用户名: 密码: 验证码:
血浆细胞膜微粒改变与激素性股骨头缺血坏死的相关性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景及目的
     长期使用或短期大量使用肾上腺上腺皮质类固醇激素(以下简称激素)可引起的股骨头无菌性缺血性坏死。尤其是2003年全球性SARS流行控制后,许多SARS患者康复后出现了激素应用的严重副作用—股骨头坏死。激素已公认为股骨头坏死的首要病因,其发病机理及防治措施日益为人所重视。
     血浆膜微粒是循环中富含磷脂的亚微粒,它在凝血、细胞信号传导和细胞间的相互作用中,具有多种生物学活性,与血管功能异常、血栓形成和炎症密切相关。本研究通过血浆细胞膜微粒(micropaticles,MPs)检测,探讨微循环改变与激素性股骨头坏死的相关性。
     资料与方法
     采集24例激素性股骨头坏死患者(A组)及24例年龄、性别、种族匹配的健康志愿者(B组)的新鲜血;测定血浆凝血酶原时间(prothrombin time,PT)、国际标准化比值(international normalized ratio,INR)、活化部分凝血酶时间(activated partial thromboplastin time,APTT)和血浆纤维蛋白原(fibrinogen,FG);离心分离出乏血小板血浆;应用鼠抗人单克隆抗体PE-CD31、FITC-CD42b、FITC-CD45、FITC-CD51/61、PE-CD54、PEcy5-CD62E、FITC-CD105标定;流式细胞仪测定膜微粒的数量。
     结果
     两组凝血四项的平均秩次:PT(21.42vs27.58,P=0.126)、INR(22.23vs26.77,P=0.260)、APTT(21.90vs27.10,P=0.197),激素性股骨头坏死组均低于健康对照组;FG(27.35vs21.65,P=0.158),激素性股骨头坏死组高于健康对照组,两组差异无显著统计学意义。血浆细胞膜微粒的平均秩次,激素性股骨头坏死组均低于健康对照组;CD31~+MPs(18.40vs30.60,P=0.002)、CD31~+CD42b~+MPs(16.38vs32.63,P=0.000)、CD31~+CD45~+MPs(20.33vs28.67,P=0.020),差异具有显著统计学意义;CD42b~+MPs(21.83vs27.17,P=0.171)、CD45~+MPs(21.77vs27.23,P=0.107)、CD51/61~+MPs(21.65vs27.35,P=0.124)、CD54~+MPs(22.79vs26.21,P=0.397)、CD62E~+MPs(22.88vs26.13,P=0.421)、CD105~+MPs(22.79vs26.21,P=0.338)、CD54~+CD62E~+MPs(24.27vs24.73,P=0.910)、CD31~+CD105~+MPs(23.42vs25.58,P=0.450),差异无显著统计学意义。
     结论
     1、PT、INR、APTT和FG,虽然无显著统计学差异,但四项指标均提示:激素性股骨头坏死患者的血浆呈高凝倾向。
     2、激素性股骨头坏死组所有MPs的平均秩次均低于健康对照组,部分具有显著统计学差异。提示糖皮质激素可抑制血浆细胞膜微粒形成和释放;细胞膜微粒代谢失衡可导致微循环障碍,与激素性股骨头坏死的发病机制密切相关。
     创新点:激素性股骨头坏死是严重危害人类身心健康的疾患,其发病机制非常复杂。本研究在世界上首次提出通过检测人血浆中的膜微粒,用流式细胞仪确定膜微粒的来源,数量及判断体内的细胞状态。统计学分析得出其相关性。探讨该病的发生、发展机理,提高临床对该病的诊治水平。
Background and Objectives
     Steroid-induced osteonecrosis of the femoral head(ONFH) is an aseptic and ischemic disease developing after steroid therapy by long-term use or high-dose given for short period.Especially,ONFH,the grave side-effect of steroid administration,occurred among many post-rehabilitation sufferers,after control of the global SARS prevalence in 2003.It is generally accepted that glucocorticosteroid is the first etio-factor for ONFH.However, the occurrence mechanism is unknown,and prevention methods and fundamental remedies remain to be established.It has been considered more and more intensively.
     Microparticles are circulating,phospholipid rich,submicron particles. Investigation into their biological activity has revealed diverse actions in coagulation,cell signalling and cellular interactions.Abnormal levels of microparticles have been found in a number of conditions associated with vascular dysfunction,thrombosis and inflammation.To further explore the pathogenesis,we study the relationship between the alterations of cell-derived microparticles(MPs) and steroid-induced ONFH.
     Materials and Methods
     Plasma specimens from 24 patients with steroid-induced osteonecrosis of the femoral head(A group) and 24 age-,sex-and race-matched healthy controls(B group) were studied.Prothrombin time(PT),international normalized ratio(INR),fibrinogen(FG) and activated partial thromboplastin time(APTT) were analysed.Platelet-poor plasma was obtained by centrifugation.Plasma microparticles were labeled with monoclonal antibodies of PE-conjugated mouse anti-human CD31,CD54,and FITC-conjugated mouse anti-human CD42b,CD45,CD105,and PE-Cy5-conjugated mouse anti-human CD62E.Cell-derived microparticles were measured by three-colour flow cytometry.
     Results
     Mean ranks of PT(21.42vs27.58,P=0.126),INR(22.23vs26.77, P=0.260),APTT(21.90vs27.10,P=0.197),all above in patients with steroid-induced osteonecrosis of the femoral head were lower than in healthy controls,while FG(27.35vs21.65,P=0.158) was going in opposite direction, and there were no statistical significance between two groups.All mean ranks of cell-drived microparticles in patients with steroid-induced osteonecrosis of the femoral head were lower than in healthy controls.Among them,there were statistical significance between two groups in CD31~+MPs (18.40vs30.60,P=0.002),CD31~+CD42b~+MPs(16.38vs32.63,P=0.000), CD31~+ CD45~+MPs(20.33vs28.67,P=0.020),while there was no statistical significance in CD42b~+MPs(21.83vs27.17,P=0.171)、CD45~+MPs (21.77vs27.23,P=0.107 ),CD51/61~+MPs(21.65vs27.35,P=0.124), CD54~+MPs(22.79vs26.21,P=0.397 ),CD62E~+MPs(22.88vs26.13,P=0.421 ), CD105~+MPs(22.79vs26.21,P=0.338),CD54~+CD62E~+MPs(24.27vs24.73, P=0.910),CD31~+CD105~+MPs(23.42vs25.58,P=0.450).
