用户名: 密码: 验证码:
位于microRNA结合位点的基因多态与心脑血管疾病的相关性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分血管生成素-1基因多态性与出血性脑卒中相关
     心脑血管病是当今威胁人类健康的严重疾病之一。据最新的统计资料显示:在我国,心脑血管病是仅次于癌症的第二大致死疾病。脑卒中是心脑血管疾病主要类型之一,存在着明显三高(发病率高、致残率高、死亡率高)现象。引起脑卒中的原因众多,如高龄、吸烟、饮酒、高血压、高血脂、高血糖、心脏病、凝血机制障碍等,此外许多证据表明遗传因素在脑卒中的发病中有显著作用。寻找脑卒中的致病基因,从分子水平揭示脑卒中的发病机理,可为及早发现脑卒中的危险人群、预防脑卒中的发生提供帮助。
     脑卒中是一种复杂疾病,发病过程涉及动脉粥样硬化病变。在动脉粥样硬化和动脉疾病的病理生理学过程中,血管发生足研究的热点。血管生成素-1(Angiopoietin1,ANGPT1)是一种特异作用于血管内皮细胞的生长因子,足酪氨酸激酶受体Tie-2的特异性配体。血管生成素-1在血管发生过程中起到了重要作用,它可以促进血管重塑、成熟、阻止内皮细胞凋亡,具有维持血管的完整性,促进血管损伤修复的功能。血管生成素-1的功能提示我们,任何影响其表达的基因多态性,都可能会与血管性疾病相关。通过对文献和数据库的查询,我们发现,血管生成素-1的3'-UTR区域存在SNP+1602 A/T,该位点被预测位于microRNA的结合识别区域,可能会影响microRNA与mRNA的结合。因此我们假设,+1602A/T可以影响血管生成素-1的表达,可能与脑卒中相关。
     为了证明我们的假设,我们设计了荧光素酶报告系统实验,通过检测荧光素酶的表达来验证SNP是否影响基因表达。首先我们构建了含有SNP的荧光素酶质粒,然后与micorRNA或者对照一起共转染培养细胞,最后通过双荧光素酶检测来确定基因表达的情况。
     实验结果证实:在microRNA存在的条件下,与SNP位点为T的荧光素酶质粒相比,SNP位点为A的荧光素酶质粒表达下降超过50%(P<0.01)。而在对照或者空白条件下,无论携带哪一种SNP位点,荧光素酶的表达均不发生改变。这说明microRNA可以通过识别不同的SNP对表达进行调控。
     在验证了SNP的功能以后,我们进一步采用病例对照的研究方法,以两个独立的中国汉族样本为研究对象,探讨了血管生成素-1的SNP+1602 A/T在脑卒中患者各个亚型和正常对照中的分布,检测SNP是否与脑卒中相关。基因型鉴定采用聚合酶链反应-连接酶检测反应(PCR-LDR)。基因型频率的分布符合Hardy—Weinberg平衡。
     在第一个研究人群中,共计有脑梗患者803例,腔梗患者499例,出血性脑卒中患者489例,正常对照1843例进行了基因分型,各组间年龄、性别相匹配。结果显示:在正常对照中该基因分布为AA型31.9%、AT型48.5%、TT型19.6%;等位基因A和T的频率分别为0.561和0.439。在脑梗患者组中该基因分布为AA型34.9%、AT型46.9%、TT型18.2%;等位基因A和T的频率分别为0.583和0.417。与对照组相比,脑梗患者组中三种基因型分布没有显著性差异。在腔梗患者组中该基因分布为AA型39.5%、AT型48.3%、TT型12.2%:等位基因A和T的频率分别为0.636和0.364。与对照组相比,腔梗患者组中AA型和TT型分布存在显著性差异(P<0.01)。在出血性脑卒中组中该基因分布为AA型41.1%、AT型49.1%、TT型9.8%;等位基因A和T的分布频率分别为0.656和0.344。与对照组相比,出血性脑卒中组中AA型和TT型分布存在显著性差异(P<0.01)。Logistic回归分析结果证明:在校正了传统危险因素以后,血管生成素-1的+1602 AA基因型是引起出血性脑卒中的独立危险因素(P<0.01)。
     在第二个研究人群中,共计有缺血性脑卒中患者238例,出血性脑卒中患者157例,正常对照790例进行了基因分型,各组间年龄、性别相匹配。结果显示:在正常对照中该基因分布为AA型32.9%、AT型47.8%、TT型19.3%;等位基因A和T的频率分别为0.568和0.432。在缺血性脑卒中组中该基因分布为AA型40.8%、AT型48.7%、TT型10.5%;等位基因A和T的频率分别为0.595和0.405。与对照组相比,AA型和TT型分布存在显著性差异(P<0.01)。在出血性脑卒中组中该基因分布为AA型43.3%、AT型47.1%、TT型9.6%;等位基因A和T的频率分别为0.669和0.331。与对照组相比,AA型和TT型分布存在显著性差异(P<0.01)。Logistic回归分析结果证明:在校正了传统危险因素以后,血管生成素-1的+1602 AA基因型是引起缺血性脑卒中的独立危险因素(P=0.047);同时血管,生成素-1的+1602 AA基因型也是引起出血性脑卒中的独立危险因素(P<0.01)。
     通过分析两个独立样本的研究结果,确认血管生成素-1的+1602 AA基因型可以增加出血性脑卒中的发病风险,但对于缺血性脑卒中的发病影响尚存在不同的结果,需要进一步研究。
     本研究选择血管生成素-1的SNP+1602 A/T作为研究对象,研究SNP的功能以及与脑卒中的相关性。结果显示发现SNP+1602 A/T可以通过影响microRNA与mRNA的结合来影响血管生成素-1的表达。进一步的病例对照研究则显示+1602 AA基因型与出血性脑卒中明显相关,可以增加发病风险。这一发现可以用于开发新的检测方法,以便及早发现脑卒中的危险人群、预防脑卒中的发生。同时,这一发现也为治疗脑卒中提供了新的治疗靶点和思路。
     第二部分血管紧张素Ⅱ1型受体基因多态性与冠心病相关
     冠心病是一种严重威胁人类健康的疾病,是心血管疾病中最主要的死亡原因。肾素—血管紧张素系统(renin-angiotensin system,RAS)作为心血管系统中最重要的调控通路,在冠心病的病理生理学过程中起到了非常重要的作用。血管紧张素Ⅱ(AngiotensinⅡ,AngⅡ)是RAS系统中的一个重要的成员,而AngⅡ1型受体(AT1R)作为AngⅡ最主要的受体,对于AngⅡ的功能发挥有着重要的影响。
