用户名: 密码: 验证码:
新型紫杉烷类化合物Lx2-32c的抗肿瘤作用及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
癌症已经成为全球威胁人类健康的首要疾病之一,2007年美国癌症协会统计显示,发达国家癌症紧随心血管疾病位居死亡率第二位,在发展中国家死亡率位居心血管疾病与慢性感染性疾病之后的第三位。统计显示2007年全球新增癌症病例1200多万,2007年总癌症死亡病例大约760万。2007年我国卫生部卫生统计显示,城市、乡镇死亡率排名中癌症同样高举榜首,癌症正在威胁我国广大人民的生命与健康。迄今为止,临床针对癌症患者的治疗除了外科手术治疗、放射治疗外,化疗依然是治疗肿瘤患者最有效的方法。
     靶向微管动态平衡的抗有丝分裂药物目前在临床多种实体肿瘤治疗中处于重要的地位。按照对微管蛋白的作用方式分为抑制微管聚合的长春碱类、与促进微管聚合的紫杉烷类药物。紫杉醇(Paclitaxel)是第一个用于临床治疗的紫杉烷类药物,它是从红豆杉植物中发现的抗肿瘤天然药物,紫杉醇主要通过与肿瘤细胞微管蛋白β结合,促进微管聚合抑制微管解聚,使肿瘤细胞阻滞于G_2/M期,诱发肿瘤细胞凋亡或坏死而达到抗肿瘤的效果。经过漫长的临床前及临床研究后,1992年被美国FDA批准用于治疗复发的和难治的乳腺癌和卵巢癌,以及肺癌和头颈部肿瘤。尽管紫杉醇临床治疗中已获得巨大成功,但临床使用过程中亦发现一些缺点亟需克服。其一是紫杉醇的水溶性差,需要用蓖麻油作为助溶剂,这样就增加了紫杉醇使用时带来的不良反应。其二是易产生严重的耐药现象。主要表现为对某些肿瘤及继发性耐药肿瘤病人的化疗无效。基于上述原因,针对微管为治疗靶点的新型抗肿瘤药物的开发与研究一直都是抗肿瘤药物的研究热点,研究的主要目标是发现能够克服耐药,并具有较好溶解特性和更佳药理活性的新型药物。
     植物、微生物以及海洋生物等天然产物一直都是抗肿瘤药物发现的主要来源。分离提取天然产物中有效成分,进行相应的结构修饰是当前抗癌药物研究的热点,同时对现有化合物进行结构修饰也是抗癌药物研究的热点之一。中国医学科学院药物研究所天然药物化学研究室方唯硕研究员课题组通过对三尖杉宁碱(Cephalomannine)进行结构修饰半合成得到一系列全新紫杉烷类衍生物,其中以代号为Lx2-32c的化合物活性最强。我们已对这类化合物申请了中国化合物专利(申请号200610080890.7)与国际PCT专利(申请号PCT/CN2007/003235),以便在国际上获得更大范围的保护。
     本文对Lx2-32c的体内外抗肿瘤作用及其主要作用机制进行了较深入的探讨,结果如下:
     体外研究中,Lx2-32c可抑制多种不同来源肿瘤细胞的生长,如人口腔上皮癌细胞KB及耐药株KB/V、人肺腺癌细胞A549及耐药株A549/Paclitaxel与AT1、人卵巢癌细胞A2780、人宫颈癌细胞Hela、人胃癌细胞BGC-803、BGC-823及MGC-803、人肝癌细胞Bel-7402及耐药株Bel-7402/5-Fu等,MTT法测得其在体外的半数抑制浓度IC_(50)为0.50~10 nmol/L。SRB法测得的GI_(50)为0.13~4.79 nmol/L。Lx2-32c可剂量依赖性地抑制A549、A2780及两株耐药的A549/Paclitaxel细胞的生长,并可显著抑制上述细胞集落形成(P<0.05)。
     体内实验表明Lx2-32c能够抑制小鼠Lewis肺癌的生长。Lx2-32c(2.5、5、10mg/kg)对小鼠Lewis肺癌生长的抑制率分别为27.77%、32.46%及76.08%(P<0.01),呈现较好的剂量效应关系。体内裸鼠异体移植瘤模型中Lx2-32c对三种组织来源的肿瘤都呈现明显的生长抑制活性。其中Lx2-32c(7.5、15、30 mg/kg)对人胃癌BGC-823的生长抑制率分别为30.90%、57.99%和94.44%(P<0.01);相同剂量对人肺腺癌A549的生长抑制率分别为14.90%、41.70%和63.95%(P<0.05);同样剂量下对人卵巢癌A2780的抑制率分别为43.55%、42.47%和60.61%(P<0.05)。体内实验中观察到Lx2-32c具有一定的毒性反应。
     采用DAPI细胞核染色及流式细胞术等技术观察了Lx2-32c对多种细胞周期的影响。流式细胞术显示,Lx2-32c能够诱导多种组织来源的肿瘤细胞发生G_2/M期阻滞,呈现较好的剂量效应关系及时间效应关系。特别对于耐药株A549/Paclitaxel细胞,Lx2-32c仍能够有效地抑制其细胞周期,表现出较强的周期抑制活性。DAPI细胞核染色结果发现,Lx2-32c能明显抑制A549细胞及其耐药株的有丝分裂,使细胞停滞在有丝分裂期。同时观察到部分细胞出现核碎裂现象,提示Lx2-32c能够诱导肿瘤细胞凋亡。
     利用相对提纯的微管蛋白,采用比浊法及纯化的微管蛋白用荧光探针的方法,探讨了Lx2-32c对微管蛋白动力学的影响。比浊法研究结果表明,Lx2-32c能明显地促进微管蛋白的聚合,同时能够明显地抑制聚合的微管蛋白发生解聚,两者都呈现较好的剂量效应关系。应用DAPI作为荧光探针研究显示Lx2-32c同样能明显地促进微管蛋白的聚合,作用的EC_(50)为2.45μmol/L,而紫杉醇的EC_(50)为10.26μmol/L,Docetaxel的EC_(50)为2.53μmol/L。两种实验中都能看到Lx2-02c诱导微管聚合的速率明显强于Docetaxel与Paclitaxel,Lx2-02c的最大作用效应亦强于后两者。
     应用微管蛋白间接免疫荧光法及Western Blot法检测细胞微管的原位聚合,以探讨Lx2-02c对细胞内微管动态平衡的影响。免疫荧光实验结果表明,Lx2-32c破坏肿瘤细胞的正常形态,阻碍细胞内纺锤丝的形成,诱导细胞内微管形成微管束,打破细胞的有丝分裂,作用方式与紫杉醇相似。同时对耐紫杉醇的耐药株具有较强的作用。细胞内原位微管聚合实验表明,Lx2-32c能够明显地将细胞内微管的动态平衡由“可溶”态向“不溶”态推进,结果同间接免疫荧光结果类似。说明Lx2-32c打破细胞内微管的正常动态平衡,使微管向着聚合态偏移。
     采用Flutax-1作为荧光探针以寻找Lx2-32c在微管蛋白上的结合位点。使用聚合好的微管应用Flutax-1作为探针竞争实验结果发现,Lx2-32c能够与Flutax-1竞争微管蛋白上的结合位点,表明Lx2-32c与Flutax-1具有相同的结合位点,即Lx2-32c的结合位点与Paclitaxel的结合位点相同,同时计算出Lx2-32c与微管蛋白的结合常数(KD)为7.38±0.16×10~7mol/L。
     使用Hoechst 33258荧光染色及Western Blot方法分析Lx2-32c对A549细胞凋亡的影响。结果显示Lx2-32c作用24小时后,细胞出现核浓缩、核碎裂等典型的凋亡征象,Western blot分析显示Lx2-32c作用24 h后能够诱导凋亡促进蛋白P53、Bax表达增高。
     综上所述,Lx2-32c在体外可广泛抑制不同组织来源的肿瘤细胞的生长;在体内,Lx2-32c能够明显抑制小鼠Lewis肺癌的生长,同时还能抑制人肺腺癌A549细胞、人胃癌BGC-823及人卵巢癌A2780裸鼠异体移植瘤的生长。Lx2-32c的抗肿瘤作用与促进微管蛋白聚合,抑制微管解聚,抑制细胞内微管动力学平衡,阻滞细胞周期,诱导凋亡相关蛋白P53、Bax表达有关。同时研究发现Lx2-32c在微管蛋白的结合位点与Paclitaxel结合位点相同。
     目的:对人肺腺癌A549/Paclitaxel耐药细胞株的生物学性状进行鉴定并对其耐药机制进行初步探讨。
     方法:MTT法检测A549/Paclitaxel细胞对多种细胞毒类药物的耐药性。比较两株细胞生物学性状的差异;形态学、集落形成能力、生长曲线及细胞周期分布;采用间接免疫荧光方法观察细胞内微管存在状态;采用RT-PCR方法检测两株细胞内耐药相关基因MDR1及MRP mRNA的表达情况;同时采用间接免疫荧光法与Westernblot法检测两者药泵蛋白P-gp表达情况;采用Western blot法检测细胞内磷酸化表皮生长因子受体及磷酸化AKT的表达情况;使用Rodamine123及Flutax-1比较两者药泵功能;采用HPLC方法对两者胞内Paclitaxel进行定量分析;最后采用MTT法检测药泵抑制剂对A549/Paclitaxel细胞耐药性的影响。
     结果:A549/Paclitaxel细胞对Paclitaxel、Docetaxel、Vincristine、Topotecan、Adriamycin、Cephalomannine及Lx2-32c等多种细胞毒类化合物显示出不同程度的耐药性,表现出典型的多药耐药性状。A549/Paclitaxe细胞与A549细胞相比:形态无显著变化,集落形成能力降低(集落形成率分别为52%和78%),细胞生长曲线与细胞周期分布基本相似,细胞内微管的存在状态偏向稳定态。RT-PCR检测发现A549/Paclitaxel细胞MDR1表达显著升高,MRP表达无明显的改变。间接免疫荧光法与Western Blot法皆发现A549/Paclitaxel细胞药泵蛋白(P-gp)的表达量明显高于A549细胞,同时发现p-EGFR及p-AKT表达较A549细胞有显著地增高。药泵功能检查证实A549/Paclitaxel细胞泵出Rodamine123及Flutax-1的能力强于A549细胞。HPLC检测显示A549/Paclitaxel胞内Paclitaxel含量明显低于A549胞内含量,说明耐药细胞对Paclitaxel的外排活性大大强于后者。MTT法检测显示同时加入药泵抑制剂后A549/Paclitaxel细胞恢复对Paclitaxel的敏感性。
     结论:A549/Paclitaxel细胞是一株获得性多药耐药细胞株,其耐药机制主要由MDR1mRNA的表达增高而致细胞表面P-gp蛋白表达增高,使细胞药物外排泵功能亢进,外排进入胞内的Paclitaxel,使胞内Paclitaxel有效浓度降低,从而引起细胞对Paclitaxel的耐药,同时A549/Paclitaxel的耐药机制也可能与EGFR及AKT的磷酸化水平增高有关。