     Conclusions
     1.Although there were no statistical significance between two groups in mean ranks of PT,INR,APTT and FG,all four clotting indexes uniformly suggested hypercoagulabale states in patients with steroid-induced osteonecrosis of the femoral head.
     2.All mean ranks of cell-drived microparticles in patients with steroid-induced osteonecrosis of femoral head were lower than in healthy controls,and there were statistical significance among some of them between two groups.It suggests that glucocorticosteroids might inhibit or interfere the formation and release of microparticles.
     3.It might be responsible for steroid-induced osteonecrosis of femoral head that the disequilibrium of microparticle metabolism could result in microcirculation disturbance.
引文
1 Saito S,Ohzon K,Keiro.Early arteriopathy and postulated pathogenesis of osteonecrosis of the femoral head.Clin Orthop,1992,277:98-110.
    2 Wang GJ.Fat-cell changes as a mechanism of avascular necrosis on the femoral head in cortison - treated rabbits.J Bone Joint Surg(Am),1977,59:729-35.
    3 Mont M A,Ragland P S,Etienne G.Core decompression of the femoral head for osteonecresis using pereutaneous multiple small-diameter drilling.Clin Orthop Res,2004,429:131-138.
    4 Jones JP.Intravascular coagulation and osteonecrosis.Clin Orthop,1992,277:41-53.
    5 Saito S,Ohzono K,Ono K.Early arteriopathy and postvlated pathogenesis of the femoral head:the intracap ital arterioteriles.Clin Ortop,1992,277:98-110.
    6 Ohzono K,Saito M,Sugano N,et al.Intraosseous arterial architecture innotraumatic avascular necrosis of the femoral head.microangiography and histologic study.Clin Orthop,1992,277:79- 88.
    7 王新生,许振华,陈风苞等.激素性股骨头缺血坏死发病机理的实验研究.中华骨科杂志,1995,15(3):768-170.
    8 Glueck CJ,Freiberg R,Glueck H I,et al.Hypofibrinolysis:a common,major caus of osteonecrosis.AM J Hematol,1994,45:156-166.
    9 Glueck CJ,Freiberg R,Tracy T,et al.Thrombopilia and hypofibrinolysis.pathophysioligies of osteonerosis.Clin Orthop,1997,334:43-56.
    10 Starklin H,Lausten GS,Arnoldi CC.Microvascular obstruction inavascular necrosis immunohistochemistry of 14 femoral head.Acta Orthop Scand,1995,66:9-12.
    11 Nagasawa K,Tada Y,Koarada S,et al.Prevention of steroid-induced osteonecrosis of femoral head in systemic lupus erythematosus by anti-coagulant.Lupus.2006,15(6):354-7.
    12 Lynch SF,Ludlam CA.Plasma microparticles and vascular disorders.Br J Haematol.2007,137(1):36-48.Review.
    13 Simak J,and Gelderman MP.Cell Membrane Microparticles in Blood and Blood Products:Potentially Pathogenic Agents and Diagnostic Markers.Transfusion Medicine Reviews,2006,20:1-26.
    14 Freyssinet JM.Cellular microparticles:what are they bad or good for? J Thromb Haemost 2003,1:1655-62.
    15 Ahn YS.Cell-derived microparticles:'Miniature envoys with many faces'.J Thromb Haemost 2005,3:884-7.
    76 刘梅颜,胡大一,严俊儒等.冠心病患者血浆纤维蛋白原改变的临床意义探讨.中华心血管病杂志,2005,44(3):815-6.
    17 Sims PJ,Faioni EM,Wiedmer T,et al.Complement proteins C5b-9 cause release of membrane vesicles from the platelet surface that are enriched in the membrane receptor for coagulation factor Va and express prothrombinase activity.J Biol Chem.1988,263:18205-18212.
    18 Reininger A J,Heijnen HF,Schumann H,et al.Mechanism of platelet adhesion to von Willebrand factor and microparticle formation under high shear stress.Blood.2006;107:3537-3545.
    19 VanWijk M J,VanBavel E,Sturk A,et al.Microparticles in cardiovascular diseases.Cardiovasc Res.2003,59(2):277-87.Review.
    20 Sims PJ,Wiedmer T.Unraveling the mysteries of phospholipid scrambling.Thromb Haemost 2001,86:266-75.
    21 Mann KG.Biochemistry and physiology of blood coagulation.Thromb Haemost 1999,82:165-74.
    22 Basse F,Gaffet P,Bienvenue A.Correlation between inhibition of cytoskeleton proteolysis and anti-vesiculation effect of calpeptin during A23187-induced activation of human platelets:are vesicles shed by filopod fragmentation? Biochim Biophys Acta 1994,1190:217-24.
    23 Jy W,Jimenez J J,Mauro LM,et al.Agonist-induced capping of adhesion proteins and microparticle shedding in cultures of human renal microvascular endotheliai cells. Endothelium. 2002,9:179 -189.
    