     最新的研究报告,位于AT1R的3'-UTR上的SNP rs5186(A1166C)可以影响miR-155与mRNA的结合。当1166位点为A时,miR-155可以结合AT1R的mRNA,下调AT1R的表达,而当1166位点为C时,miR-155不能结合。而AT1R的表达不一样,对冠心病的发病也可能会产生影响。因此我们采用病例对照研究,来研究SNP A1166C与冠心病的发病是否相关。
     通过冠状动脉造影检查,我们共收集了455例冠心病患者和465例对照。提取被调查者的基因组DNA,采用等位基因特异性PCR对AT1R SNP位点rs5186(A1166C)进行基因分型,最后进行统计分析。结果发现,在冠心病病人和对照之间,SNP rs5186基因型存在差异。冠心病病人中,AA基因型为229人(50.3%),AC基因型为188人(41.3%),CC基因型为38人(8.4%),而正常对照中,AA基因型为304人(65.4%),AC基因型为151人(32.5%),CC基因型为10人(2.2%)。AA基因型可以降低冠心病的发病风险(OR=0.214,0.084-0.548,P<0.01)。实验结果表明,血管紧张素Ⅱ1型受体基因多态性与冠心病的发病相关,SNP 1166AA是冠心病发病的保护因素。
Cardio-cerebral vascular disease is the leading cause of morbidity and mortality. Stroke is a main type of the cardio-cerebral vascular diseases.Importantly,stroke is the No.1 causes of disability in china.Many factors could contribute stroke,such as aging,smoking,drinking,hypertension,hyperlipidemia,hyperglycemia,heart diseases,and blood coagulation mechanism obstacles.In addition,genetic factors have been shown to play an essential role in the pathogenesis of stroke.The genetic markers of stroke susceptibility are helpful for the prediction and prevention of stroke.
     Stroke evolves depending on the accumulation of risk factors which leads to atherosclerotic lesions.The role of angiogenesis within diseased blood vessels has emerged as a hotspot debate in the biology of atherosclerosis and arterial diseases.
     Angiopoietin 1(ANGPT1) is a vascular endothelial cell growth factors and the ligand for Tie2,a tyrosine kinase receptor.ANGPT1 plays a critical role in angiogenesis,it can promote blood vessel remodeling and maturing,prevent apoptosis of endothelial cells,and maintain the integrity of blood vessels and recovery function of vascular injury.We can speculate that the expression of ANGPT1 may be associated with vascular disease,including stroke.Based on the literature and database enquiries,SNP+1602 A/T in the 3'-UTR of ANGPT1 was found in the region for microRNA recognition for binding.Variations in this region could influence microRNA binding to the mRNA of ANGPT1 and change ANGPT1 expression. Therefore,we hypothesized that SNP+1602 A/T could influence ANGPT1 expression and are associated with stroke.
     To test our hypothesis,we first determined whether the SNP could influence ANGPT1 expression by Luciferase reporter assay.Luciferase reporter vectors containing the SNP were co-transfected into cultured cells with the micorRNA or control.The expression of gene was determined through the double-Luciferase test. Our results showed that expression level of Luciferase reporter vector with SNP A was significantly lower than that of the vector with SNP T(median,74.96 versus 180.82;P<0.01) in the presence of microRNA.But no significantly change was found in the expression level of Luciferase reporter vector carrying the two SNPs in either the control or blank conditions.
