stress in the films. When the CH4 concentration is 2% and 3%, the stress is tensile, and it becomes compressive with the CH4 concentration of 4%, and the compressive stress increases gradually with increasing CH4 concentration afterwards.②With the CH4 concentration increasing from 2% to 7%, the micro-stress in the films increases linearly.
     5. Impurity bonds on the surfaces of optical-grade diamond films have been studied by XPS, and a small amount of oxygen and nitrogen has been found, with their mainly existing states of C-O bond, C=O bond, O-C=O bond and O-N bond. And for the diamond films deposited without oxygen inlet, no nitrogen or oxygen bonded with carbon was found by XPS.
     II. Transparent free-standing diamond film, 50 mm in diameter and 300μm in thickness, was prepared. The optical properties of optical-grade multi-crystalline diamond films were alalysized, as well as their mechanical properties.
     1. The IR transmittance of large-sized transparent diamond thick film grown at a methane concentration of 2% is very high (about 70%), but the growth rate is low (only 1-2μm).
     2. The IR transmittance of large-sized transparent diamond thick film grown at a methane concentration of 4% is only about 60%, but the growth rate is high (7-8μm), which fulfills the real applications.
     3. The region with small grains near the nucleation side of the diamond film largely affected the film's IR transmittance, and polishing it away could further improve the IR transmittance of the diamond film.
     4. The IR transmittance of theΦ50 mm large-sized tranparent diamond film is the same at both the central and fringe region. Thus, it can be deduced that theΦ50 mm large-sized tranparent diamond film prepared under the conditions in this investigation has uniform optical quality.
     5. The films are transparent in visible region, and their UV absorption edge is around 225 nm (almost equals to the forbidden band width of single crystal diamonds), which makes it a promising material of producing UV detectors.
     6. The results of fracture strength measurements in a universal testing machine showed that their mechanical properties are close to the films produced by EA-CVD and DC-CVD, while worse than natural diamonds, which, however, has already fulfilled the demands of many applications, e.g. IR windows.
     III. The high rate growth process and optical properties of homoepitaxial CVD single-crystalline diamonds have been studied as well.
     1. High rate (>50μm) growth of homoepitaxial CVD single-crystalline diamonds has been achieved by adding a small amount of nitrogen in the reaction gases.
     2. The disappearance of void defect on the top surface of single-crystalline diamonds is discussed to be related to a filling-in mechanism.
     3. The results of PL spectrum showed that the nitrogen concentration is spatially inhomogeneous either on the top surface or in the bulk of the as-grown single-crystalline diamonds.
     4. The presence of N-distribution is attributed to the N-diffusion, resulting from the local growth temperatures changed during the high-rate deposition process. In addition, the formed nitrogen-vacancy centers play a crucial role in N-diffusion through the growing crystal.
     5. Based on the N-distribution observed in the as-grown crystals, we propose a simple method to distinguish natural diamonds and artificial CVD single-crystalline diamonds.
引文
[1] Hershey. The Book of Diamonds[M]. New York: Hearthside Press, 1940.
    [2] Isaac Newton. Opticks: Or, A treatise of the Reflections, Refractions, Inflexions and Colours of Light[M]. London: 1704.
    [3] A.L. Lavoisier. Memorie Academie des Sciences[J]. 1772, 564-91
    [4] S. Tennant. Phil. Trans. R. Soc.[J]. 1797, 87:123.
    [5]顾长志,金曾孙.金刚石膜的性质、应用及国内外研究现状[J].功能材料, 1997, 28(3):232-236.
    [6]金曾孙.金刚石薄膜的研究进展与展望[J].薄膜科学与技术, 1995, 8(3): 172-175.
    [7] Hollman P, Alahelisten A, Olsson M, Hogmark S. Residual stress, Young's modulus and fracture stress of hot flame deposited diamond[J]. Thin Solid Films, 1995, 270(1-2):137-142.
    [8] F. Okuzumi. International Conference on New Diamond Science and Technology [C]. 1990:80.
    [9]李惠琪,李惠东,何鸣鸿.等离子体喷射法气相生长金刚石[M].北京:煤炭工业出版社, 1995.
    [10] French P J, Muro H, Shinohara T, Nojiri H and Kaneko H. SOI pressure sensor[J]. Sensors and Actuators A: Physical, 1992, 35(1):17-22.
    [11] P J Boudreaux. Thermal Aspects of High Performance Packaging with Synthetic Diamond [C]. 3nd Inter. Conf. on the Appl. of Diamond Films and Related Materials, 1995, 603-610.