    24 Fadok VA, Bratton DL, Rose DM, et al. A receptor for phosphatidylserine-specific clearance of apoptotic cells. Nature.2000,405:85-90.
    
    25 Golpon HA, Fadok VA, Taraseviciene-Stewart L, et al. Life after corpse engulfment:phagocytosis of apoptotic cells leads to VEGF secretion and cell growth. Faseb J. 2004,18:1716-1718.
    
    26 Forlow SB, McEver RP, Nollert MU. Leukocyte-leukocyte interactions mediated by platelet microparticles underflow. Blood 2000,95:1317-23.
    
    27 Abid Hussein MN, Nieuwland R, Hau CM,et al.Cell-derived microparticles contain caspase 3 in vitro and in vivo. J Thromb Haemost.2005 ,3(5):888-96.
    
    28 Rohn TT, Cusack SM, Kessinger SR, et al. Caspase activation independent of cell death is required for proper cell dispersal and correct morphology in PC12 cells. Exp Cell Res 2004, 295: 215 - 25.
    
    29 Hugel B, Martinez MC, Kunzelmann C, et al. Membrane microparticles: two sides of the coin. Physiology (Bethesda). 2005,20:22-27.
    
    30 Thery C, Zitvogel L, Amigorena S. Exosomes: composition, biogenesis and function. Nat Rev Immunol. 2002,2:569 -579.4.
    
    31 Ahn YS, Jy W, Jimenez JJ, Horstman LL. More on: cellular microparticles:what are they bad or good for? J Thromb Haemost 2004, 2:1215-16.
    
    32 Fourcade O, Simon MF, Viode C,et al. Secretory phospholipase A2 generates the novel lipid mediator lysophosphatidic acid in membrane microvesicles shed from activated cells. Cell. 1995,80:919 -927.
    
    33 Weerheim AM, Kolb AM, Sturk A, Nieuwland R. Phospholipid composition of cell-derived microparticles determined by one-dimensional highperformance thin-layer chromatography. Anal Biochem.2002;302:191-198.
    
    34 Huber J, Vales A, Mitulovic G, et al. Oxidized membrane vesicles and blebs from apoptotic cells contain biologically active oxidized phospholipids that induce monocyteendothelial interactions. Arterioscler Thromb Vasc Biol. 2002,22:101-107.
    
    35 Miguet L, Pacaud K, Felden C, et al. Proteomic analysis of malignant lymphocyte membrane microparticles using double ionization coverage optimization. Proteomics. 2006,6:153-171.
    
    36 Jimenez JJ, Jy W, Mauro LM, et al. Endothelial cells release phenotypically and quantitatively distinct microparticles in activation and apoptosis. Thromb Res. 2003,109:175-180.
    
    37 Combes V, Simon AC, Grau GE, et al . In vitro generation of endothelial microparticles and possible prothrombotic activity in patients with lupus anticoagulant. J Clin Invest, 1999 , 104 : 93-102.
    
    38 Tans G, Rosing J, Thomassen MC, et al. Comparison of anticoagulant and procoagulant activities of stimulated platelets and platelet-derived microparticles. Blood 1991,77:2641 - 2648.
    
    39 Satta N, Toti F, Feugeas O, et al. Monocyte vesiculation is a possible mechanism for dissemination of membrane-associated procoagulant activities and adhesion molecules after stimulation by lipopolysaccharide.J Immunol 1994,153:3245 - 3255.
    
    40 Steppich B, Mattisek C, Sobczyk D, et al. Tissue factor pathway inhibitor on circulating microparticles in acute myocardial infarction. Thromb Haemost 2005,93:35 - 39.
    
    41 Perez-Casal M, Downey C, Fukudome K, et al. Activated protein C induces the release of microparticleassociated endothelial protein C receptor. Blood 2005,105:1515-1522.
    
    42 Satta N, Toti F, Fressinaud E, et al. Scott syndrome: an inherited defect of the procoagulant activity of platelets. Platelets 1997,8:117 - 124.
    
    43 Keuren JF, Magdeleyns EJ, Govers-Riemslag JW, et al. Effects of storage-induced platelet microparticles on the initiation and propagation phase of blood coagulation. Br J Haematol 2006,134:307 - 313.
    
    44 Newman PJ. The Biology of PECAM-1. J Clin Invest 1997, 99: 3-8.
    
    45 Duncan GS, Andrew DP, Takimoto H, et al. Genetic evidence for functional redundancy of platelet/endothelial cell adhesion molecule-1 (PECAM-1):CD31- deficient mice reveal PECAM-1-dependent and PECAM-1-independent functions. J Immunol.1999,162:3022-3030.
    
    46 Zhao TM, Newman PJ. Integrin activation by regulated dimerization and oligomerization of platelet endothelial cell adhesion molecule(PECAM)-1 from within the cell. J Cell Biol. 2001,152:65-73.
    
    47 Newman DK, Hamilton C, Newman PJ. Inhibition of antigen-receptor signaling by platelet endothelial cell adhesion molecule-1 (CD31) requires functional ITIMs, SHP-2, and p56(Ick). Blood.2001,97:2351-2357.)
    
    48 Wilkinson R, Lyons AB, Roberts D, et al. Platelet endothelial cell adhesion molecule-1 (PECAM-1/CD31) acts as a regulator of B-cell development,B-cell antigen receptor (BCR)-mediated activation, and autoimmune disease. Blood. 2002,100:184-193.
    
    49 Gao CJ, Sun WY, Christofidou-Solomidou M, et al. PECAM-1 functions as a specific and potent inhibitor of mitochondrial-dependent apoptosis.Blood.2003,102:169-179.
    
    50 Maas M, Stapleton M, Bergom C, et al. Endothelial cell PECAM-1 confers protection against endotoxic shock. Am J Physiol Heart Circ Physiol.2005,288(1):H159-164.
    
    51 Cicmil M, Thomas JM, Leduc M, et al. PECAM-1 signalling inhibits the activation of human platelets. Blood. 2002,99:137-144.
    
    52 Patil S, Newman DK, Newman PJ. Platelet endothelial cell adhesion molecule-1 serves as an inhibitory receptor that modulates platelet responses to collagen. Blood. 2001,97:1727-1732.
    
    53 Jones KL, Hughan SC, Dopheide SM, et al. Platelet endothelial cell adhesion molecule-1 is a negative regulator of platelet-collagen interactions. Blood. 2001,98:1456-1463.
    54 Falati S, Patil S, Gross PL, et al. Platelet PECAM-1 inhibits thrombus formation in vivo. Blood 2006,107:535 - 541.
    