     Next,we carried out a case-control study in two different Chinese Han populations.SNP+1602A/T was genotyped with polymerase chain reaction-Ligase detection reaction(PCR-LDR).Genotype frequencies fulfilled expectation of Hardy-Weinberg equilibrium.In the first population,1791 cases with stroke(803 cerebral thrombosis,499 lacunar infarctions and 489 intracerebral hemorrhages) and 1843 controls were included.Age and sex were matched between the cases and controls.Our results showed that the frequency of AA genotype was significantly higher in the intracerebral hemorrhage than in the control(41.1%versus 31.9%; P<0.01).Aider adjustment for age,sex and other conventional risk factors with multiple logistic regression analysis,the AA genotype of ANGPT1+1602 remained independently associated with increased risk for hemorrhagic stroke(odds ratio,3.21; 95%CI,1.45 to 7.11;P<0.01).In second population,395 cases with stroke(238 ischemic strokes and 157 hemorrhagic strokes) and 790 controls were included.Our results showed that the frequency of AA genotype was significantly higher in the hemorrhagic stroke than in the control(43.3%versus 32.9%;P<0.01).After adjustment for age,sex and other conventional risk factors with multiple logistic regression analysis,the AA genotype of ANGPT1+1602 was independently associated with increased risk for hemorrhagic stroke(odds ratio,2.45;95%CI,1.34 to 4.50;P<0.01).
     In conclusion,our results support that SNP+1602 A/T could influence the expression of ANGPTI by change in the binding of microRNA.Case-control study further showed that +1602 AA genotype conferred significant risk of hemorrhagic stroke.The polymorphism may be a novel genetic marker for the prediction and prevention of stroke,and a new target for the treatment of stroke.
     Coronary heart Disease is the leading cause of morbidity and mortality in the world.Renin-angiotensin system(RAS) is important in regulation of cardiovascular functions and plays a critical role in pathophysiology of coronary heart disease. AngiotensinⅡ[(AngⅡ) is an important member of RAS system,and performs its functions mainly by AngⅡtype 1 receptor(AT1R).
     The latest report showed that the SNP rs5186(A1166C) in the 3'-UTR of AT1R can affect mRNA and miR-155 combination.MiR-155 down-regulates the expression of AT1R by the binding with AT1R mRNA in the presence of rs5186 A allele,but not the C allele.The expression of AT1R may be associated with risk of coronary heart disease.Therefore a case-control study was performed to examine whether SNP A1166C correlates with risk of coronary heart disease.
     A total of 455 patients with coronary heart disease and 465 controls by coronary angiography were recruited.SNP rs5186(A1166C) was genotyped by using allele-specific PCR.Genotype frequencies fulfilled expectation of Hardy-Weinberg equilibrium.
     Our results showed that the frequency of 1166AA genotype in controls was significant higher than that in patients,(65.4%versus 50.3%;P<0.01);and AA genotype could reduce the risk of coronary heart disease(odds ratio,0.214;95%CI, 0.084 to 0.548;P<0.01).We can conclude that the polymorphism of AT1R gene was associated with coronary heart disease,the A allele is a protective factor of coronary heart disease.
引文
1.Suri C,Jones PF,Patan S,Bartunkova S,Maisonpierre PC,Davis S,Sato TN,Yancopoulos GD.Requisite role of angiopoietin-1,a ligand for the TIE2 receptor,during cmbryonic angiogenesis.Cell 1996;87:1171-1180.
    2.Dumont D,Gradwohl G,Fong G,Puri M,Gertsenstein M,Auerbach A,Breitman M.Dominant-negative and targeted null mutations in the 1020 Circulation Research April 28,2006 endothelial receptor tyrosine kinase,tek,reveal a critical role in vasculogenesis of the embryo.Genes Dev.1994;8:1897-1909.
    3.Sato T,Tozawa Y,Deutseh U,Wolburg-Bucholz K,Fujiwara Y,Gendron-Maguire M,Gridley T,Wolburg H,Risau W,Qin Y.Distinct roles of the receptor tyrosine kinases Tie-1 and Tie-2 in blood vessel formation.Nature.1995;376:70-74.
    4.Patan S.TIE1 and TIE2 receptor tyrosine kinases inversely regulate embryonic angiogenesis by the mechanism of intussusceptive microvascular growth.Microvasc Res.1998;56:1-21.
    5.Puri MC,Partanen J,Rossant J,Bernstein A.Interaction of the TEK and TIE receptor tyrosine kinases during cardiovascular development.Development.1999;126:4569-4580.
    6. Maisonpierre PC, Suri C, Jones PF, Bartunkova S, Wiegand SJ, Radziejewski C, Compton D, McClain J, Aldrich TH, Papadopoulos N, Daly TJ, Davis S, Sato TN, Yancopoulos GD. Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science. 1997; 277:55- 60.
    7. Scharpfenecker M, Fiedler U, Reiss Y, Augustin HG. The Tie-2 ligand Angiopoietin-2 destabilizes quiescent endothelium through an internal autocrine loop mechanism. J Cell Sci. 2005; 118:771-780.
    8. Hanahan D. Signaling vascular morphogenesis and maintenance. Science. 1997;277:48-50.
    9. Fiedler U, Reiss Y, Scharpfenecker M, Grunow V, Thurston G, Gale NW, Sobke A, Herrmann M, Preissner KT, Vajkoczy P, Augustin HG. Angiopoietin-2 sensitizes endothelial cells to TNF-alpha and has a crucial role in the induction of inflammation. Nat Med. 2006; 12: 235-239.
    10. Kim I, Kim HG, So J-S, Kim JH, Kwak HJ, Koh GY. Angiopoietin-1 regulates endothelial cell survival through the Phosphatidylinositol 3_-kinase/Akt signal transduction pathway. Circ Res. 2000; 86:24 -29.