    [12] Nakahata H, Hachigo A, Higaki K, Fujii S, Shikata S, Fujimori N. Theoretical study on SAW characteristics of layered structuresincluding a diamond layer [C]. 2nd Inter. Conf. on the Appl. of Diamond Films and Related Materials, 1995, 42(3):362-375.
    [13] Yin Z, Akkerman Z, Yang B X, Smith F W. Optical properties andmicrostructure of CVD diamond films[J]. Diamond and Related Materials, 1997, 6(1):153-158.
    [14] Spear K E. diamond-ceramic coating of the future[J]. J. Am. Ceram. Soc., 1989, 72:171-191.
    [15]戴达煌,周克崧.金刚石薄膜沉积制备工艺与应用[M].北京:冶金工业出版社, 2001.
    [16] Jones M H, Jones S H. The General Properties of Si, SiGe, SiO2 and Si3N4[J]. Virginina Semiconductor, June, 2002.
    [17]蒋翔六. CVD金刚石薄膜的应用和市场前景[J].薄膜科学与技术, 1991, 4(3):9-14.
    [18]满卫东.金刚石薄膜[J].新型碳材料,2002(17): 77.
    [19] EDWARD L, SIMONS, PETER CANNON. A Means of Increasing the Oxidation Resistance of Diamond[J]. Nature, 1966(210): 90-91.
    [20]刘敬明,唐伟忠,吕反修.高质量CVD金刚石膜的氧化损伤[J].人工晶体学报,2001(30): 167-170.
    [21] W. Okrój, et al. Blood platelets in contact with nanocrystalline diamond surfaces[J]. Diamond and related materials, 2006(15): 1535-1539.
    [22] Lawson T R, Catledge S A, Vohra Y K. Nanostructured diamond coated CoCrMo alloys for use in biomedical implants[J]. BIOCERAMICS, 2005(17): 1015-1018.
    [23]沈沪江,王林军,夏义本,张明龙.金刚石薄膜在粒子探测器中的应用[J].量子电子学报,2003(20): 513-519.
    [24] Changzhi Gu, Yue Sun, Ye Sun, Zengsun Jin. The radiation hardness properties of g-ray for SOD circuits fabricated on 4-inch SOD wafer[J]. Diamond and Related Materials, 2002(11): 405-407.
    [25] Rossini F D, Jessup R S. Heat and free energy of formation of carbon dioxide, and the transition between graphite and diamond[J]. J. Res. NBS, 1938, 21:491-513.
    [26] Bundy F P, Hall H T, Strong H M, Wentorf R H. Man-Made Diamonds[J]. Nature, 1955, 51:176.
    [27]方啸虎,刘广志.中国人造金刚石现状与高品质人造金刚石[J].探矿工程:岩土钻掘工程,2005(32): 1-4.
    [28]李志宏,刘金昌,宜云雷,赵博,牛玲,司文元.我国人造金刚石工业现状及发展[J].金刚石与磨料磨具工程,2002(127): 49-53.
    [29]宜云雷,孙金阶,王伟,李志宏,赵博.结构调整中强势发展的超硬材料行业[J].金刚石与磨料磨具工程,2008: 68-72.
    [30] Derjaguin B V, Spitzyn B V, Builov L L, Kochkov A A. Diamond Crystal Synthesis on Nondiamond Substrrates[J]. Sov. Phys. Dokl., 1956, 21(11):676.
    [31] Matsumoto S, Sato Y, TsuTsumi M, Setaka N. Growth of diamond particals from methane-hydrogen gas[J]. J. Mater. Sci., 1982, 17:3106-3112.
    [32] Kamo M, Sato Y, Matsumoto S, Setaka N. diamond synthesis from gas phase in microwave plasma[J]. J. Cryst. Growth, 1983, 62:642.
    [33] Daniel C Harris. Proc. 3rd Int. Conf. on Appl. of Diamond Films and Related Materials [C]. 1995 :539.
    [34] C S Yan, Y K Vohra, H K Mao, and R J Hemley. Very High Growth Rate Chemical Vapor Deposition of Single- crystal Diamond[J] . Proc. Natl. Acad. Sci. 99, 2002:12523-12525.
    [35]金曾孙,吕宪义,曲承林,等.用热解化学气相沉积法合成金刚石膜[J].吉林大学自然科学学报,No.2,1987:127.
    [36]金曾孙,姜志刚,等.直流热阴极PCVD法制备金刚石厚膜[J].新型炭材料,No.2,2002:9-12.