    55 Gurubhagavatula I, Amrani Y, Practico D, et al. Engagement of human PECAM-1 (CD31) on human endothelial cells increases intracellular calcium ion concentration and stimulates prostacyclin release. J Clin Invest. 1998,101:212-222.
    
    56 Gibbins JM, Okuma M, Famdale R, et al. Glycoprotein VI is the collagen receptor in platelets which underlies tyrosine phosphorylation of the Fcreceptor Y-chain. FEBS Lett. 1997,413:255-259.
    
    57 Yanaga F, Poole A, Asselin J, et al. Syk interacts with tyrosine-phosphorylated proteins in human platelets activated by collagen and cross-linking of the Fc_γ-I IA receptor. Biochem J. 1995,311:471-478.
    
    58 Falati S, Edmead CE, Poole AW. Glycoprotein Ib-V-IX, a receptor for von Willebrand factor, couples physically and functionally to the Fc receptor gamma- chain, Fyn, and Lyn to activate human platelets. Blood.1999,94:1648-1656.
    
    59 Marshall SJ, Asazuma N, Best D, et al. Glycoprotein IIb-IIIa-dependent aggregation by glycoprotein Ib alpha is reinforced by a Src family kinase inhibitor (PP1)-sensitive signalling pathway. Biochem J.2002,361:297-305.
    
    60 Newton JP, Buckley CD, Jones EY, et al. Residues on both faces of the first immunoglobulin fold contribute to homophilic binding sites of PECAM-1/CD31. J Biol Chem. 1997,272:20555-20563.
    
    61 Burshtyn DN, Yang WT, Yi TL, et al. A novel phosphotyrosine motif with a critical amino acid at position-2 for the SH2 domain-mediated activation of the tyrosine phosphatase SHP-1. J Biol Chem. 1997,272:13066-13072.
    
    62 Jackson DE, Kupcho KR, Newman PJ. Characterization of phosphotyrosine binding motifs in the cytoplasmic domain of platelet/endothelial cell adhesion molecule-1 (PECAM-1) that are required for the cellular association and activation of the protein-tyrosine phosphatase, SHP-2.J Biol Chem. 1997,272:24868-24875.
    
    63 Hua CT, Gamble JR, Vadas MA, et al. Recruitment and activation of SHP-1 proteintyrosine phosphatase by human platelet endothelial cell adhesion molecule-1 (PECAM-1): identification of immunoreceptor tyrosine-based inhibitory motif-like binding motifs and substrates. J Biol Chem. 1998,273:28332-28340.
    
    64 Rathore V, Stapleton MA, Hillery CA, et al. PECAM-1 negatively regulates GPIb/V/IX signaling in murine platelets. Blood. 2003,102:3658-3664.
    
    65 Thai LM, Ashman LK, Harbour SN, et al. Physical proximity and functional interplay of PECAM-1 with the Fc receptor Fc gamma Rlla on the platelet plasma membrane.Blood. 2003,102:3637-3645.
    
    66 Brown S, Heinisch I, Ross E, Shaw K, Buckley CD, Savill J. Apoptosis disables CD31-mediated cell detachment from phagocytes promoting binding and engulfment. Nature. 2002;418:200-203.
    
    67 Gibbins JM. The negative regulation of platelet function: extending the role of the ITIM. Trends Cardiovasc Med 2002, 12: 213 - 9.
    
    68 Fadok VA, Chimini G. The phagocytosis of apoptotic cells. Semin Immunol 2001;13:365-72.
    
    69 Hanayama R, Tanaka M, Miwa K, et al. Identification of a factor that links apoptotic cells to phagocytes. Nature 2002; 417: 182-7.
    
    70 Oshima K, Aoki N, Kato T, et al. Secretion of a peripheral membrane protein, MFG-E8, as a complex with membrane vesicles. Eur J Biochem 2002;269:1209-18.
    
    71 Anderson HA, Maylock CA,Williams JA, et al. Serum-derived protein S binds to phosphatidylserine and stimulates the phagocytosis of apoptotic cells. Nat Immunol 2003,4: 87-91.
    
    72 Naganuma Y, Satoh K, Yi Q, et al. Cleavage of platelet endothelial cell adhesion molecule-1 (PECAM-1) in platelets exposed to high shear stress.J Thromb Haemost 2004,2: 1998-2008.
    