    11. Kwak HJ, So JN, Lee SJ, Kim I, Koh GY. Angiopoietin-1 is an apoptosis survival factor for endothelial cells. FEBS Lett. 1999; 448: 249-253.
    12. Kwak HJ, Lee SJ, Lee YH, Ryu CH, Koh KN, Choi HY, Koh GY. Angiopoietin-1 inhibits irradiation- and mannitol-induced apoptosis in endothelial cells. Circulation. 2000; 101:2317-3224.
    13. Papapetropoulos A, Garci'a-Carden~~a G, Dengler TJ, Maisonpierre PC, Yancopoulos GD, Sessa WC. Direct actions of angiopoietin-1 on human endothelium: evidence for network stabilization, cell survival, and interaction with other angiogenic growth factors. Lab Invest. 1999; 79: 213-223.
    14. Kim I, Moon S, Han C, Pak YK, Moon SK, Kim JJ, Koh GY. The angiopoietin-tie2 system in coronary artery endothelium prevents oxidized low-density lipoprotein-induced apoptosis. Cardiovasc Res. 2001; 49:872- 881.
    15. Chen J-X, Chen Y, DeBusk L, Lin W, Lin PC. Dual functional roles of Tie-2/angiopoietin in TNF-{alpha}-mediated angiogenesis. Am J Physiol Heart Circ Physiol. 2004; 287:H187-H195.
    16. Fujikawa K, de Aos Scherpenseel I, Jain SK, Presman E, Christensen RA, Varticovski L. Role of PI 3-kinase in angiopoietin-1-mediated migration and attachment-dependent survival of endothelial cells. Exp Cell Res. 1999; 253:663-672.
    17. DeBusk LM, Hallahan DE, Lin PC. Akt is a major angiogenic mediator downstream of the ANGPT1/Tie2 signaling pathway. Exp Cell Res. 2004; 298:167-177.
    18. Hayes AJ, Huang WQ, Mallah J, Yang D, Lippman ME, Li LY. Angiopoietin-1 and its receptor Tie-2 participate in the regulation of capillary-like tubule formation and survival of endothelial cells. Microvasc Res. 1999;58:224 -237.
    19. Li X, Hahn CN, Parsons M, Drew J, Vadas MA, Gamble JR. Role of protein kinase C {zeta} in thrombin-induced endothelial permeability changes: inhibition by angiopoietin-1. Blood. 2004; 104:1716 -1724.
    20. Gamble JR, Drew J, Trezise L, Underwood A, Parsons M, Kasminkas L, Rudge J, Yancopoulos G, Vadas MA. Angiopoietin-1 is an antipermeability and anti-inflammatory agent in vitro and targets cell junctions. Circ Res. 2000; 87:603- 607.
    21. Satchell SC, Anderson KL, Mathieson PW. Angiopoietin 1 and vascular endothelial growth factor modulate human glomerular endothelial cell barrier properties. J Am Soc Nephrol. 2004; 15:566 -574.
    22. Wang Y, Pampou S, Fujikawa K, Varticovski L. Opposing effect of angiopoietin-1 on VEGF-mediated disruption of endothelial cell-cell interactions requires activation of PKCbeta. J Cell Physiol. 2004; 198: 53-61.
    23. Teichert-Kuliszewska K, Maisonpierre PC, Jones N, Campbell AI, Master Z, Bendeck MP, Alitalo K, Dumont DJ, Yancopoulos GD, Stewart DJ. Biological action of angiopoietin-2 in a fibrin matrix model of angiogenesis is associated with activation of Tie2. Cardiovasc Res. 2001; 49:659-670.
    24. Kanda S, Miyata Y, Mochizuki Y, Matsuyama T, Kanetake H. Angiopoietin 1 is mitogenic for cultured endothelial cells. Cancer Res. 2005; 65:6820-6827.
    25. Carlson TR, Feng Y, Maisonpierre PC, Mrksich M, Morla AO. Direct cell adhesion to the angiopoietins mediated by integrins. J Biol Chem. 2001; 276:26516-26525.
    26. Jones N, Master Z, Jones J, Bouchard D, Gunji Y, Sasaki H, Daly R, Alitalo K, Dumont DJ. Identification of Tek/Tie2 binding partners. Binding to a multifunctional docking site mediates cell survival and migration. J Biol Chem. 1999; 274:30896-30905.
    27. Cascone I, Audero E, Giraudo E, Napione L, Maniero F, Philips MR, Collard JG, Serini G, Bussolino F. Tie-2-dependent activation of RhoA and Rac1 participates in endothelial cell motility triggered by angiopoietin-1. Blood. 2003; 102:2482-2490.
    28. Chen JX, Lawrence ML, Cunningham G, Christman BW, Meyrick B. HSP90 and Akt modulate Ang-1-induced angiogenesis via NO in coronary artery endothelium. J Appl Physiol. 2004; 96:612- 620.
    29. Audero E, Cascone I, Maniero F, Napione L, Arese M, Lanfrancone L, Bussolino F. Adaptor ShcA protein binds tyrosine kinase Tie2 receptor and regulates migration and sprouting but not survival of endothelial cells. J Biol Chem. 2004; 279:13224-13233.