    [37] LI Hong-Dong, ZOU Guang-Tian, WANG Qi-Liang, CHENG Shao-Heng, LI Bo, LU Jian-Nan, LU Xian-Yi, JIN Zeng-Sun. High-Rate Growth and Nitrogen Distribution in Homoepitaxial Chemical Vapour Deposited Single-crystal Diamond[J]. Chinese Physics Letters, 2008: 1803-1806.
    [38]吕反修,等.大面积光学级金刚石自支撑膜研究进展[J].红外技术,2003: 1-7.
    [39]胡海天,邬钦崇.微波等离子体化学气相沉积金刚石膜[J].物理,1996: 688-691.
    [40] Y. B. Xia, et al. The Selective Etching of H+ Ions and Its Effect on The Oriented Growth of Diamond Films[J]. J. Appl. Phys. 1997:1896.
    [41]应萱同,等.金刚石近红外增透滤光保护窗口的制备及应用[J].光学学报,2000: 838-842.
    [42]黄树涛,陈吉安,于俊一.燃烧法沉积高质量金刚石膜的研究[J].功能材料, 2000, 31(1):102-106.
    [43] Lee S T, Lin Z D, Jiang X. CVD diamond films: nucleation and growth[J]. Materials Science and Engineering: R: Reports, 1999, 25(4):123-154.
    [44] Matsumoto S. Development of diamond synthesis techniques at low pressures[J]. Thin Solid Films, 2000, 368:231-236.
    [45] Cui J B, Shang N G, Liao Y, Li J Q, Fang R C. Growth and characterization of diamond films deposited by dc discharge assisted hot filament chemical vapor deposition[J]. Thin Solid Films, 1998, 334(1-2):156-160.
    [46] Huh J M, Yoon D Y. Enhanced nucleation of diamond on polycrystalline Ni by d.c. glow discharge in hot filament CVD[J]. Diamond and Related Materials, 2000, 9(8):1475-1479.
    [47] Wang Q, Schliesing R, Zacharias H, Buck V. Enhancement of diamond nucleation on silicon substrates in pulsed laser assisted hot filament CVD[J]. Applied Surface Science, 1999, 138-139:429-433.
    [48] Motsumoto S. Energy loss of high-density hot carriers in polar semiconductors[J]. Japanese Journal of Applied Physics, Part 1: Regular Papers & Short Notes, 1982, 21(8):1181-1183.
    [49] Sawabe A, Inuzuka T. Growth of diamond thin films by electron-assistedchemical vapour deposition[J]. Applied Physics Letters, 1985, 46: 146-147.
    [50] Jubber M G, Wilson J I B, Drummond I C, John P, Milne D K. Microwave plasma chemical vapour deposition of high purity diamond films[J]. Diamond and Related Materials, 1993, 2(2-4):402-406.
    [51] Matsumoto S. Development of diamond synthesis techniques at low pressures[J]. Thin Solid Films, 2000, 368(2):231-236.
    [52] Fuener M, Wild C, Koidl P. Simulation and development of optimized microwave plasma reactors for diamond deposition[J]. Surface and Coatings Technology, 1999, 116-119:853-862.
    [53] Yoshikawa H, Morel C, Koga Y. Synthesis of nanocrystalline diamond films using microwave plasma CVD[J]. Diamond and Related Materials, 2001, 10(9-10):1588-1591.
    [54] Jeon H, Lee C, Hatta A, Ito T, Sasaki T, Hiraki A. Enhancement of diamond nucleation by applying substrate bias in ECR plasma chemical vapour deposition[J]. Carbon, 1998, 36(5-6):569-574.
    [55] Ohtake N, Yoshikawa M. Effects of oxygen addition on growth of a diamond film by arc discharge plasma jet chemical vapor deposition[J]. Japanese Journal of Applied Physics, Part 1: Regular Papers & Short Notes & Review Papers, 1993, 32(5):2067-2073.
    [56]金曾孙,姜志刚,白亦真,吕宪义.直流热阴极PCVD法制备金刚石厚膜[J].新型炭材料, 2002, 17(2):9-12.
    [57]白亦真,金曾孙,姜志刚,韩雪梅.热阴极辉光放电对金刚石膜沉积的影响[J].材料研究学报, 2003, 17(5):537-539.
    [58]姜志刚,金曾孙,自亦真,顾长志,吕宪义.直流热阴级PCVD法制备金刚石膜的研究[J].人工晶体学报, 2003, 17(5):537-539
    [59] Kurihara K, Sasaki K, Kawarada M, Koshino N. High rate synthesis of diamond by dc plasma jet chemical vapor deposition[J]. Appl. Phys. Lett.,1988, 52:437.