    73 Berckmans RJ, Neiuwland R, Boing AN, et al: Cellderived microparticles circulate in healthy humans and support low grade thrombin generation.Thromb Haemost,2001,85:639-646.
    74 Gasser O,Schifferli JA:Activated polymorphonuclear neutrophils disseminate anti-inflammatory microparticles by ectocytosis.Blood 2004,104:2543- 2548.
    75 Miyazaki Y,Nomura S,Miyake T,et al.High shear stress can initiate both platelet aggregation and shedding of procoagulant containing microparticles.Blood 1996,88:3456-64.
    76 Jy W,Horstman LL,Arce M,Ahn YS.Clinical significance of platelet microparticles in autoimmune thrombocytopenias.J Lab Clin Med 1992,119:334-45.
    77 Brogan PA,Shah V,Brachet C,et al.Endothelial and Platelet Microparticles in Vasculitis of the Young.Arthritis and rheumatism.2004,50:927-36.
    78 Thorand B,Baumert J,Chambless L,et al.Elevated markers of endothelial dysfunction predict type 2 dibetes mellitus in middle-aged men and women from the general population.Arterioscler Thromb Vasc Biol 2006,26:398-405.
    79 Goligorsky MS.Clinical assessment of endothelial dysfunction:combine and rule Current Opinion in Nephrology and Hypertension 2006,15:617-624.
    80 Simak J,Holada K,Vostal JG:Release of annexin V-binding membrane microparticles from cultured human umbilical vein endothelial cells after treatment with camptothecin.BMC Cell Biol,2002,3:1-10.
    81 Zwaal RFA,Schroit AJ.Pathophysiologic implications of membrane phospholipid asymmetry in blood cells.Blood 1997,89:1121-32.
    82 Barnes PJ,Adcock IM.How do corticosteroids work in asthma? Ann Intern Med.2003,139(5):359-70.
    83 孙天胜 甲基强的松龙对急性脊髓损伤的治疗效果与存在的问题 中国脊柱 脊髓杂志2005,15:389-91.
    84 Shcherbina A,Remold O,Donnell E.Role of caspase in a subset of human platelet activation responses.Blood 1999;93:4222 - 4231.
    85 Cauwenberghs S,Feijge MA,Harper AG,et al.Shedding of procoagulant microparticles from unstimulated platelets by integrin-mediated destabilization of actin cytoskeleton.FEBS Lett 2006,580:5313 - 5320.
    86 Michel V,Bakovic M.Lipid rafts in health and disease.Biol Cell 2007,99:129- 140.
    87敖强 吕德成 姜长明等 大剂量甲基强地松龙对大鼠脊髓损伤后iNOS表达及细胞凋亡的影响 中国矫形外科杂志2003,11:549-51.
    88 Barnes PJ,Adcock IM.How do corticosteroids work in asthma? Ann Intern Med.2003,139:359-70.
    89 Jy W,Minagar A,Jimenez J J,et al:Endothelial microparticles(EMP) bind to monocytes to activate and enhance transmigration:Elevated circulating EMP-monocyte conjugates in multiple sclerosis.Front Biosci 2004,9:3137-3144.
    90 Soriano AO,Jy W,Chirinos JA,et aI.Levels of endothelial and platelet microparticles and their interactions with leukocytes negatively correlate with organ dysfunction and predict mortality in severe sepsis.Crit Care Med.2005,33(11):2540-6.
    91 Dignat-George F,Camoin-Jau L,Sabatier F,et al.Endothelial microparticles:a potential contribution to the thrombotic complications of the antiphospholipid syndrome.Thrombosis and Haemostasis,2004,91:667-673.
    92 Knijff-Dutmer EA,Koerts J,Nieuwland R,et al.Elevated levels of platelet microparticles are associated with disease activity in rheumatoid arthritis.Arthritis Rheum.2002 Jun;46(6):1498-503.
    93 Berckmans RJ,Nieuwland R,Tak PP,et al.Cell-derived microparticles in synovial fluid from inflamed arthritic joints support coagulation exclusively via a factor VII-dependent mechanism.Arthritis Rheum. 2002,46(11):2857-66.
    
    94 Preston RA, Jy W, Jimenez JJ,et al. Effects of severe hypertension on endothelial and platelet microparticles. Hypertension. 2003;41:211—217.
    
    95 Sabatier F, Darmon P, Hugel B, et al. Type 1 and type 2 diabetic patients display different patterns of cellular microparticles. Diabetes,2002,51:2840-2845.
    1. Hugel B, Martinez MC, Kunzelmann C, et al.. Membrane microparticles: two sides of the coin. Physiology (Bethesda). 2005;20:22-27.
    
    2. Thery C, Zitvogel L, Amigorena S. Exosomes: composition, biogenesis and function. Nat Rev Immunol. 2002;2:569 -579.4.
    
    3. VanWijk MJ, VanBavel E, Sturk A, et al. Microparticles in cardiovascular diseases. Cardiovasc Res. 2003;59:277-287.
    
    4. Ahn YS. Cell-derived microparticles: 'Miniature envoys with many faces'.J Thromb Haemost 2005; 3: 884-7.
    
    5. Simak J. and Gelderman MP. Cell Membrane Microparticles in Blood and Blood Products:Potentially Pathogenic Agents and Diagnostic Markers.Transfusion Medicine Reviews, 2006, 20:1-26.
    
    6. Sebbagh M, Renvoize C, Hamelin J, et al. Caspase-3-mediated cleavage of ROCK I induces MLC phosphorylation and apoptotic membrane blebbing. Nat Cell Biol. 2001,3:346 -352.
    
    7. Coleman ML, Sahai EA, Yeo M, et al. Membrane blebbing during apoptosis results from caspase-mediated activation of ROCK I. Nat Cell Biol. 2001;3:339-345.)
    
    8. Daleke DL. Regulation of transbilayer plasma membrane phospholipids asymmetry. J Lipid Res. 2003,44:233-242.
    
    9. Diamant M,Tushuizen ME, Sturk A, et al. Cellular microparticles: new players in the field of vascular disease. European Journal of Clinical Investigation, 2004, 34: 392-401.
    
    10. Reininger AJ, Heijnen HF, Schumann H, et al. Mechanism of platelet adhesion to von Willebrand factor and microparticle formation under high shear stress. Blood. 2006;107:3537-3545.
    
    11. Combes V, Simon AC, Grau GE, et al. In vitro generation of endothelial microparticles and possible prothrombotic activity in patients with lupus anticoagulant. J Clin Invest. 1999;104:93-102.
    
    12. Satta N, Toti F, Feugeas O, et al. Monocyte vesiculation is a possible mechanism for dissemination of membrane-associated procoagulant activities and adhesion molecules after stimulation by lipopolysaccharide.J Immunol. 1994;153:3245-3255.
    
    13. Llorente-Cortes V, Otero-Vinas M, Camino-Lopez S, et al. Aggregated low-density lipoprotein uptake induces membrane tissue factor procoagulant activity and microparticle release in human vascular smooth muscle cells. Circulation. 2004; 110:452-459.
    
    14. Tramontano AF, O'Leary J, Black AD, et al. Statin decreases endothelial microparticle release from human coronary artery endothelial cells:implication for the Rho-kinase pathway. Biochem Biophys Res Commun.2004;320:34 -38.
    
    15. Simak J, Holada K, Vostal JG: Release of annexin V-binding membrane microparticles from cultured human umbilical vein endothelial cells after treatment with camptothecin. BMC Cell Biol, 2002, 3:1-10.
    
    16. Piccin A , Murphy W G , Smith OP. Circulating microparticles:pathophysiology and clinical implications . Blood Rev. 2007 ,21(3):157-71.
    