    30. Koblizek TI, Weiss C, Yancopoulos GD, Deutsch U, Risau W. Angiopoietin-1 induces sprouting angiogenesis in vitro. Curr Biol. 1998; 8:529 -532.
    31. Kim I, Kim HG, Moon S-O, Chae SW, So J-N, Koh KN, Ahn BC, Koh GY. Angiopoietin-1 induces endothelial cell sprouting through the activation of focal adhesion kinase and plasmin secretion. Circ Res. 2000; 86:952-959.
    32. Babaei S, Teichert-Kuliszewska K, Zhang Q, Jones N, Dumont DJ, Stewart DJ. Angiogenic actions of angiopoietin-1 require endotheliumderived nitric oxide. Am J Pathol. 2003; 162:1927-1936.
    33. Cho C-H, Kammerer RA, Lee HJ, Yasunaga K, Kim K-T, Choi H-H, Kim W, Kim SH, Park SK, Lee GM, Koh GY. Designed angiopoietin-1 variant, COMP-ANGPT1, protects against radiation-induced endothelial cell apoptosis. Proc Natl Acad Sci U S A. 2004; 101:5553-5558.
    34. Zhao YD, Campbell AIM, Robb M, Ng D, Stewart DJ. Protective role of angiopoietin-1 in experimental pulmonary hypertension. Circ Res. 2003; 92:984 -991.
    35. Baffert F, Thurston G, Rochon-Duck M, Le T, Brekken R, McDonald DM. Age-related changes in vascular endothelial growth factor dependency and angiopoietin-1-induced plasticity of adult blood vessels. Circ Res. 2004; 94:984 -992.
    36. Thurston G, Suri C, Smith K, McClain J, Sato TN, Yancopoulos GD, McDonald DM. Leakage-resistant blood vessels in mice transgenically overexpressing angiopoietin-1. Science. 1999; 286:2511-2514.
    37. Thurston G, Rudge JS, Ioffe E, Zhou H, Ross L, Croll SD, Glazer N, Holash J, McDonald DM, Yancopoulos GD. Angiopoietin-1 protects the adult vasculature against plasma leakage. Nat Med. 2000; 6:460-463.
    38. Nambu H, Nambu R, Oshima Y, Hackett SF, Okoye G, Wiegand S, Yancopoulos G, Zack DJ, Campochiaro PA. Angiopoietin 1 inhibits 1022 Circulation Research April 28, 2006 ocular neovascularization and breakdown of the blood-retinal barrier. Gene Ther. 2004; 11:865- 873.
    39. Zhang ZG, Zhang L, Croll SD, Chopp M. Angiopoietin-1 reduces cerebral blood vessel leakage and ischemic lesion volume after focal cerebral embolic ischemia in mice. Neuroscience. 2002; 113:683- 687.
    40. Joussen AM, Poulaki V, Tsujikawa A, Qin W, Qaum T, Xu Q, Moromizato Y, Bursell SE, Wiegand SJ, Rudge J, Ioffe E, Yancopoulos GD, Adamis AP. Suppression of diabetic retinopathy with angiopoietin-1. Am J Pathol. 2002; 160:1683-1693.
    41. Witzenbichler B, Westermann D, Knueppel S, Schultheiss H-P, Tschope C. Protective role of angiopoietin-1 in endotoxic shock. Circulation. 2005; 111:97-105.
    42. Nykanen AI, Krebs R, Saaristo A, Turunen P, Alitalo K, Yla-Herttuala S, Koskinen PK, Lemstrom KB. Angiopoietin-1 protects against the development of cardiac allograft arteriosclerosis. Circulation. 2003; 107: 1308-1314.
    43. Ward NL, Haninec AL, Van Slyke P, Sled JG, Sturk C, Henkelman RM, Wanless IR, Dumont DJ. Angiopoietin-1 causes reversible degradation of the portal microcirculation in mice: implications for treatment of liver disease. Am J Pathol. 2004; 165:889-899.
    44. Thurston G, Wang Q, Baffert F, Rudge J, Papadopoulos N, Jean- Guillaume D, Wiegand S, Yancopoulos GD, McDonald DM. Angiopoietin 1 causes vessel enlargement, without angiogenic sprouting, during a critical developmental period. Development. 2005; 132: 3317-3326.
    45. Cho C-H, Kammerer RA, Lee HJ, Steinmetz MO, Ryu YS, Lee SH, Yasunaga K, Kim K-T, Kim I, Choi H-H, Kim W, Kim SH, Park SK, Lee GM, Koh GY. COMP-ANGPT1: A designed angiopoietin-1 variant with nonleaky angiogenic activity. Proc Natl Acad Sci U S A. 2004; 101: 5547-5552.
    46. Asahara T, Chen D, Takahashi T, Fujikawa K, Kearney M, Magner M, Yancopoulos GD, Isner JM. Tie2 receptor ligands, angiopoietin-1 and angiopoietin-2, modulate VEGF-induced postnatal neovascularization. Circ Res. 1998; 83:233-240.
    47. Nambu H, Umeda N, Kachi S, Oshima Y, Akiyama H, Nambu R, Campochiaro PA. Angiopoietin 1 prevents retinal detachment in an aggressive model of Proliferative retinopathy, but has no effect on established neovascularization. J Cell Physiol. 2005; 204:227-235.