    [60] Kurihara K, Sasaki K, Kawarada M. Diamond synthesis by DC plasma jet CVD[J]. Materials and Manufacturing Processes, 1991, 6(2)241-256.
    [61] H Kawarada, K S Mar, A Hiraki. Large area chemical vapour deposition of diamond particles and films using magneto-microwave plasma[J]. Jpn. J. Appl. Phys., 1987, 26: L1032-L1034.
    [62] G Zhong, Shen Fazheng, Tang Weizhong, Lu Fanxiu. Preparation of high quality transparent chemical vapor deposition diamond films by a DC arc plasma jet method[J]. Diamond and Related Materials, 2000(9): 1678-1681.
    [63] F X Lu, W Z Tang, T B Huang, J M Liu, J H Song, W X Yu, Y M Tong. Large area high quality diamond film deposition by high power DC arc plasma jet operating at gas recycling mode[J]. Diamond and Related Materials, 2001(10): 1551-1558.
    [64] J X Yang, C M Li, F X Lu, G C Chen, W Z Tang, Y M Tong. Microstructure and fracture strength of different grades of freestanding diamond films deposited by a DC Arc Plasma Jet process[J]. Surface & Coatings Technology, 2005 (192): 171-176.
    [65] Chen G C, Li B, Lan H, et al. Gas phase study and oriented self-standing diamond film fabrication in high power DC arc plasma jet CVD[J]. Diamond and Related Materials, 2007(16): 477-480.
    [66] Meng X M, Tang W Z, Hei L F, et al. Application of CVD nanocrystalline diamond films to cemented carbide drills[J]. INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, 2008(26): 485-490.
    [67] Meng X M, Askari S J, Tang W Z, et al. Nano-crystalline CVD diamond films deposited on cemented carbide using high current extended DC arc plasma process[J]. VACUUM, 2008(82): 543-546.
    [68] Y Mitsuda, Y Kojima, T Yoshida, et al. The growth of diamond inmicrowave plasma under low pressure[J]. J. Mater. Sci., 1987, 22: 1557-1562.
    [69]陈光华等.金刚石薄膜的制备与应用[M].北京:化学工业出版社,2004.
    [70] Huu T L, Schmitt M, Paulmier D. Combustion flame synthesis: a promising technique to obtain diamond single crystal[J]. Thin Solid Films, 1999, 355~356: 122-126.
    [71] Bundy F P, Hall H T, Strong H M. Man-made Diamonds[J]. Nature, 1955, 176:51-55.
    [72] Bundy F P. The P-T Phase and Reaction Diagram for Elemental Carbon[J]. J. Geophys. Res, 1979, 85(B12):6930-6936.
    [73] Angus J C, Will H A, Stanko W S. Growth of diamond seed crystals by vapor deposition[J]. J. Appl. Phys., 1968, 39:2915-2922.
    [74] Chauhan S P, Angus J C, Garden N C. Kinetics of carbon deposition on diamond power[J]. J. Appl. Phys., 1976, 47:4746-4754.
    [75] S J Harris, A M Weiner, T A Perry. Measurement of stable species present during filament assisted diamond growth, Appl. Phys. Lett.,1988, 53: 1605-1607.
    [76] H Toyoda, M AChilds, K L Menningen, et al. Ultraviolet spectroscopy of gaseous species in a hot filament diamond deposition system when C2H2 and H2 are the input gases[J]. J. Appl. Phys., 1994, 75: 3142-3150.
    [77] F G Celii, P E Pelusson, H T Wang, et al. Infrared detection of gaseous species during the filament-assisted growth of diamond[J]. Appl. Phys. Lett., 1988, 52: 2043-2045.
    [78] U Meier, K Kohse-Hoinghaus, L Schafer, et al. Two-photon excited LiF determination of H-atom concentrations near a heated filament in a low pressure H2 evironment[J]. Appl. Opt., 1990, 29: 4993-4999.
    [79] M Tsuda, M Nakajima, S Oikawa. Epitaxial growth mechanism of diamond crystal in CH4-H2 plasma[J]. J. Ame. Chem. Soc., 1986, 108:5780-5783.
    [80] M Frenklach, K E Spear. Growth mechanism of vapor-deposited diamond[J]. J. Mater. Res., 1988, 3: 133-140.
    [81]满卫东,汪建华,马志斌,王传新.微波等离子体化学气相沉积[J].真空与低温, 2003, 9(1):50-56.
    [82] Salvadorim C, Ager J W, Brown I G. Diamond synthesis by microwave plasma chemical vapor deposition using graphite as the carbon source[J]. Appl. Phys. Lett., 1991, 59(19): 2386-2388.