    17. Hrachovinova I, Cambien B, Hafezi-Moghadam A et al. Interaction of P-selectin and PSGL-1 generates microparticles that correct hemostasis ina mouse model of hemophilia A. Nature Medicine,2003,9:1020-1025.
    
    18. Michel V, Bakovic M. Lipid rafts in health and disease. Biol Cell,2007,99:129-140.
    
    19. Jimenez JJ, Jy W, Mauro LM, et al. Endothelial cells rease phenotypically and quantitatively distinct microparticles in activation and apoptosis.Thrombosis Research,2003,109:175-180.
    
    20. Fourcade O, Simon MF, Viode C,et al. Secretory phospholipase A2 generates the novel lipid mediator lysophosphatidic acid in membrane microvesicles shed from activated cells. Cell. 1995;80:919 -927.
    21. Weerheim AM, Kolb AM, Sturk A, Nieuwland R. Phospholipid composition of cell-derived microparticles determined by one-dimensional highperformance thin-layer chromatography. Anal Biochem.2002;302:191-198.
    
    22. Huber J, Vales A, Mitulovic G, et al. Oxidized membrane vesicles and blebs from apoptotic cells contain biologically active oxidized phospholipids that induce monocyteendothelial interactions. Arterioscler Thromb Vasc Biol. 2002;22:101-107.
    
    23. Miguet L, Pacaud K, Felden C, et al. Proteomic analysis of malignant lymphocyte membrane microparticles using double ionization coverage optimization. Proteomics. 2006;6:153-171.
    
    24. Maiese K, Vincent AM: Membrane asymmetry and DNA degradation:Functionally distinct determinants of neuronal programmed cell death. J Neurosci Res , 2000,59:568 - 580.
    
    25. Jy W, Jimenez JJ, Mauro LM, Ahn YS, Newton KR, Mendez AJ, Arnold PI,Schultz DR. Agonist-induced capping of adhesion proteins and microparticle shedding in cultures of human renal microvascular endothelial cells. Endothelium.2002;9:179-189.
    
    26. Fadok VA, Bratton DL, Rose DM, et al. A receptor for phosphatidylserine-specific clearance of apoptotic cells. Nature.2000;405:85-90.
    
    27. Golpon HA, Fadok VA, Taraseviciene-Stewart L, et al. Life after corpse engulfment: phagocytosis of apoptotic cells leads to VEGF secretion and cell growth. Faseb J. 2004,18:1716 -1718.
    
    28. Forlow SB, McEver RP, Nollert MU. Leukocyte-leukocyte interactions mediated by platelet microparticles under flow. Blood 2000; 95:1317-23.
    
    29. Mashburn LM, Whiteley M. Membrane vesicles traffic signals and facilitate group activities in a prokaryote. Nature. 2005;437:422- 425.
    
    30. Freyssinet JM. Cellular microparticles: what are they bad or good for? J Thromb Haemost 2003; 1: 1655-62.
    31. Ahn YS, Jy W, Jimenez JJ, et al. More on: cellular microparticles: what are they bad or good for? J Thromb Haemost 2004; 2: 1215-16..
    
    32. Pfister SL: Role of platelet microparticles in the production of thromboxane by rabbit pulmonary artery. Hypertension , 2004,43:428 -433
    
    33. Sabatier F, Roux V, Anfosso F, et al. Interaction of endothelial microparticles with monocytic cells in vitro induces tissue factor-dependent procoagulant activity. Blood 2002; 99:3962-70.
    
    34. Gasser O. Schifferli JA. Activated polymorphonuclear neutrophils disseminate anti-inflammatory microparticles by ectocytosis. Blood 1,2004, 4:2543-2548.
    
    35. Gasser O, Schifferli JA. Microparticles released by human neutrophils adhere to erythrocytes in the presence of complement. Exp Cell Res ,2005,307:381-387
    
    36. Mesri M, Altieri DC. Leukocyte microparticles stimulate endothelial cell cytokine release and tissue factor induction in a JNK1 signaling pathway.J Biol Chem 1999; 274: 23111-8.
    
    37. Pereira J, Alfaro G, Goycoolea M, et al. Circulating platelet-derived microparticles in systemic lupus erythematosus. Association with increased thrombin generation and procoagulant state. Thrombosis and Haemostasis, 2006, 95:94-99.
    
    38. Berckmans RJ, Neiuwland R, Boing AN, et al. Cell-derived microparticles circulate in healthy humans and support low grade thrombin generation.Thrombosis and Haemostasis, 2001,85:639-646.
    
    39. Falati S, Liu Q, Gross P, et al. Accumulation of tissue factor into developing thrombi in vivo is dependent upon microparticle P-selectin glycoprotein ligand 1 and platelet P-selectin. The Journal of Experimental Medicine, 2003,197:1585-1598.
    
    40. Del Conde I, Shrimpton CN, Thiagarajan P,et al. Tissue-factor-bearing microvesicles arise from lipid rafts and fuse with activated platelets to initiate coagulation. Blood, 2005,106:1604-1611.
    
    41. Keuren JF, Magdeleyns EJ, Govers-Riemslag JW, et al. Effects of storage-induced platelet microparticles on the initiation and propagation phase of blood coagulation. Br J Haematol 2006;134:307 - 313.
    
    42. Gilbert GE, Sims PJ, Wiedmer T, et al: Platelet-derived microparticles express high affinity receptors for factor VIII. J Biol Chem ,1991,266:17261-17268.
    
    43. Celi A, Lorenzet R, Furie BC, Furie B. Microparticles and a P-selectin-mediated pathway of blood coagulation. Dis Markers 2004;20(6):347-52.
    
    44. Jy W, Jimenez JJ, Maura, LM,et al. Endothelial microparticles induce formation of platelet aggregates via a von Willebrand factor/ristocetin dependent pathway, rendering them resistant to dissociation.Journal of Thrombosis and Haemostasis, 2005,3:1301-1308.
    