    48. Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T. Identification of novel genes coding for small expressed RNAs. Science. 2001; 294: 853-858.
    49. Lau NC, Lim LP, Weinstein EG, Bartel DP. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science. 2001; 294:858-862.
    50. Lee RC, Ambros V. An extensive class of small RNAs in Caenorhabditis elegans. Science. 2001; 294:862- 864.
    51. Lai EC. Micro RNAs are complementary to 3_ UTR sequence motifs that mediate negative post-transcriptional regulation. Nat Genet. 2002; 30:363-364.
    52. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004; 116:281-297.
    53. Pillai RS, Bhattacharyya SN, Artus CG, Zoller T, Cougot N, Basyuk E, Bertrand E, Filipowicz W. Inhibition of translational initiation by Let-7 microRNA in human cells. Science. 2005; 309:1573-1576.
    54. Humphreys DT, Westman BJ, Martin DI, Preiss T. MicroRNAs control translation initiation by inhibiting eukaryotic initiation factor 4E/cap and poly(A) tail function. Proc Natl Acad Sci U S A. 2005; 102: 16961-16966.
    55. Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993; 75:843- 854.
    56. Wightman B, Ha I, Ruvkun G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell. 1993; 75:855-862.
    57. Olsen PH, Ambros V. The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation. Dev Biol. 1999; 216:671- 680.
    58. Maroney PA, Yu Y, Fisher J, Nilsen TW. Evidence that microRNAs are associated with translating messenger RNAs in human cells. Nat Struct Mol Biol. 2006; 13:1102-1107.
    59. Nottrott S, Simard MJ, Richter JD. Human let-7a miRNA blocks protein production on actively translating polyribosomes. Nat Struct Mol Biol. 2006; 13:1108-1114.
    60. Behm-Ansmant I, Rehwinkel J, Doerks T, Stark A, Bork P, Izaurralde E. mRNA degradation by miRNAs and GWl 82 requires both CCR4.NOT deadenylase and DCP1:DCP2 decapping complexes. Genes Dev. 2006; 20:1885-1898.
    61. Tang G. siRNA and miRNA: an insight into RISCs. Trends Biochem Sci. 2005; 30:106-114.
    62. Wu L, Fan J, Belasco JG. MicroRNAs direct rapid deadenylation of mRNA. Proc Natl Acad Sci U S A. 2006; 103:4034-4039.
    63. Schmitter D, Filkowski J, Sewer A, Pillai RS, Oakeley EJ, Zavolan M, Svoboda P, Filipowicz W. Effects of Dicer and Argonaute downregulation on mRNA levels in human HEK293 cells. Nucleic Acids Res. 2006; 34:4801- 4815.
    64. Liu J, Valencia-Sanchez MA, Hannon GJ, Parker R. MicroRNAdependent localization of targeted mRNAs to mammalian P-bodies. Nat Cell Biol. 2005; 7:719-723.
    65. Eulalio A, Behm-Ansmant I, Izaurralde E. P bodies: at the crossroads of post-transcriptional pathways. Nat Rev Mol Cell Biol. 2007; 8:9 -22.
    66. Eulalio A, Behm-Ansmant I, Schweizer D, Izaurralde E. P-body formation is a consequence, not the cause, of RNA-mediated gene silencing. Mol Cell Biol. 2007; 27:3970-3981.
    67. Duan R, Pak C, Jin P. Single nucleotide polymorphism associated with mature miR-125a alters the processing of pri-miRNA. Hum Mol Genet. 2007; 16:1124 -1131.
    68. Sethupathy P, Borel C, Gagnebin M. Human microRNA-155 on chromosome 21 differentially interacts with its polymorphic target in the AGTR1 3' untranslated region: a mechanism for functional single-nucleotide polymorphisms related to phenolypes. Am J Hum Genet. 2007 Aug; 81(2):405-13.
    69. Martin MM, Buckenberger JA, Jiang J. The human angiotensin II type 1 receptor + 1166 A/C polymorphism attenuates microrna-155 binding. J Biol Chem. 2007 Aug 17;282(33):24262-9.
    70. Tan Z, Randall G, Fan J, Camoretti-Mercado B, Brockman-Schneider R, Pan L, Solway J, Gem JE, Lemanske RF, Nicolae D, Ober C. Allele-specific targeting of microRNAs to HLA-G and risk of asthma. Am J Hum Genet. 2007 Oct; 81(4):829-34.
    71. Clop A, Marcq F, Takeda H, Pirottin D, Tordoir X, Bibe B, Bouix J, Caiment F, Elsen JM, Eychenne F, Larzul C, Laville E, Meish F, Milenkovic D, Tobin J, mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep. Nat Genet. 2006 Jul; 38(7):813-8.
    72. Abelson JF, Kwan KY, O'Roak BJ, Baek DY, Stillman AA, Morgan TM, Mathews CA, Pauls DL, Rasin MR, Gunel M. Sequence variants in SLITRK1 are associated with Tourette's syndrome. Science. 2005 Oct 14; 310(5746):317-20.