Cancer has been one of the top killers in the world and threatens many patients' life. Global statistics shows that in 2007 worldwide,there are more than 12 million new cases; the estimatment for total cancer deaths are 7.6 million.Chinese Ministry of Health statistics shows that in 2007 cancer has been the top mortality rate both in the city and in the country.Besides surgery,radiotherapy and "biological" treatment,chemotherapy is still the most effective means to improve the patients' life quality and prolong survival.
     Antimitosis agents targeting the dynamic equilibrium between the microtubule polymer and tubulin heterodimers are key components of chemotherapeutic regiments for various solid tumors.The strategy of using tubulin as a target for cancer chemotherapy was based on the decreased growth and division of cancer cells and the fact that drugs that interfered with mitosis such as the Vinca alkaloids that shifted the equilibrium to the depolymerized form of tubulin had proven effective in the treatment of cancer.Paclitaxel target tubulin but,unlike the Vinca alkaloids,shifted the equilibrium to the polymerized form,thus stabilizing microtubules.Paclitaxel,isolated from Taxus brevifolia,could stabilize microtubules and at stoichiometratic concentration enhance microtubules polymerization.From its introduction in 1992,paclitaxel has established itself as one of the most active antineoplastic agents against a wide spectrum of malignancies,including ovarian,breast,lung,and head and neck cancers and Kaposi's sarcoma.Although paclitaxel is effective for management of different malignancies,resistance to paclitaxel frequently develops in some chemotherapy.In this case,there remains a significant unmeted medical need to develop new agents that overcome drug resistance and have improved pharmacology profiles.
     Natural products including plants,microorganisms and halobios provide rich resources for discovery of anticancer drugs.Cephalomannine is a natural congener of paclitaxel,and was isolated in the 1970s from Taxus wallichiana,which was erroneously assigned as Cephalotaxus manii at the time of its discovery.As part of our continuing effort to discover novel anticancer agents from natural products,we reorganized and qualified the structure of cephalomannine and got a series of new compounds. Lx2-32c was identified through the antiproliferation profiles screen in vitro.In the present study,we investigated the antineoplastic activities of Lx2-32c in vitro and in vivo.
     The results are as follows:
     In vitro,Lx2-32c was found to significantly inhibit the growth of cancer cells derived from different tissues,including human oral epidermoid carcinoma cells(KB) and its resistance cells(KB/V),human hepatocellular carcinoma cells(Bel-7402) and its resistance cells (Bel-7402/5-Fu),human lung adenocarcinoma cells(A549) and its resistance cells (A549/Paclitaxel),human ovarian cancer cells(A2780),human gastric cancer cells (BGC-823,BGC-803 and MGC-803),human uterine cervix cancer cells(HeLa).MTT assay showed that its IC_(50) toward these tumor cells was 0.5~10.0 nmol/L.GI_(50) evaluated by SRB assay was 0.13~4.79 nmol/L in four human cancer cell lines(A2780,KB,A549 and A549/Paclitaxel).Additionally,the colony formation abilities in A2780,A549 and A549/Paclitaxel cells were inhibited significantly by Lx2-32c.
     In vivo,Lx2-32c administered by i.p.inhibited,the growth of Lewis lung cancer in C57/BL6 mice in a dose-dependent manner,.Lx2-32c administered at 2.5,5 and 10 mg/kg/day caused a 27.77%,32.46%and 76.08%inhibition in Lewis lung tumor growth, respectively.In addition,human cancer cell transplant models,BGC-823,A549 and A2780,in nude mice were used to evaluate the antitumor properties of Lx2-32c in vivo. Administered at 7.5,15 and 30 mg/kg every three days,Lx2-32c inhibited tumor growth 30.90%,57.99%and 94.44%in BGC-823 transplant tumor(p<0.01 compared with vehicle-treated animals).To further demonstrate the activity of this candidate,we tested it in other two tumor models(A549 and A2780).In A549 tumor model,Lx2-32c given at 7.5,15 and 30 mg/kg every three days restrained the tumor growth at 23.08%,47.30% and 67.41%(p<0.01 compared with vehicle-treated animals) respectively.Under the identical doses,Lx2-32c given caused a similar inhibition to the growth of A2780 tumor (43.55%,42.47 and 60.61%,respectively).