    45. Biro E, Sturk-Maquelin KN, Vogel GM, et al. Human cell-derived microparticles promote thrombus formation in vivo in a tissue factor-dependent manner. J Thromb Haemost, 2003,1:2561 - 2568
    
    46. Rauch U, Bonderman D, Bohrmann B, et al. Transfer of tissue factor from leukocytes to platelets is mediated by CD15 and tissue factor. Blood 2000;96(1):170-5.
    
    47. Horstman LL, Jy W, Jimenez JJ, et al. Endothelial microparticles as markers of endothelial dysfunction. Front Biosci 2004,9:1118-35.
    
    48. Jy W, Horstman LL, Arce M, et al. Clinical significance of platelet microparticles in autoimmune thrombocytopenias. J Lab Clin Med 1992;119(4):334-45.
    
    49. Steppich B, Mattisek C, Sobczyk D, et al. Tissue factor pathway inhibitor on circulating microparticles in acute myocardial infarction. Thrombosis and Haemostasis,2005,93: 35-39.
    
    50. Perez-Casal M, Downey C, Fukudome K, et al. Activated protein C induces the release of microparticle-associated endothelial protein C receptor. Blood, 2005,105:1515-1522.
    
    51. Tans G, Rosing J, Thomassen MC, Heeb MJ, Zwaal RF, Griffin JH.Comparison of anticoagulant and procoagulant activities of stimulated platelets and platelet-derived microparticles. Blood 1991;77:2641 - 2648.
    
    52. Satta N, Toti F, Fressinaud E, et al. Scott syndrome: an inherited defect of the procoagulant activity of platelets. Platelets 1997;8:117 - 124.
    
    53. Osterud B, Bjorklid E. Sources of tissue factor. Semin Thromb Hemost 2006,32:11 -23.
    
    54. Muller I, Klocke A, Alex M, et al. Intravascular tissue factor initiates coagulation via circulating microvesicles and platelets. Faseb J 2003:17:476-478.
    
    55. Diamant M, Nieuwland R, Pablo RF, et al. Elevated numbers of tissue-factor exposing microparticles correlate with components of the metabolic syndrome in uncomplicated type 2 diabetes mellitus.Circulation 2002; 106:2442 - 2447.
    
    56. Morel O, Morel N , Freyssinet JM et al. Platelet microparticles and vascular cells interactions: A checkpoint between the haemostatic and thrombotic responses. Platelets, 2008;19(1):9 - 23.
    
    57. Kushak Rl, Nestoridi E, Lambert J, et al. Detached endothelial cells and microparticles as sources of tissue factor activity. Thromb Res 2005;116:409-419.
    
    58. Heloire F, Weill B, Weber S, et al. Aggregates of endothelial microparticles and platelets circulate in peripheral blood. Variations during stable coronary disease and acute myocardial infarction. Thromb Res.2003;110:173-180.
    
    59. Bemal-Mizrachi L, Jy W, Fierro C, et al. Endothelial microparticles correlate with high-risk angiographic lesions in acute coronary syndromes.Int J Cardiol. 2004;97:439-446.
    
    60. Ferreira AC, Peter AA, Mendez AJ, et al. Postprandial hypertriglyceridemia increases circulating levels of endothelial cell microparticles. Circulation. 2004;110:3599-3603.
    
    61. Preston RA, Jy W, Jimenez JJ,et al. Effects of severe hypertension on endothelial and platelet microparticles. Hypertension. 2003;41:211-217.
    
    62. Werner N, Wassmann S, Ahlers P, et al. Circulating CD31+/annexin V+ apoptotic microparticles correlate with coronary endothelial function in patients with coronary artery disease. Arterioscler Thromb Vasc Biol.2006 ,26(1):112-6.
    
    63. Abid Hussein MN, Nieuwland R, Hau CM,et al.Cell-derived microparticles contain caspase 3 in vitro and in vivo. J Thromb Haemost.2005 ,3(5):888-96.
    
    64. Rohn TT, Cusack SM, Kessinger SR, et al. Caspase activation independent of cell death is required for proper cell dispersal and correct morphology in PC12 cells. Exp Cell Res 2004; 295: 215 - 25.
    
    65. Jimenez JJ, Jy W, Mauro LM, et al. Endothelial microparticles released in thrombotic thrombocytopenic purpura express von Willebrand factor and markers of endothelial activation. Br J Haematol 2003,123: 896 - 902.
    
    66. Brogan PA, Shah V, Brachet C,et al. Endothelial and Platelet Microparticles in Vasculitis of the Young. Arthritis and rheumatism.2004,50:927-36.
    
    67. Martin S, Tesse A, Hugel B, et al: Shed membrane particles from T lymphocytes impair endothelial function and regulate endothelial protein expression. Circulation ,2004,109: 1653-1659.
    
    68. Brodsky SV, Zhang F, Nasjletti A, et al: Endotheliumderived microparticles impair endothelial function in vitro. Am J Physiol Heart Circ Physiol ,2004,286: 1910-1915.
    
    69. Boulanger CM, Scoazec A, Ebrahimian T, et al: Circulating microparticles from patients with myocardial infarction cause endothelial dysfunction.Circulation , 2001,104:2649- 2652.
    
    70. Vanwijk MJ, Svedas E, Boer K, et al: Isolated microparticles, but not whole plasma, from women with preeclampsia impair endothelium-dependent relaxation in isolated myometrial arteries from healthy pregnant women. Am J Obstet Gynecol, 2002,187:1686 -1693.
    
    71. Ogura H, Tanaka H, Koh T, et al. Enhanced production of endothelial microparticles with increased binding to leukocytes in patients with severe systemic inflammatory response syndrome. Journal of Trauma, 2004,56:823-830.
    
    72. Koga H, Sugiyama S, Kugiyama K, et al. Elevated levels of VE-cadherin-positive endothelial microparticles in patients with type 2 diabetes mellitus and coronary artery disease. Journal of the American College of Cardiology, 2005,45:1622-1630.
    
    73. Amabile N, Guerin AP, Leroyer A, et al. Circulating endothelial microparticles are associated with vascular dysfunction in patients with end-stage renal failure. Journal of the American Society of Nephrology,2005, 16:3381-3388.
    