    [83] Liou Y, Inspektor A, Weimer R. The effect of oxygen in diamond deposition by microwave plasma enhanced chemical vapor deposition[J]. J. Mater. Res., 1990, 5(11):2305-2312.
    [84] Jaeshin A, Tan F H, Tan H S. Diamond thin film growth by microwave plasma chemical vapor deposition and investigation by scanning tunneling force microscopy and scanning electron microscopy[J]. J. Mater. Sci. Lett., 1993, 12:775-778.
    [85]程光煦.拉曼布里渊散射-原理及应用[M] .北京:科学出版社, 2001.
    [86] Nemanich R J, Glass J T, Lucovsky G. Raman Scattering Charaterization of Carbon Bonding in Diamond and Diamond like Thin Films[J]. J Vac Sci Tech, 1988, A6(3):1783-1787.
    [87] Knigh D S, White W B. Characterization of Diamond Films by Raman Spectroscopy[J]. J. Mater. Res., 1989, 4(2):385-393.
    [88]杨什娥,李会军,边超等. CVD金刚石膜生长过程的Raman分析[J].真空与低温, 2002, 8(2):90-92.
    [89] Koizumi K, Kamo M, Sato Y, Ozaki H, and Inuzuka T. Growth and characterization of phosphorous doped {111} homoepitaxial diamond thin films[J]. Appl. Phys. Lett., 1997, 71:1065.
    [90]张强基. X光电子能谱术[J].理化检验-物理分册,2002(38): 133-138.
    [91] G Davies, M F Hamer. Optical studies of the 1.945 eV vibronic band indiamond[C]. Proc. R. Soc. Lond. A ., 1976: 285-298.
    [92] A T Collins, S C Lawson. Cathodoluminescence studies of isotope shifts associated with localised vibrational modes in synthetic diamond[J]. J. Phys. Condens. Matter, 1989: 6929-6937.
    [93] Ando Y, Tachibana T, Kobashi K. Growth of diamond films by a 5-kW microwave plasma CVD reactor[J]. DIAMOND AND RELATED MATERIALS, 2001(10): 312-315.
    [94]杨广亮.大面积金刚石厚膜的制备和特性研究[D].吉林:吉林大学超硬材料国家重点实验室,2003.
    [95] Sun Zhou, Zheng Zhihao, Xu Ning and Zhang Xiaofeng。Study of the growth rate of diamond film by hot filament CVD[J]. Materials science and Engineering B, 1994(25): 47-25.
    [96] P Hartmann, R Haubner, B Lux. Deposition of thick diamond films by pulsed d.c. glow discharge CVD[J]. Diamond and Related Materials 1996(5): 850-856.
    [97] Steven Prawer, Alon Hoffman, Sue-Anne Stuart, et al. Correlation between crystalline perfection and film purity for chemically vapor deposited diamond thin films grown on fused quartz substrates[J]. Journal of Applied Physics, 1991, 69(9): 6625-6631.
    [98] S A Solin, A K Ramds. Raman spectrum of diamond[J]. Phys. Rev., 1970, B1:1687.
    [99] S A Stuart, S Prawer, P S Weiser. Growth-sector dependence of fine structure in the first-order Raman diamond line from large isolated chemical vapor deposited diamond crystals[J]. Applied Physics Letters, 1993, 62(11): 1227-1229.
    [100] Chih-Shiue Yan, Yogesh K Vohra. Multiple twinning and nitrogen defect center in chemical vapor deposited homoepitaxial diamond[J]. Diamond and Related Materials, 1999, 8: 2022-2031.
    [101] Hassouni K, Leroy O, Farhat S. Modeling of H2 and H2/CH4 moderatepressure microwave plasma used for diamond deposition[J]. Plasma Chemistry and Plasma Processing, 1998, 18(3): 325.
    [102] D G Goodwin. Scaling laws for diamond chemical-vapor deposition. I. Diamond surface chemistry[J]. J. Appl. Phys. 1993(74): 6888-6894.
    [103] A L Vikharev, A M Gorbachev, V A Koldanov, D B Radishchev. Studies of Pulsed and Continuous Microwave Discharges Used to Deposit Diamond Films[J]. Plasma Physics Reports, 2005(31): 338-346.
    [104] P Bou, L Vandenbulcke, R Herbin. Plasma diamond deposition from CH4-H2(-O2-Ar) in relation to kinetic calculations[J]. Diamond and Related Materials, 1992(1): 933-944.