     The effects of Lx2-32c on the cell cycle were determined by DAPI dye and flow cytometry(FCM) with PI staining to reveal the total amount of DNA.FCM analysis showed all the used cells(including A2780,BGC-823,A549 and A549/Paclitaxel),which were treated with Lx2-32c for 12 h or 24 h,arrested in G_2/M phase in a time-and dose-dependent manner.The typical manners of cell cycle block were observed by DAPI staining after exposed Lx2-32c for 24 h.All the data indicated that Lx2-32c could induce G_2/M phase arrest.
     For in vitro tubulin polymerization assays,dog brain microtubule-associated protein (MAP)-rich tubulin and the MAP-free tubulin were prepared following the protocol modified from Williams and Lee.The turbidimetry assay showed that Lx2-32c enhanced tubulin polymerization in a dose-dependent manner without any apparent delay,and the effect of 5μmol/L Lx2-32c on tubulin polymerization was similar to that of 10μmol/L Paclitaxel.Using DAPI as fluorescent probe,the polymerization with MAP-free tubulin shown the similar result to the above,and the EC_(50) value for Lx2-32c and Paclitaxel was 2.45μmol/L and 10.26μmol/L respectively.The EC_(50) value for Docetaxel was 2.53μmol/L.All the data showed that Lx2-32c had potential profile in promoting the tubulin.
     The effects of Lx2-32c on microtubule morphology and dynamic balance in cells were tested by immunofluorescence assay and Western Blot analysis respectively.After 24 h treated by Lx2-32c,the normal metaphase plates with characteristic spindle poles were rarely observed,and cells were usually rounded.Microtubule bundle were easily found in the treated cells.Western Blot assay displayed that Lx2-32c could promote the microtubule state from "soluble" to "insoluble",and disrupted the normal function of the microtubule.
     To confirm the binding site of Lx2-32c on the tubulin,the competition assay was performed using Flutax-1 as fluorescent probe.The results showed that Lx2-32c could inhibit the binding of Flutax-1 to tubulin polymer like Paclitaxel,and the apparent binding constants obtained for Lx2-32c was 7.38±0.16×10~7 mol/L.So it can be presumed that Lx2-32c could share the same binding site with Paclitaxel.
     The apoptosis induced by Lx2-32c in A549 cells was determined by Hoechst 33258 staining,and the influence of Lx2-32c on the expression of apoptosis related protein was assayed by Western blot assay.Treatment with Lx2-32c or Paclitaxel could significantly induce typical apoptosis characteristics in A549 cell line.Western Blotting analysis was performed to observe the expression of apoptosis related proteins,P53 and Bax.The results showed that the protein expression fo P53 and Bax increased.
     In summary,Lx2-32c,a novel taxane derivative semisynthesised from cephalomannine,inhibited growth of various cancer cells in vitro and in vivo.Lx2-32c binded to Beta-tubulin and disrupted microtubule function during mitosis which in turn lead to mitotic arrest,followed by cell death induction through apoptosis.
     AIM:To investigate the biological characteristics of A549/Paclitaxel cells,one paclitaxel-resistant lung adenocarcinama cell line,and its primary mechanism to resistance.
     METHODS:The resistance of A549/Paclitaxel cells against several cytotoxic compounds were determined by MTT assay.The biological characteristics of A549/Paclitaxel cells were compared with that of its parent cells-A549.They included the morphology,the clony formation rate,the growth curve,the cell cycle analysis and the microtubule.The expressions of MDR1 and MRP mRNA were assayed by RT-PCR. Then the expressions of P-gp was studied by indirect immunofluorescence assay and Western blot assay,and the p-EGFR and p-AKT protein were also determined by Western Blot assay.The function of drug flux pump was assayed by using Rodamine123 and Flutax-1.The concentration of Paclitaxel in cells was quantified by using HPLC analysis. At last,the response of A549/Paclitaxel to Paclitaxel was measured by MTT assay when co-incubation with P-gp inhibitor.
     RESULTS:A549/Paclitaxel cells displayed resistance against Paclitaxel,Docetaxel, Vincristine,Topotecan,Adriamycin,Cephalomannine and Lx2-32c,which was one novel taxane.There were no significant differences in cellular biology of the morphology,the cell cycle distributions and the cell growth curve.It was found that the clony formation rate of A549/Paclitaxel cells was lower than that of A549 cells,and the microtubule in A549/Paclitaxel cells was more 'stable' than that in A549 cells.Assayed by RT-PCR,the expression of MDR1 mRNA in A549/Paclitaxel cells was much higher than that in A549 cells,but the expression of MRP mRNA was similar between two cell lines.The expression of P-gp in A549/Paclitaxel cells was found higher than that in A549 cells by Western Blot assay and indirect immunofluorescence assay.Using Rodamine123 and Flutax-1,the activity of 'drug flux pump' in A549/Paclitaxel cells was stronger than that in A549 cells.Similarly,assayed by HPLC,the cellular residue of Paclitaxel in A549/Paclitaxel cells was lower than that in A549 cells,and the residue rate in A549/Paclitaxel cells after incubation in the drug-free media was lower than that in A549 cells.The response of A549/Paclitaxel to Paclitaxel was reversed by Verapamil,which was a P-gp inhibitor.
     CONCLUSION:A549/Paclitaxel cell line established by our lab was a multidrug resistance cell line against several cytotoxic agents.For the over-expression of MDR1 mRNA and the over-expression of P-gp,the function of 'drug flux pump' was activated, as a result,the intercellular concentration of Paclitaxel was cut down and resulted in the obtained resistance.
引文
[1]Jemal A,Siegel R,Ward E,et al.Cancer statistics,2007[J].CA Cancer J Clin,2007,(57):43-66.
    [2]http://www.moh.gov.cn/newshtml/21698.htm.
    [3]Wyld L,Reed M.The role of surgery in the management of older women with breast cancer[J].Eur J Cancer,2007,(43):2253-2263.
    [4]Stenner-Liewen F,Zippelius A,Pestalozzi BC,et al.[Molecular targeted therapy][J].Chirurg,2006,(77):1118-1125.
    [5]Rowinsky E.New antimitotic agents[J].Clin Adv Hematol Oncol,2004,(2):636-637.
    [6]Parness J,Horwitz SB.Taxol binds to polymerized tubulin in vitro[J].J Cell Biol,1981,(91):479-487.
    [7]Abal M,Andreu JM,Barasoain I.Taxanes:microtubule and centrosome targets,and cell cycle dependent mechanisms of action[J].Curr Cancer Drug Targets,2003,(3):193-203.
    [8]Mekhail TM,Markman M.Paclitaxel in cancer therapy[J].Expert Opin Pharmacother,2002,(3):755-766.
    [9]Fojo T,Menefee M.Mechanisms of multidrug resistance:the potential role of microtubule-stabilizing agents[J].Ann Oncol,2007,(18 Suppl 5):v3-8.