    1.Fyhrquist F,Mets(a∣¨)rinne K,Tikkanen Ⅰ.Role of angiotensin Ⅱ in blood pressure regulation and in the pathophysiology of cardiovascular disorders.J Hum Hypertens.1995 Nov;9 Suppl 5:S19-24.
    2.Dzau VJ.Local expression and pathophysiological role of renin-angiotensin in the blood vessels and heart.Basic Res Cardiol.1993;88 Suppl 1:1-14.
    3.Naftilan AJ.The role of angiotensin Ⅱ in vascular smooth muscle cell growth.J Cardiovasc Pharmacol.1992;20 Suppl 1:S37-40
    4.Williams B,Baker AQ,Gallacher B,Lodwick D.Angiotensin Ⅱ increases vascular permeability factor gene expression by human vascular smooth muscle cells.Hypertension.1995 May;25(5):913-7.
    5.Peifley KA,Winkles JA.Angiotensin Ⅱ and endothelin-1 increase fibroblast growth factor-2 mRNA expression in vascular smooth muscle cells.Biochem Biophys Res Commun.1998 Jan 6;242(1):202-8.
    6.Toba H,Shimizu T,Miki S,Inoue R,Yoshimura A,Tsukamoto R,Sawai N,Kobara M,Nakata T.Calcium[corrected]channel blockers reduce angiotensin Ⅱ-induced superoxide generation and inhibit lectin-like oxidized low-density lipoprotein receptor-1 expression in endothelial cells.Hypertens Res.2006 Feb;29(2):105-16.
    7.Landmesser U,Spiekermann S,Preuss C,Sorrentino S,Fischer D,Manes C, Mueller M, Drexler H. Angiotensin II induces endothelial xanthine oxidase activation: role for endothelial dysfunction in patients with coronary disease. Arterioscler Thromb Vasc Biol. 2007 Apr; 27(4):943-8.
    8. Schmeisser A, Marquetant R, Illmer T, Graffy C, Garlichs CD, Bockler D, Menschikowski D, Braun-Dullaeus R, Daniel WG, Strasser RH. The expression of macrophage migration inhibitory factor 1 alpha (MIF 1 alpha) in human atherosclerotic plaques is induced by different proatherogenic stimuli and associated with plaque instability. Atherosclerosis. 2005 Jan; 178(1):83-94.
    9. Lee WS, Yang HY, Kao PF, Liu JC, Chen CH, Cheng TH, Chan P. Tetramethylpyrazine downregulates angiotensin II-induced endothelin-1 gene expression in vascular endothelial cells. Clin Exp Pharmacol Physiol. 2005 Oct; 32(10):845-50.
    10. Ridker PM, Gaboury CL, Conlin PR, Seely EW, Williams GH, Vaughan DE. Stimulation of plasminogen activator inhibitor in vivo by infusion of angiotensin II. Evidence of a potential interaction between the renin-angiotensin system and fibrinolytic function. Circulation. 1993 Jun; 87(6): 1969-73.
    11. Brown NJ, Nadeau JH, Vaughan DE. Selective stimulation of tissue-type plasminogen activator (t-PA) in vivo by infusion of bradykinin. Thromb Haemost. 1997 Mar; 77(3):522-5.
    12. Brown NJ, Vaughan DE. Prothrombotic effects of angiotensin. Adv Intern Med. 2000; 45: 419-29.
    13. Tan LB, Jalil JE, Pick R, Janicki JS, Weber KT. Cardiac myocyte necrosis induced by angiotensin II. Circ Res. 1991 Nov; 69(5): 1185-95.
    14. Fernandez-Alfonso MS, Ganten D, Paul M. Mechanisms of cardiac growth. The role of the renin-angiotensin system. Basic Res Cardiol. 1992; 87 Suppl 2:173-81.
    15. Suzuki J, Matsubara H, Urakami M, Inada M. Rat angiotensin II (type 1A) receptor mRNA regulation and subtype expression in myocardial growth and hypertrophy. Circ Res. 1993 Sep; 73(3):439-47.
    16. Letavemier E, Perez J, Bellocq A, Mesnard L, de Castro Keller A, Haymann JP, Baud L. Targeting the calpain/calpastatin system as a new strategy to prevent cardiovascular remodeling in angiotensin II-induced hypertension. Circ Res. 2008 Mar 28; 102(6):720-8.
    17. Fischer R, Dechend R, Gapelyuk A, Shagdarsuren E, Gruner K, Gruner A, Gratze P, Qadri F, Wellner M, Fiebeler A, Dietz R, Luft FC, Muller DN, Schirdewan A. Angiotensin II-induced sudden arrhythmic death and electrical remodeling. Am J Physiol Heart Circ Physiol. 2007 Aug; 293(2):H 1242-53.
    18. Neves MF, Amiri F, Virdis A, Diep QN, Schiffrin EL; CIHR Multidisciplinary Research Group on Hypertension. Role of aldosterone in angiotensin II-induced cardiac and aortic inflammation, fibrosis, and hypertrophy. Can J Physiol Pharmacol. 2005 Nov; 83(11):999-1006.
    19. Li YL, Schultz HD. Enhanced sensitivity of Kv channels to hypoxia in the rabbit carotid body in heart failure: role of angiotensin II. J Physiol. 2006 Aug 15; 575(Pt 1):215-27
    20. Skultetyova D, Filipova S, Riecansky I, Skultety J. The role of angiotensin type 1 receptor in inflammation and endothelial dysfunction. Recent Patents Cardiovasc Drug Discov. 2007 Jan; 2(1):23-7.