    [105] T Lang, J Stiegler, Y von Kaenel, E Blank, Optical emission diagnostics and film growth during microwave-plasma-assisted diamond CVD[J]. Diamond and Related Materials, 1996(5): 1171-1184.
    [106] Kawato T, Kondo K I. Effects of oxygen on CVD diamond synthesis[J]. Jpn. Appl. Phys, 1987, 26(9): 1429.
    [107]舒兴胜,邬钦崇,梁荣庆.氧气对MWPCVD制备金刚石膜的影响[J].真空科学与技术,2001(21): 281-290.
    [108] Frenklach M, Wang H. Detailed Surface and Gas-phase Chemical Kinetics of Diamond Deposition[J]. Phys Rev B, 1991(43):1520.
    [109] Fan W Y, R?pcke J, Davies P B. Effect of Oxygen on Methyl Radical Concentrations in a CH4 /H2 Chemical Vapor Deposition Reactor Studied by Infrared Diode Laser Spectroscopy[J]. J Vac Sci Technol A, 1996(14): 2970.
    [110] Martin H?tch, Florent Houdellier, Florian Hüe, Etienne Snoeck. Nanoscale holographic interferometry for strain measurements in electronic devices[J]. Nature, 2008(453): 1086-1089.
    [111] T R Anthony. Stresses generated by impurities in diamond[J]. Diamond and Related Materials, 1995: 1346-1352.
    [112] J Michler, Y von Kaenel, J Stiegler, and E Blank. Complementaryapplication of electron microscopy and micro-Raman spectroscopy for microstructure, stress, and bonding defect investigation of heteroepitaxial chemical vapor deposited diamond films[J]. J. Appl. Phys. 1998: 187-196.
    [113] Cheng Tzu Kuo, Chii Ruey Lin, How Min Lie. Origins of the residual stress in CVD diamond films[J]. Thin Solid Films, 1996: 254-259.
    [114]李明吉.大尺寸高质量金刚石厚膜制备及氮掺杂对金刚石膜生长的影响研究[D].吉林:吉林大学超硬材料国家重点实验室,2006.
    [115] B D Culllity. Element of X-ray Diffraction[M]. MA: Addison-Wesley Reading, 1978.
    [116] I I Vlasov, V G Ralchenko, E D Obraztsova, A A Smolinand, V I Konov. Analysis of intrinsic stress distribution in grains of high quality CVD diamond film by micro-Raman spectroscopy[J]. Thin Solid Films, 1997(308-309): 168-172.
    [117] J W Ager III, D K Veirs and G M Rosenblatt. Spatially resolved Raman studies of diamond films grown by chemical vapor deposition[J]. Phys. Rev. B, 1991(43): 6491.
    [118] CHIOU Y H, HWANG C T, HAN M Y, et al. INTERNAL-STRESS OF CHEMICAL-VAPOR-DEPOSITION DIAMOND FILM ON SILICON[J]. THIN SOLID FILMS, 1994(253): 119-124.
    [119] Kamiya S, Sato M, Saka M, et al. Residual stress distribution in the direction of the film normal in thin diamond films[J]. JOURNAL OF APPLIED PHYSICS, 1999(86): 224-229.
    [120] Amornkitbamrung V. Stress and strain in heteroepitaxial diamond thin film on Si(100) observed by X-ray diffraction and X-ray diffraction topography[J]. DIAMOND FILMS AND TECHNOLOGY, 1998(8): 131-141.
    [121] H Windischmann, G F Epps, Y Cong, R W Collins. Intrinsic stress in diamond films prepared by microwave plasma CVD[J]. J. Appl. Phys., 1991(69): 2231.
    [122] D Schwarzbach, R Haubner, B Lux. Internal stresses in CVD diamond layers[J]. Diamond Relat. Mater., 1994(3): 757.
    [123] S R Sails, D J Gardiner, M Bowden, J Savage, S Haq. Stress and crystallinity in <100>, <110>, and <111> oriented diamond films studied using Raman microscopy[J]. Appl. Phys. Lett., 1994(65): 43.
    [124] Wilson J, Walton J S, Beamson G. Analysis of chemical vapour deposited diamond films by X-ray photoelectron spectroscopy[J]. JOURNAL OF ELECTRON SPECTROSCOPY AND RELATED PHENOMENA, 2001(121): 183-201.
    [125] J L Chen, T H Huang, F M Pan, C T Kuo, C S Chang, T S Lin. Diamond film growth on cemented tungsten carbides studied by SEM, AES and XPS[J]. Surface and Coatings Technology, 1992(54-55): 392-396.
    [126] I García, A Gutiérrez, A Vázquez. XPS and Auger study of the radial variations of diamond thin films grown by the oxy-acetylene flame method[J]. Surface and Coatings Technology, 1997(88): 172-177.