    [10]Yang CG,Barasoain I,Li X,et al.Overcoming Tumor Drug Resistance with High-Affinity Taxanes:A SAR Study of C2-Modified 7-Acyl-10-Deacetyl Cephalomannines[J].ChemMedChem,2007,(2):691-701.
    [11]Spencer CM,Faulds D.Paclitaxel.A review of its pharmacodynamic and pharmacokinetic properties and therapeutic potential in the treatment of cancer[J].Drugs,1994,(48):794-847.
    [12]Altmann KH,Memmert K.Epothilones as lead structures for new anticancer drugs-pharmacology,fermentation,and structure-activity-relationships[J].Prog Drug Res,2008,(66):273,275-334.
    [13]Cragg GM.Paclitaxel(Taxol):a success story with valuable lessons for natural product drug discovery and development[J].Med Res Rev,1998,(18):315-331.
    [14]Obasaju C,Hudes GR.Paclitaxel and docetaxel in prostate cancer[J].Hematol Oncol Clin North Am,2001,(15):525-545.
    [15]Ferlini C,Gallo D,Scambia G.New taxanes in development[J].Expert Opin Investig Drugs,2008,(17):335-347.
    [16]Gradishar WJ.Albumin-bound paclitaxel:a next-generation taxane[J].Expert Opin Pharmacother,2006,(7):1041-1053.
    [17]Singer JW.Paclitaxel poliglumex(XYOTAX,CT-2103):a macromolecular taxane[J].J Control Release,2005,(109):120-126.
    [18]Payne M,Ellis P,Dunlop D,et al.DHA-paclitaxel(Taxoprexin) as first-line treatment in patients with stage ⅢB or Ⅳ non-small cell lung cancer:report of a phase Ⅱ open-label multicenter trial[J].J Thorac Oncol,2006,(1):984-990.
    [19]Dieras V,Limentani S,Romieu G,et al.Phase Ⅱ multicenter study of larotaxel(XRP9881),a novel taxoid,in patients with metastatic breast cancer who previously received taxane-based therapy[J].Ann Oncol,2008.
    [20]Ramanathan RK,Picus J,Raftopoulos H,et al.A phase Ⅱ study of milataxel:a novel taxane analogue in previously treated patients with advanced colorectal cancer[J].Cancer Chemother Pharmacol,2008,(61):453-458.
    [21]http://meeting.ascopubs.org/cgi/content/abstract/22/14_suppl/3114[J].J Am Chem Soc,1971,(93):2325-2327.
    [22]Vokes EE,Chu E.Anti-EGFR therapies:clinical experience in colorectal,lung,and head and neck cancers[J].Oncology(Williston Park),2006,(20):15-25.
    [23]Mastalerz H,Cook D,Fairchild CR,et al.The discovery of BMS-275183:an orally efficacious novel taxane[J].Bioorg Med Chem,2003,(11):4315-4323.
    [24]Nicoletti MI,Colombo T,Rossi C,et al.IDN5109,a taxane with oral bioavailability and potent antitumor activity[J].Cancer Res,2000,(60):842-846.
    [25]Shionoya M,Jimbo T,Kitagawa M,et al.DJ-927,a novel oral taxane,overcomes P-glycoprotein-mediated multidrug resistance in vitro and in vivo [J].Cancer Sci,2003,(94):459-466.
    [26]Sladowski D,Steer SJ,Clothier RH,et al.An improved MTT assay[J].J Immunol Methods,1993,(157):203-207.
    [27]Houghton P,Fang R,Techatanawat I,et al.The sulphorhodamine(SRB)assay and other approaches to testing plant extracts and derived compounds for activities related to reputed anticancer activity[J].Methods,2007,(42):377-387.
    [28]Wylie PG,Bowen WP.Determination of cell colony formation in a high-content screening assay[J].Clin Lab Med,2007,(27):193-199.
    [29]韩锐(2005)抗癌药物研究与实验技术,北京医科大学中国协和医科大学联合出版社:284-286。
    [30]Sharma A,Straubinger RM,Ojima I,et al.Antitumor efficacy of taxane liposomes on a human ovarian tumor xenograft in nude athymic mice[J].J Pharm Sci,1995,(84):1400-1404.
    [31]Barbier M,Gray BD,Muirhead KA,et al.A flow cytometric assay for simultaneous assessment of drug efflux,proliferation,and apoptosis[J].Cytometry B Clin Cytom,2004,(59):46-53.
    [32]Williams Re,Jr.,Lee JC.Preparation of tubulin from brain[J].Methods Enzymol,1982,(85 Pt B):376-385.
    [33]Bollag DM,McQueney PA,Zhu J,et al.Epothilones,a new class of microtubule-stabilizing agents with a taxol-like mechanism of action[J].Cancer Res,1995,(55):2325-2333.
    [34]Bane SL,Ravindra R,Zaydman AA.High-throughput screening of microtubule-interacting drugs[J].Methods Mol Med,2007,(137):281-288.
    [35]Bonne D,Heusele C,Simon C,et al.4',6-Diamidino-2-phenylindole,a fluorescent probe for tubulin and microtubules[J].J Biol Chem,1985,(260):2819-2825.
    [36]Andreu JM.Large scale purification of brain tubulin with the modified Weisenberg procedure[J].Methods Mol Med,2007,(137):17-28.
    [37]Sampath D,Greenberger LM,Beyer C.et al.Preclinical pharmacologic evaluation of MST-997,an orally active taxane with superior in vitro and in vivo efficacy in paclitaxel-and docetaxel-resistant tumor models[J].Clin Cancer Res,2006,(12):3459-3469.
    [38]萨姆布鲁克J,弗里奇EF,曼尼阿蒂斯T.分子克隆实验指南.第二版,
    [39]Hood KA,West LM,Rouwe B,et al.Peloruside A,a novel antimitotic agent with paclitaxel-like microtubule-stabilizing activity[J].Cancer Res,2002,(62):3356-3360.
    [40]Chen JX,Peng HM,Pu SP,et al.[Inducement effect of ginsenoside Rg3 on apoptosis of human bladder transitional cell carcinoma cell line EJ][J].Zhongguo Zhong Yao Za Zhi,2007,(32):1680-1684.
    [41]Bao W,Pan H,Lu M,et al.The apoptotic effect of sarsasapogenin from Anemarrhena asphodeloides on HepG2 human hepatoma cells [J]. Cell Biol Int, 2007, (31):887-892.
    [42] Buey RM, Diaz JF, Andreu JM, et al. Interaction of epothilone analogs with the paclitaxel binding site: relationship between binding affinity, microtubule stabilization, and cytotoxicity [J]. Chem Biol, 2004, (11):225-236.
    [43] Silva AL, Nunes AS, Gesztesi JL. Protein loss quantification of abraded virgin and abraded bleached hair according to Bradford assay [J]. J Cosmet Sci, 2004, (55 Suppl):S175-179.
    [44] Zhao J, Kim JE, Reed E, et al. Molecular mechanism of antitumor activity of taxanes in lung cancer (Review) [J]. Int J Oncol, 2005, (27):247-256.
    [45] Giannakakou P, Gussio R, Nogales E, et al. A common pharmacophore for epothilone and taxanes: molecular basis for drug resistance conferred by tubulin mutations in human cancer cells [J]. Proc Natl Acad Sci U S A, 2000,(97):2904-2909.