    74. Nomura S, Tandon NN, Nakamura T, et al. High-shear-stress-induced activation of platelets and microparticles enhances expression of cell adhesion molecules in THP-1 and endothelial cells. Atherosclerosis, 2001,158:277-287.
    
    75. Barry OP, Pratico D, Lawson JA, et al. Transcellular activation of platelets and endothelial cells by bioactive lipids in platelet microparticles. Journal of Clinical Investigation, 1997,99:2118-2127.
    
    76. Daniel L, Fakhouri F, Joly D, et al. Increase of circulating neutrophil and platelet microparticles during acute vasculitis and hemodialysis. Kidney International, 2006, 69:1416-1423.
    
    77. Holme PA, Solum NO, Brosstad F, et al.Microvesicles bind soluble fibrinogen, adhere to immobilized fibrinogen and coaggregate with platelets. Thromb Haemost 1998;79:389 - 394.
    
    78. Muller I, Klocke A, Alex M, et al. Intravascular tissue factor initiates coagulation via circulating microvesicles and platelets. Faseb J 2003;17:476-478.
    
    79. Janiszewski M, Do Carmo AO, Pedro MA, et al. Platelet-derived exosomes of septic individuals possess proapoptotic NAD(P)H oxidase activity: A novel vascular redox pathway. Crit Care Med 2004;32:818 -825.
    
    80. Fujimi S, Ogura H, Tanaka H, et al. Activated polymorphonuclear leukocytes enhance production of leukocyte microparticles with increased adhesion molecules in patients with sepsis. J Trauma 2002,52:443 - 448.
    
    81. Fujimi S, Ogura H, Tanaka H, et al. Increased production of leukocyte microparticles with enhanced expression of adhesion molecules from activated polymorphonuclear leukocytes in severely injured patients. J Trauma 2003,54:114-119.
    
    82. Neumann FJ, Zohlnhofer D, Fakhoury L, et al. Effect of glycoprotein IIb/IIIa receptor blockade on platelet-leukocyte interaction and surface expression of the leukocyte integrin Mac-1 in acute myocardial infarction.J Am Coll Cardiol 1999;34:1420 - 1426.
    
    83. Bonderman D, Teml A, Jakowitsch J, et al. Coronary no-reflow is caused by shedding of active tissue factor from dissected atherosclerotic plaque.Blood 2002:99:2794 - 2800.
    
    84. Neumann FJ, Marx N, Gawaz M, et al. Induction of cytokine expression in leukocytes by binding of thrombin-stimulated platelets. Circulation 1997;95:2387-2394.
    
    85. Osumi K, Ozeki Y, Saito S, et al. Development and assessment of enzyme immunoassay for platelet-derived microparticles. Thrombosis and Haemostasis, 2001, 85:326-330.
    
    86. Shet AS, Aras O, Gupta K, et al. Sickle blood contains tissue factor-positive microparticles derived from endothelial cells and monocytes. Blood. 2003; 102:2678 -2683.
    
    87. Anderson HA, Maylock CA, Williams JA, et al. Serum-derived protein S binds to phosphatidylserine and stimulates the phagocytosis of apoptotic cells. Nat Immunol. 2003;4:87-91.
    
    88. Hanayama R, Tanaka M, Miwa K, et al. Identification of a factor that links apoptotic cells to phagocytes. Nature.2002;417:182-187.
    
    89. Lynnch SF, Ludlam CA.PIasma microparticles and vascular disorders. Br J Haematol. 2007 ,137(1):36-48.
    
    90. Dignat-George F, Camoin-Jau L, Sabatier F, et al. Endothelial microparticles: a potential contribution to the thrombotic complications of the antiphospholipid syndrome. Thrombosis and Haemostasis,2004,91:667-673.
    
    91. Chirinos JA, Heresi GA, Velasquez H, et al. Elevation of endothelial microparticles, platelets, and leukocyte activation in patients with venous thromboembolism. Journal of the American College of Cardiology,2005,45:1467-1471.
    
    92. Sabatier F, Darmon P, Hugel B, et al. Type 1 and type 2 diabetic patients display different patterns of cellular microparticles. Diabetes,2002,51:2840-2845.
    
    93. Ogata N, Nomura S, Shouzu A, et al. Elevation of monocyte-derived microparticles in patients with diabetic retinopathy. Diabetes Research and Clinical Practice, 2006,73:241-248.
    
    94. Bemal-Mizrachi L, Jy W, Jimenez JJ, et al. High levels of circulating endothelial microparticles in patients with acute coronary syndromes.American Heart Journal, 2003,145:962-970.
    
    95. Simak J, Gelderman MP, Yu H, et al. Circulating endothelial microparticles in acute ischemic stroke: a link to severity, lesion volume and outcome. Journal of Thrombosis and Haemostasis,2006,4:1296-1302.
    
    96. Faure V, Dou L, Sabatier F, et al. Elevation of circulating endothelial microparticles in patients with chronic renal failure. Journal of Thrombosis and Haemostasis, 2006,4:566-573.
    
    97. Boulanger CM, Amabile N, Tedgui A. Circulating microparticles: a potential prognostic marker for atherosclerotic vascular disease. Hypertension. 2006 ,48(2):180-6.
    
    98. Knijff-Dutmer EA, Koerts J, Nieuwland R,et al. Elevated levels of platelet microparticles are associated with disease activity in rheumatoid arthritis.Arthritis Rheum. 2002 Jun;46(6):1498-503.
    
    99. Berckmans RJ, Nieuwland R, Tak PP, et al .Cell-derived microparticles in synovial fluid from inflamed arthritic joints support coagulation exclusively via a factor Vll-dependent mechanism. Arthritis Rheum.2002,46(11):2857-66.
    
    100. Soriano AO, Jy W, Chirinos JA, et al.Levels of endothelial and platelet microparticles and their interactions with leukocytes negatively correlate with organ dysfunction and predict mortality in severe sepsis. Crit Care Med. 2005,33(11):2540-6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700