    [127] O L Eryilmaz, A Erdemir. TOF-SIMS and XPS characterization of diamond-like carbon films after tests in inert and oxidizing environments[J]. Wear, 2008(256): 244-254.
    [128] P Mérel, M Tabbal, M Chaker, S Moisa, J Margot. Direct evaluation of the sp3 content in diamond-like-carbon films by XPS[J]. Applied Surface Science, 1998(136): 105-110.
    [129] Kusunoki I, Igari, Y, Ishidzuka, S, et al. AFM and XPS studies of a homoepitaxial diamond (001) surface nitrided using 500-eV N2+ ion beam[J]. DIAMOND AND RELATED MATERIALS, 2001(10): 1676-1680.
    [130] J. Robertson, Diamond-like carbon, Pure Appl. Chem. 1994(66): 1789-1796.
    [131] Taki, Y. Takai, O. XPS structural characterization of hydrogenated amorphous carbon thin films prepared by shielded arc ion plating[J]. THINSOLID FILMS, 1998(316): 45-50.
    [132] Li L H, et al. Comparative analysis of DLC flim fine structure by Raman spectra and X-ray photoelectron spectroscopy[J]. ACTA PHYSICA SINICA, 2001(50): 1549-1554.
    [133] C D Wagner, D Briggs, M P Seah. Practical Surface Analysis[M]. J. Wiley and Sons, 1990.
    [134]吴大维等.新型超硬材料—氮化碳薄膜研究进展[J].材料导报,1997(11): 30-34.
    [135]郭建东,王恩哥等.射频磁控溅射沉积氮化碳薄膜的结构和成键性质[J].金属学报,1999(35): 439-442.
    [136] Laikhtman A, Lafosse A, Le Coat Y, et al. Interaction of water vapor with bare and hydrogenated diamond film surfaces[J]. SURFACE SCIENCE, 2004(551): 99-105.
    [137] Claude A Klein. Diamond windows and domes: flexural strength and thermal shock[J]. Diamond and Related Materials, 2002(11): 218-227.
    [138] Daniel C Harris. [C]. Proc. 3rd Int. Conf. on Appl. of Diamond Films and Related Materials, 1995: 539.
    [139] C S J Pickles, T D Madgwick, R S Sussmann, C J H Wort, Optical performance of chemically vapour-deposited diamond at infrared wavelengths[J]. Diamond and Related Materials, 2000(9): 916-920.
    [140]吕反修,唐伟忠,李成明等.大面积光学级金刚石自支撑膜制备、加工及应用[C].功能材料,2004年增刊:117-124.
    [141]赵凯华,钟锡华.光学[M].北京:北京大学出版社,1984.
    [142] Bi Xiangxin. Optical properties of chemical vapor deposited diamond films[J]. J. Mater. Res., 1990(4): 811.
    [143]法默v C.矿物的红外光谱[M].北京:科学出版社,1982: 33-35.
    [144] Kulisch W, Ackermann L, Sobisch B. On the mechanisms of bias enhanced nucleation of diamond[J]. Phys. Stat. Sol. (a), 1996(154):155-174.
    [145] J Alvarez, et al. Very high UV-visible selectivity in polycrystalline CVD diamond films[J]. Diamond and Related Materials, 2004(13): 881-885.
    [146] F X Lu, Z Jiang, et al. Accurate measurement of strength and fracture toughness for miniature-size thick diamond-film samples by three-point bending at constant loading rate[J]. Diamond and Related Materials, 2001(10): 770-774.
    [147]王华林. CVD金刚石厚膜焊接特性研究[硕士学位论文],吉林:吉林大学超硬材料国家重点实验室,2006.
    [148]英国钢铁学会.断裂韧性[M].北京:科学出版社,1974, 1, 1-4.
    [149] Okushi H, High quality homoepitaxial CVD diamond for electronic devices[C], DIAMOND AND RELATED MATERIALS, 2001(10): 281-288.
    [150] J Isberg, et al. High carrier mobility in single-crystal plasma-deposited diamond[J]. Science, 2002(297): 1670-1672.
    [151] S T Lee, Y Lifshitz. Materials science: The road to diamond wafers[J]. Nature, 2003(424): 500-501.
    [152] W L Mao, H K Mao, et al. Generation of ultrahigh pressure using single-crystal chemical-vapor-deposition diamond anvils[J]. Appl. Phys. Lett., 2003(83): 5190-5192.