    [46] Loganzo F, Discafani CM, Annable T, et al. HTI-286, a synthetic analogue of the tripeptide hemiasterlin, is a potent antimicrotubule agent that circumvents P-glycoprotein-mediated resistance in vitro and in vivo [J]. Cancer Res, 2003,(63):1838-1845.
    [47] Hamel E, Sackett DL, Vourloumis D, et al. The coral-derived natural products eleutherobin and sarcodictyins A and B: effects on the assembly of purified tubulin with and without microtubule-associated proteins and binding at the polymer taxoid site [J]. Biochemistry, 1999, (38):5490-5498.
    [48] Andreu JM, Barasoain I. The interaction of baccatin III with the taxol binding site of microtubules determined by a homogeneous assay with fluorescent taxoid [J]. Biochemistry, 2001, (40):l 1975-11984.
    [49] Agrawal NR, Ganapathi R, Mekhail T. Tubulin interacting agents: novel taxanes and epothilones [J]. Curr Oncol Rep, 2003, (5):89-98.
    [50] Yusuf RZ, Duan Z, Lamendola DE, et al. Paclitaxel resistance: molecular mechanisms and pharmacologic manipulation [J]. Curr Cancer Drug Targets,2003,(3):1-19.
    [51] Kobayashi M, Takaori-Kondo A, Shindo K, et al. Successful treatment with paclitaxel of advanced AIDS-associated Kaposi's sarcoma [J]. Intern Med,2002, (41):1209-1212.
    [52] Fang WS, Liang XT. Recent progress in structure activity relationship and mechanistic studies of taxol analogues [J]. Mini Rev Med Chem, 2005, (5):1-12.
    [53]Sangrajrang S,Fellous A.Taxol resistance[J].Chemotherapy,2000,(46):327-334.
    [54]Dumontet C,Sikic BI.Mechanisms of action of and resistance to antitubulin agents:microtubule dynamics,drug transport,and cell death[J].J Clin Oncol,1999,(17):1061-1070.
    [55]Fojo AT,Menefee M.Microtubule targeting agents:basic mechanisms of multidrug resistance(MDR)[J].Semin Oncol,2005,(32):S3-8.
    [56]Zhang XH,Zhang FY,Ji XJ,et al.[Vincristine-resistant human KB cell line and mechanism of multidrug resistance][J].Yao Xue Xue Bao,1994,(29):246-251.
    [57]Jin J,Huang M,Wei HL,et al.Mechanism of 5-fluorouracil required resistance in human hepatocellular carcinoma cell line Bel(7402)[J].World J Gastroenterol,2002,(8):1029-1034.
    [58]Drukman S,Kavallaris M.Microtubule alterations and resistance to tubulin-binding agents(review)[J].Int J Oncol,2002,(21):621-628.
    [59]Hari M,Loganzo F,Annable T,et al.Paclitaxel-resistant cells have a mutation in the paclitaxel-binding region of beta-tubulin(Asp26Glu) and less stable microtubules[J].Mol Cancer Ther,2006,(5):270-278.
    [60]Wang Y,O'Brate A,Zhou W,et al.Resistance to microtubule-stabilizing drugs involves two events:beta-tubulin mutation in one allele followed by loss of the second allele[J].Cell Cycle,2005,(4):1847-1853.
    [61]Belotti D,Rieppi M,Nicoletti MI,et al.Paclitaxel(Taxol(R)) inhibits motility of paclitaxel-resistant human ovarian carcinoma cells[J].Clin Cancer Res,1996,(2):1725-1730.
    [62]Huzil JT,Chik JK,Slysz GW,et al.A unique mode of microtubule stabilization induced by peloruside A[J].J Mol Biol,2008,(378):1016-1030.
    [63]Gallagher BM,Jr.Microtubule-stabilizing natural products as promising cancer therapeutics[J].Curr Med Chem,2007,(14):2959-2967.
    [64]Clarke SJ,Rivory LP.Clinical pharmacokinetics of docetaxel[J].Clin Pharmacokinet,1999,(36):99-114.
    [65]Roos WP,Kaina B.DNA damage-induced cell death by apoptosis[J].Trends Mol Med,2006,(12):440-450.
    [66]Fridman JS,Lowe SW.Control of apoptosis by p53[J].Oncogene,2003,(22):9030-9040.
    [67]Sharpless NE,DePinho RA.p53:good cop/bad cop[J].Cell,2002,(110):9-12.
    [68]Zinkel S,Gross A,Yang E.BCL2 family in DNA damage and cell cycle control[J].Cell Death Differ,2006,(13):1351-1359.
    [69]Cory S,Adams JM.The Bcl2 family:regulators of the cellular life-or-death switch[J].Nat Rev Cancer,2002,(2):647-656.
    [70]Danial NN,Korsmeyer SJ.Cell death:critical control points[J].Cell,2004,(116):205-219.
    [71]Sampath D,Discafani CM,Loganzo F,et al.MAC-321,a novel taxane with greater efficacy than paclitaxel and docetaxel in vitro and in vivo[J].Mol Cancer Ther,2003,(2):873-884.
    [1]Bodian CA.Benign breast diseases,carcinoma in situ,and breast cancer risk[J].Epidemiol Rev,1993,(15):177-187.
    [2]Jemal A,Siegel R,Ward E,et al.Cancer statistics,2007[J].CA Cancer J Clin,2007,(57):43-66.
    [3]Moore DH.Chemotherapy for advanced,recurrent,and metastatic cervical cancer [J].J Natl Compr Canc Netw,2008,(6):53-57.
    [4]Omura K.Advances in chemotherapy against advanced or metastatic colorectal cancer[J].Digestion,2008,(77 Suppl 1):13-22.
    [5]Kingston DG,Newman DJ.Taxoids:cancer-fighting compounds from nature[J].Curr Opin Drug Discov Devel,2007,(10):130-144.
    [6]Cragg GM.Paclitaxel(Taxol):a success story with valuable lessons for natural product drug discovery and development[J].Med Res Rev,1998,(18):315-331.
    [7]Spencer CM,Faulds D.Paclitaxel.A review of its pharmacodynamic and pharmacokinetic properties and therapeutic potential in the treatment of cancer[J].Drugs,1994,(48):794-847.
    [8]Parness J,Horwitz SB.Taxol binds to polymerized tubulin in vitro[J].J Cell Biol,1981,(91):479-487.
    [9]Yusuf RZ,Duan Z,Lamendola DE,et al.Paclitaxel resistance:molecular mechanisms and pharmacologic manipulation[J].Curr Cancer Drug Targets,2003,(3):1-19.
    [10]Fojo AT,Menefee M.Microtubule targeting agents:basic mechanisms of multidrug resistance(MDR)[J].Semin Oncol,2005,(32):S3-8.
    [11]Fojo T,Menefee M.Mechanisms of multidrug resistance:the potential role of microtubule-stabilizing agents[J].Ann Oncol,2007,(18 Suppl 5):v3-8.
    [12]Valera ET,Scrideli CA,Queiroz RG,et al.Multiple drug resistance protein (MDR-1),multidrug resistance-related protein(MRP) and lung resistance protein (LRP) gene expression in childhood acute lymphoblastic leukemia[J].Sao Paulo Med J,2004,(122):166-171.
    [13]Lemos C,Jansen G,Peters GJ.Drug transporters:recent advances concerning BCRP and tyrosine kinase inhibitors[J].Br J Cancer,2008,(98):857-862.
    [14]Orr GA,Verdier-Pinard P,McDaid H,et al.Mechanisms of Taxol resistance related to microtubules[J].Oncogene,2003,(22):7280-7295.
    [15]Wang Y,O'Brate A,Zhou W,et al.Resistance to microtubule-stabilizing drugs involves two events:beta-tubulin mutation in one allele followed by loss of the second allele[J].Cell Cycle,2005,(4):1847-1853.
    [16]McCubrey JA,Steelman LS,Abrams SL,et al.Roles of the RAF/MEK/ERK and PI3K/PTEN/AKT pathways in malignant transformation and drug resistance[J].Adv Enzyme Regul,2006,(46):249-279.
    [17]Kitazaki T,Oka M,Nakamura Y,et al.Gefitinib,an EGFR tyrosine kinase inhibitor,directly inhibits the function of P-glycoprotein in multidrug resistant cancer cells[J].Lung Cancer,2005,(49):337-343.
    [18]Sugimura M,Sagae S,Ishioka S,et al.Mechanisms of paclitaxel-induced apoptosis in an ovarian cancer cell line and its paclitaxel-resistant clone[J].Oncology,2004,(66):53-61.
    [19]Balachandran R,Welsh M J,Day BW.Altered levels and regulation of stathmin in paclitaxel-resistant ovarian cancer cells[J].Oncogene,2003,(22):8924-8930.
    [20]Schabel FM,Jr.,Skipper HE,Trader MW,et al.Establishment of cross-resistance profiles for new agents[J].Cancer Treat Rep,1983,(67):905-922.
    [21]Watson MB,Lind M J,Cawkwell L.Establishment of in-vitro models of chemotherapy resistance[J].Anticancer Drugs,2007,(18):749-754.
    [22]Pieters R,Loonen AH,Huismans DR,et al.In vitro drug sensitivity of cells from children with leukemia using the MTT assay with improved culture conditions[J].Blood,1990,(76):2327-2336.
    [23]Wylie PG,Bowen WP.Determination of cell colony formation in a high-content screening assay[J].Clin Lab Med,2007,(27):193-199.
    [24]Barbier M,Gray BD,Muirhead KA,et al.A flow cytometric assay for simultaneous assessment of drug efflux,proliferation,and apoptosis[J].Cytometry B Clin Cytom,2004,(59):46-53.
    [25]Bollag DM,McQueney PA,Zhu J,et al.Epothilones,a new class of microtubule-stabilizing agents with a taxol-like mechanism of action[J].Cancer Res,1995,(55):2325-2333.
    [26]Yang Z,Woodahl EL,Wang XY,et al.Semi-quantitative RT-PCR method to estimate full-length mRNA levels of the multidrug resistance gene[J].Biotechniques,2002,(33):196,198,200 passim.
    [27]Han Y,Chin Tan TM,Lim LY.In vitro and in vivo evaluation of the effects of piperine on P-gp function and expression[J].Toxicol Appl Pharmacol,2008.
    [28]Wang Y,Hao D,Stein WD,et al.A kinetic study of Rhodamine123 pumping by P-glycoprotein[J].Biochim Biophys Acta,2006,(1758):1671-1676.
    [29]Schrickx J,Fink-Gremmels J.P-glycoprotein-mediated transport of oxytetracycline in the Caco-2 cell model[J].J Vet Pharmacol Ther,2007,(30):25-31.
    [30]Beijnen JH,Huizing MT,ten Bokkel Huinink WW,et al.Bioanalysis,pharmacokinetics,and pharmacodynamics of the novel anticancer drug paclitaxel (Taxol)[J].Semin Oncol,1994,(21):53-62.
    [31]Sonnichsen DS,Relling MV.Clinical pharmacokinetics of paclitaxel[J].Clin Pharmacokinet,1994,(27):256-269.
    [32]Mekhail TM,Markman M.Paclitaxel in cancer therapy[J].Expert Opin Pharmacother,2002,(3):755-766.
    [33]Han Z,Hong L,Han Y,et al.Phospho Akt mediates multidrug resistance of gastric cancer cells through regulation of P-gp,Bcl-2 and Bax[J].J Exp Clin Cancer Res,2007,(26):261-268.
    [1] Oberlies NH, Kroll DJ. Camptothecin and taxol: historic achievements in natural products research [J]. J Nat Prod, 2004, (67): 129-135.
    
    [2] Wall ME, Wani MC. Camptothecin and taxol: discovery to clinic-thirteenth Bruce F. Cain Memorial Award Lecture [J]. Cancer Res, 1995, (55):753-760.
    [3] Schiff PB, Fant J, Horwitz SB. Promotion of microtubule assembly in vitro by taxol [J]. Nature, 1979, (277):665-667.
    [4] Parness J, Horwitz SB. Taxol binds to polymerized tubulin in vitro [J]. J Cell Biol,1981, (91):479-487.
    [5] Crown J, O'Leary M, Ooi WS. Docetaxel and paclitaxel in the treatment of breast cancer: a review of clinical experience [J]. Oncologist, 2004, (9 Suppl 2):24-32.
    [6] Paclitaxel and docetaxel in breast and ovarian cancer [J]. Drug Ther Bull, 1997,(35):43-46.
    [7] Obasaju C, Hudes GR. Paclitaxel and docetaxel in prostate cancer [J]. Hematol Oncol Clin North Am, 2001, (15):525-545.
    [8] Park SH, Lee WK, Chung M, et al. Paclitaxel versus docetaxel for advanced gastric cancer: a randomized phase II trial in combination with infusional 5-fiuorouracil [J]. Anticancer Drugs, 2006, (17):225-229.
    [9] Ramaswamy B, Puhalla S. Docetaxel: a tubulin-stabilizing agent approved for the management of several solid tumors [J]. Drugs Today (Barc), 2006, (42):265-279.
    [10] Geney R, Chen J, Ojima I. Recent advances in the new generation taxane anticancer agents [J]. Med Chem, 2005, (1):125-139.
    
    [11] Mooberry SL. Strategies for the development of novel Taxol-like agents [J].Methods Mol Med, 2007, (137):289-302.
    
    [12] Kingston DG, Newman DJ. Taxoids: cancer-fighting compounds from nature [J].Curr Opin Drug Discov Devel, 2007, (10):130-144.
    [13] Ferlini C, Gallo D, Scambia G. New taxanes in development [J]. Expert Opin Investig Drugs, 2008, (17):335-347.
    [14] Carlson RO. New tubulin targeting agents currently in clinical development [J].Expert Opin Investig Drugs, 2008, (17):707-722.
    [15] Payne M, Ellis P, Dunlop D, et al. DHA-paclitaxel (Taxoprexin) as first-line treatment in patients with stage IIIB or IV non-small cell lung cancer: report of a phase II open-label multicenter trial [J]. J Thorac Oncol, 2006, (1):984-990.
    [16] Gradishar WJ. Albumin-bound paclitaxel: a next-generation taxane [J]. Expert Opin Pharmacother, 2006, (7): 1041-1053.
    [17] Singer JW. Paclitaxel poliglumex (XYOTAX, CT-2103): a macromolecular taxane [J]. J Control Release, 2005, (109):120-126.
    [18] Yusuf RZ, Duan Z, Lamendola DE, et al. Paclitaxel resistance: molecular mechanisms and pharmacologic manipulation [J]. Curr Cancer Drug Targets,2003, (3):1-19.
    
    [19] Fojo AT, Menefee M. Microtubule targeting agents: basic mechanisms of multidrug resistance (MDR) [J]. Semin Oncol, 2005, (32):S3-8.