    [153] X Jiang, C P Klages, R Zachai, M Hartweg, H J Füsser. Epitaxial diamond thin films on (001) silicon substrates[J]. Appl. Phys. Lett., 1993(62): 3438-3440.
    [154] Dai Z, Bednarski-Meinke C, Loloee R, Golding B. Epitaxial (100) iridium on A-plane sapphire: A system for wafer-scale diamond heteroepitaxy[J]. Appl. Phys. Lett. 2003(82): 3847-3849.
    [155] C S Yan, Y K Vohra, H K Mao, R J Hemley. Very high growth rate chemical vapor deposition of single-crystal diamond[J]. Proc. Natl. Acad. Sci. 2002(99): 12523-12525.
    [156] K Kobashi. R&D of diamond films in the Frontier Carbon Technology Project and related topics[J]. Diam. Relat. Mater., 2003(12): 233-240.
    [157] Y Mokuno, et al. Synthesizing single-crystal diamond by repetition of high rate homoepitaxial growth by microwave plasma CVD[J]. Diam. Relat. Mater., 2005(14): 1743-1746.
    [158]罗素·J·赫姆利,毛河光,颜志学等.生产金刚石的装置和方法[P],Cn 1608148A,2005.
    [159] A Chayahara, Y Mokuno, et al. The effect of nitrogen addition during high-rate homoepitaxial growth of diamond by microwave plasma CVD[J]. Diamond Relat. Mater., 2004(13): 1954-1958.
    [160] Y Mokuno, A Chayahara, Y Soda, H Yamada, Y Horino, N Fujimori. High rate homoepitaxial growth of diamond by microwave plasma CVD with nitrogen addition[J]. Diamond and Related Materials, 2006(15): 455-459.
    [161] A Tallaire, A T Collins, D Charles, J Achard, R Sussmann, A Gicquel, M E Newton, A M Edmonds, R J Cruddace. Characterisation of high-quality thick single-crystal diamond grown by CVD with a low nitrogen addition[J]. Diamond and Related Materials, 2006(15): 1700-1707.
    [162] J Achard, F Silva, O Brinza, A Tallaire, A Gicquel. Coupled effect of nitrogen addition and surface temperature on the morphology and the kinetics of thick CVD diamond single crystals[J]. Diamond and Related Materials, 2007(16): 685-689.
    [163] H Okushi, H Watanabe, S Ri, S Yamanaka, D Takeuchi. Device-grade homoepitaxial diamond film growth[J]. Journal of Crystal Growth, 2002(237-239): 1269-1276.
    [164] Wu X H, Fini P, Keller S, et al. Morphological and structural transitions in GaN films grown on sapphire by metal-organic chemical vapor deposition[J]. Japanese Journal of Applied Physics, 1996(35): L1648-L1651.
    [165] Li H D, Tsukihara M, Naoi Y, et al. Dislocation reduction in GaNepilayers grown on a GaNP buffer on sapphire substrate by metalorganic chemical vapor deposition[J]. Japanese Journal of Applied Physics, 2002(41): L1332-L1335.
    [166] S J Charles, J E Butler, B N Feygelson, M E Newton, D L Carroll, J W Steeds, H Darwish, C S Yan, H K Mao, R J Hemley. Characterization of nitrogen doped chemical vapor deposited single crystal diamond before and after high pressure, high temperature annealing[J]. Physica Status Solidi (a), 2004(201): 2473-2485.
    [167] S Prawer, R J Nemanich. Raman spectroscopy of diamond and doped diamond[J]. Phil. Trans. R. Soc. London A, 2004(362): 2537-2565.
    [168] H Yamada, Y Mokuno, A Chayahara, Y Horino, S Shikata. Predominant physical quantity dominating macroscopic surface shape of diamond synthesized by microwave plasma CVD[J]. Diamond and Related Materials, 2007(16): 576-580.
    [169] J Bernholc, A Antonelli, et al. Mechanism of self-diffusion in diamond[J]. Phys. Rev. Lett., 1988(61): 2689-2692.
    [170] A Mainwood, Nitrogen and nitrogen-vacancy complexes and their formation in diamond[J]. Phys. Rev. B 1994(49): 7934-7940.
    [171] A T Collins. Migration of nitrogen in electron-irradiated type Ib diamond[J]. J. Phys. C, 1978(11): L417-L422.
    [172] A T Collins. Vacancy enhanced aggregation of nitrogen in diamond[J]. J. Phys. C, 1980(13): 2641-2650.
    [173] R Samlenski, et al. Incorporation of nitrogen in chemical vapor deposition diamond[J]. Appl. Phys. Lett. 1995(67): 2798.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700