    
    [20] Fojo T, Menefee M. Mechanisms of multidrug resistance: the potential role of microtubule-stabilizing agents [J]. Ann Oncol, 2007, (18 Suppl 5):v3-8.
    
    [21] Yang CG, Barasoain I, Li X, et al. Overcoming Tumor Drug Resistance with High-Affinity Taxanes: A SAR Study of C2-Modified 7-Acyl-10-Deacetyl Cephalomannines [J]. ChemMedChem, 2007, (2):691-701.
    
    [22] Bissery MC. Preclinical evaluation of new taxoids [J]. Curr Pharm Des, 2001,(7):1251-1257.
    
    [23] Kurata T, Shimada Y, Tamura T, et al. Phase I and pharmacokinetic study of a new taxoid, RPR 109881 A, given as a 1-hour intravenous infusion in patients with advanced solid tumors [J]. J Clin Oncol, 2000, (18):3164-3171.
    
    [24] Ramanathan RK, Picus J, Raftopoulos H, et al. A phase II study of milataxel: a novel taxane analogue in previously treated patients with advanced colorectal cancer [J]. Cancer Chemother Pharmacol, 2008, (61):453-458.
    
    [25] Minderman H, Brooks TA, O'Loughlin KL, et al. Broad-spectrum modulation of ATP-binding cassette transport proteins by the taxane derivatives ortataxel (IDN-5109, BAY 59-8862) and tRA96023 [J]. Cancer Chemother Pharmacol,2004, (53):363-369.
    
    [26] Eckstein JW. Drug evaluation: Bay-59-8862 [J]. IDrugs, 2004, (7):575-581.
    [27] Nicoletti MI, Colombo T, Rossi C, et al IDN5109, a taxane with oral bioavailability and potent antitumor activity [J]. Cancer Res, 2000, (60):842-846.
    [28] Cassinelli G, Lanzi C, Supino R, et al. Cellular bases of the antitumor activity of the novel taxane IDN 5109 (BAY59-8862) on hormone-refractory prostate cancer [J]. Clin Cancer Res, 2002, (8):2647-2654.
    [29] Ramnath N, Hamm J, Schwartz G, et al. A phase I and pharmacokinetic study of BAY59: a novel taxane [J]. Oncology, 2004, (67): 123-129.
    [30] Sottani C, Colombo T, Zucchetti M, et al. High-performance liquid chromatography/tandem mass spectrometry for the quantitative analysis of a novel taxane derivative (BAY59-8862) in biological samples and characterisation of its metabolic profile in rat bile samples [J]. Rapid Commun Mass Spectrom,2001,(15):1807-1816.
    [31] Shrader M, Pino MS, Lashinger L, et al. Gefitinib reverses TRAIL resistance in human bladder cancer cell lines via inhibition of AKT-mediated X-linked inhibitor of apoptosis protein expression [J]. Cancer Res, 2007, (67): 1430-1435.
    [32] Sampath D, Discafani CM, Loganzo F, et al. MAC-321, a novel taxane with greater efficacy than paclitaxel and docetaxel in vitro and in vivo [J]. Mol Cancer Ther, 2003, (2):873-884.
    [33] A.C. Lockhart, R. Bukowski, M.L. Rothenberg, K.K. Wang, W. Cooper, J.Grover, et al. Phase I trial of oral MAC-321 in subjects with advanced malignant solid tumors. Cancer Chemother Pharmacol [J] 2007; 60:203-209.
    [34] Rose WC, Long BH, Fairchild CR, et al. Preclinical pharmacology of BMS-275183, an orally active taxane [J]. Clin Cancer Res, 2001, (7):2016-2021.
    [35] Rose WC, Wild R. Therapeutic synergy of oral taxane BMS-275183 and cetuximab versus human tumor xenografts [J]. Clin Cancer Res, 2004,(10):7413-7417.
    [36] Broker LE, de Vos FY, van Groeningen CJ, et al. Phase I trial with BMS-275183,a novel oral taxane with promising antitumor activity [J]. Clin Cancer Res, 2006,(12):1760-1767.
    [37] Broker LE, Veltkamp SA, Heath EI, et al. A phase I safety and pharmacologic study of a twice weekly dosing regimen of the oral taxane BMS-275183 [J]. Clin Cancer Res, 2007, (13):3906-3912.
    
    [38] http://clinicaltrials.gov/ct2/show/NCT00359450?term=BMS-275183&rank=1.
    [39] http://clinicaltrials.gov/ct2/show/NCT00099879?term=BMS-275183&rank=4.
    [40] Longley RE, Fasciani G, Sander L, Holton RA. In vitro mechanism of action studies with the taxane analog, TL-310 [Abstract]. Proc Am Assoc Cancer Res [J]. 2005 ; 46 : 46
    [41] Longley RE, Clement C, Metis L, Holton RA. In vivo effi cacy of TL-310; a new,orally active taxane analog [Abstract]. Proc Am Assoc Cancer Res [J]. 2006 ; 46 :47
    
    [42] A Phase I study of a novel taxane, TL310, orally administered every week in patients (pts) with advanced solid tumors [Abstract]. Proc Am Soc Clin Oncol [J].2007 ; 25 : 2544
    [43] Helson L, Ferrara J, Jones M, McChesney J. NBT-287, a third generation taxane analog, and paclitaxel resistance due to MDR-1 and mutant tubulin. J Clin Oncol [J]. 2004 ; 22 : 223S
    [44] Jones ME, Bell CB, Schiemann BJ, et al. Biological characterization of TPI 287 -a novel third generation taxane analog. Clin Cancer Res [J]. 2005 ; 11 : 9089S
    [45] Modiano MR, Plezia P, Baram J, et al. A Phase I study of TPI 287, a third generation taxane, administered every 21 days in patients with advanced cancer [Abstract]. Proc Am Soc Clin Oncol [J]. 2007 ; 25 : 2569
    [46] Altstadt TJ, Fairchild CR, Golik J, et al. Synthesis and antitumor activity of novel C-7 paclitaxel ethers: discovery of BMS-184476 [J]. J Med Chem, 2001,(44):4577-4583.
    [47] Ojima I, Geney R. BMS-184476 Bristol-Myers Squibb [J]. Curr Opin Investig Drugs, 2003, (4):732-736.
    [48] Rose WC, Fairchild C, Lee FY. Preclinical antitumor activity of two novel taxanes [J]. Cancer Chemother Pharmacol, 2001, (47):97-105.
    [49] Kim JS, Amorino GP, Pyo H, et al. The novel taxane analogs, BMS-184476 and BMS-188797, potentiate the effects of radiation therapy in vitro and in vivo against human lung cancer cells [J]. Int J Radiat Oncol Biol Phys, 2001,(51):525-534.
    [50] Sun W, Stevenson JP, Gallagher ML, et al. Phase I and pharmacokinetic trial of the novel taxane BMS-184476 administered as a 1-hour intravenous infusion in combination with cisplatin every 21 days [J]. Clin Cancer Res, 2003,(9):5221-5227.
    [51] Bilenker JH, Stevenson JP, Gallagher ML, et al. Phase I trial of the novel taxane BMS-184476 administered in combination with carboplatin every 21 days [J]. Br J Cancer, 2004, (91):213-218.
    [52] Camps C, Felip E, Sanchez JM, et al. Phase II trial of the novel taxane BMS-184476 as second-line in non-small-cell lung cancer [J]. Ann Oncol, 2005,(16):597-601.
    [53] Boyer MJ, Moore M, Leichman L, et al. Phase II study of novel taxane BMS-184476 in previously treated patients with advanced adenocarcinoma involving the stomach or gastroesophageal (GE) junction [Abstract]. Proc Am Soc Clin Oncol [J]. 2002 ; 21 : 591
    [54] Poole CJ, Thomas H, Jayson G, et al. Phase II clinical trial of BMS-184476, a novel taxane, administered days 1 and 8 every 28 days in patients (pts) with relapsed epithelial ovarian cancer (EOC) previously treated with platinum and paclitaxel-based chemotherapy [Abstract]. Proc Am Soc Clin Oncol [J]. 2002 ;21 : 832.
    [55] Bradley MO, Swindell CS, Anthony FH, et al. Tumor targeting by conjugation of DHA to paclitaxel [J]. J Control Release, 2001, (74):233-236.
    [56] Jones RJ, Hawkins RE, Eatock MM, et al. A phase II open-label study of DHA-paclitaxel (Taxoprexin) by 2-h intravenous infusion in previously untreated patients with locally advanced or metastatic gastric or oesophageal adenocarcinoma [J]. Cancer Chemother Pharmacol, 2008, (61):435-441.
    [57] Zakharian TY, Seryshev A, Sitharaman B, et al. A fullerene-paclitaxel chemotherapeutic: synthesis, characterization, and study of biological activity in tissue culture [J]. J Am Chem Soc, 2005, (127):12508-12509.
    [58] Damen EW, Nevalainen TJ, van den Bergh TJ, et al. Synthesis of novel paclitaxel prodrugs designed for bioreductive activation in hypoxic tumour tissue [J].Bioorg Med Chem, 2002, (10):71-77.
    [59] Alaoui AE, Saha N, Schmidt F, et al. New Taxol (paclitaxel) prodrugs designed for ADEPT and PMT strategies in cancer chemotherapy [J]. Bioorg Med Chem,2006, (14):5012-5019.
    [60] Guillemard V, Saragovi HU. Taxane-antibody conjugates afford potent cytotoxicity, enhanced solubility, and tumor target selectivity [J]. Cancer Res,2001,(61):694-699.
    [61] Miller ML, Roller EE, Wu X, et al. Synthesis of potent taxoids for tumor-specific delivery using monoclonal antibodies [J]. Bioorg Med Chem Lett, 2004,(14):4079-4082.
    
    [62] Abi 007 [J]. Drugs R D, 2003, (4):303-305.
    [63] Abi 007 [J]. Drugs R D, 2004, (5): 155-159.
    [64] Gradishar WJ. Albumin-bound nanoparticle paclitaxel [J]. Clin Adv Hematol Oncol, 2005, (3):348-349.
    [65] Micha JP, Goldstein BH, Birk CL, et al. Abraxane in the treatment of ovarian cancer: the absence of hypersensitivity reactions [J]. Gynecol Oncol, 2006,(100):437-438.
    [66] Nyman DW, Campbell KJ, Hersh E, et al. Phase I and pharmacokinetics trial of ABI-007, a novel nanoparticle formulation of paclitaxel in patients with advanced nonhematologic malignancies [J]. J Clin Oncol, 2005, (23):7785-7793.
    [67] Green MR, Manikhas GM, Orlov S, et al. Abraxane, a novel Cremophor-free, albumin-bound particle form of paclitaxel for the treatment of advanced non-small-cell lung cancer [J]. Ann Oncol, 2006, (17):1263-1268.
    [68] Harries M, Ellis P, Harper P. Nanoparticle albumin-bound paclitaxel for metastatic breast cancer [J]. J Clin Oncol, 2005, (23):7768-7771.
    [69] Moreno-Aspitia A, Perez EA. Nanoparticle albumin-bound paclitaxel (ABI-007):a newer taxane alternative in breast cancer [J]. Future Oncol, 2005, (1):755-762.
    [70] Gradishar WJ, Tjulandin S, Davidson N, et al. Phase III trial of nanoparticle albumin-bound paclitaxel compared with polyethylated castor oil-based paclitaxel in women with breast cancer [J]. J Clin Oncol, 2005, (23):7794-7803.
    [71] W.J. Gradishar, S. Tjulandin, N. Davidson, H. Shaw, N. Desai, P. Bhar, et al. Phase III trial of nanoparticle albumin-bound paclitaxel compared with polyethylated castor oil-based paclitaxel in women with breast cancer. J Clin Oncol[J]. 2005; 23:7794-7803.
    [72] Bradley MO, Webb NL, Anthony FH, et al. Tumor targeting by covalent conjugation of a natural fatty acid to paclitaxel [J]. Clin Cancer Res, 2001,(7):3229-3238.
    [73] Sparreboom A, Wolff AC, Verweij J, et al. Disposition of docosahexaenoic acid-paclitaxel, a novel taxane, in blood: in vitro and clinical pharmacokinetic studies [J]. Clin Cancer Res, 2003, (9):151-159.
    [74] Fracasso PM, Picus J, Wildi JD, et al. Phase 1 and pharmacokinetic study of weekly docosahexaenoic acid-paclitaxel, Taxoprexin((R)), in resistant solid tumor malignancies [J]. Cancer Chemother Pharmacol, 2008.
    [75] Harries M, O'Donnell A, Scurr M, et al. Phase I/II study of DHA-paclitaxel in combination with carboplatin in patients with advanced malignant solid tumours [J].Br J Cancer, 2004, (91): 1651-1655.
    [76] Naruse I, Ohmori T, Ao Y, et al. Antitumor activity of the selective epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) Iressa (ZD1839) in an EGFR-expressing multidrug-resistant cell line in vitro and in vivo [J]. Int J Cancer, 2002, (98):310-315.
    [77] Singer JW, Baker B, De Vries P, et al. Poly-(L)-glutamic acid-paclitaxel (CT-2103) [XYOTAX], a biodegradable polymeric drug conjugate:characterization, preclinical pharmacology, and preliminary clinical data [J]. Adv Exp Med Biol, 2003, (519):81-99.
    [78] Langer CJ. CT-2103: emerging utility and therapy for solid tumours [J]. Expert Opin Investig Drugs, 2004, (13):1501-1508.
    [79] Singer JW, Shaffer S, Baker B, et al. Paclitaxel poliglumex (XYOTAX;CT-2103): an intracellularly targeted taxane [J]. Anticancer Drugs, 2005,(16):243-254.
    [80] Boddy AV, Plummer ER, Todd R, et al. A phase I and pharmacokinetic study of paclitaxel poliglumex (XYOTAX), investigating both 3-weekly and 2-weekly schedules [J]. Clin Cancer Res, 2005, (11):7834-7840.
    [81] Langer CJ. Dilemmas in management: the controversial role of chemotherapy in PS 2 advanced NSCLC and the potential role of CT-2103 (Xyotax) [J].Oncologist, 2004, (9):398-405.
    [82] Albain KS, Belani CP, Bonomi P, et al. PIONEER: a phase III randomized trial of paclitaxel poliglumex versus paclitaxel in chemotherapy-naive women with advanced-stage non-small-cell lung cancer and performance status of 2 [J]. Clin Lung Cancer, 2006, (7):417-419.
    [83] http://clinicaltrials.gov/ct2/show/NCT00551733?term=Xyotax&rank=8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700