    21. Chan SH, Wang LL, Tseng HL, Chan JY. Upregulation of AT1 receptor gene on activation of protein kinase Cbeta/nicotinamide adenine dinucleotide diphosphate oxidase/ERK1/2/c-fos signaling cascade mediates long-term pressor effect of angiotensin II in rostral ventrolateral medulla. J Hypertens. 2007 Sep; 25(9): 1845-61.
    22. Ihara Y, Egashira K, Nakano K, Ohtani K, Kubo M, Koga J, Iwai M, Horiuchi M, Gang Z, Yamagishi S, Sunagawa K. Upregulation of the ligand-RAGE pathway via the angiotensin II type I receptor is essential in the pathogenesis of diabetic atherosclerosis. J Mol Cell Cardiol. 2007 Oct; 43(4):455-64.
    23. Dong C, Wu G. Regulation of anterograde transport of adrenergic and angiotensin II receptors by Rab2 and Rab6 GTPases. Cell Signal. 2007 Nov; 19(11):2388-99.
    24. Yano N, Suzuki D, Endoh M, Zhao TC, Padbury JF, Tseng YT. A novel phosphoinositide 3-kinase-dependent pathway for angiotensin II/AT-1 receptor-mediated induction of collagen synthesis in MES-13 mesangial cells. J Biol Chem. 2007 Jun 29; 282(26): 18819-30.
    25. Lai EC. Micro RNAs are complementary to 3_ UTR sequence motifs that mediate negative post-transcriptional regulation. Nat Genet. 2002; 30:363-364.
    26. Sethupathy P, Borel C, Gagnebin M. Human microRNA-155 on chromosome 21 differentially interacts with its polymorphic target in the AGTR1 3' untranslated region: a mechanism for functional single-nucleotide polymorphisms related to phenotypes. Am J Hum Genet. 2007 Aug; 81(2):405-13.
    27. Martin MM, Buckenberger JA, Jiang J. The human angiotensin II type 1 receptor + 1166 A/C polymorphism attenuates microrna-155 binding.J Biol Chem. 2007 Aug 17;282(33):24262-9.
    28. Inamoto S, Hayashi T, Tazawa N, Mori T, Yamashita C, Nakano D, Matsumura Y, Okuda N, Sohmiya K, Sakai A, Furuya E, Kitaura Y. Angiotensin-II receptor blocker exerts cardioprotection in diabetic rats exposed to hypoxia. Circ J. 2006 Jun; 70(6):787-92
    29. Shimizu T, Okamoto H, Chiba S, Matsui Y, Sugawara T, Onozuka H, Mikami T, Kumamoto H, Kitabatake A. Long-term combined therapy with an angiotensin type I receptor blocker and an angiotensin converting enzyme inhibitor prolongs survival in dilated cardiomyopathy. Jpn Heart J. 2002 Sep; 43(5):531-43.
    30. Cheung BM. Therapeutic potential of angiotensin receptor blockers in hypertension. Expert Opin Investig Drugs. 2006 Jun; 15(6):625-35.
    31. Scott RL. Angiotensin-converting enzyme inhibitor and/or angiotensin receptor antagonist for the postmyocardial infarction patient. Cardiol Clin. 2008 Feb; 26(1):73-7, vii.
    32. Ruilope LM, Redon J, Schmieder R. Cardiovascular risk reduction by reversing endothelial dysfunction: ARBs, ACE inhibitors, or both? Expectations from the ONTARGET Trial Programme. Vasc Health Risk Manag. 2007; 3(1): 1-9.
    33. Dendorfer A, Dominiak P, Schunkert H. ACE inhibitors and angiotensin II receptor antagonists. Handb Exp Pharmacol. 2005; (170):407-42.
    1.Chalfie M,Horvitz HR,Sulston JE.Mutations that lead to reiterations in the cell lineages of C.elegans.Cell.1981;24:59-69.
    2.Ambros V.A hierarchy of regulatory genes controls a larva-to-adult developmental switch in C.elegans.Cell.1989;57:49 - 57.
    3.Ruvkun G,Wightman B,Burglin T,Arasu P.Dominant gain-of-function mutations that lead to misregulation of the C.elegans heterochronic gene lin-14,and the evolutionary implications of dominant mutations in pattern-formation genes.Dev Suppl.1991;1:47-54.
    4.Lee RC,Feinbaum RL,Ambros V.The C.elegans heterochronic gene lin-4encodes small RNAs with antisense complementarity to lin-14.Cell.1993;75:843 - 854.
    5.Wightman B,Ha Ⅰ,Ruvkun G.Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C.elegans.Cell.1993;75:855 - 862.
    6.Reinhart BJ,Slack FJ,Basson M,Pasquinelli AE,Bettinger JC,Rougvie AE, Horvitz HR, Ruvkun G. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature. 2000; 403: 901 -906.
    7. Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T. Identification of novel genes coding for small expressed RNAs. Science. 2001; 294: 853-858.
    8. Lau NC, Lim LP, Weinstein EG, Bartel DP. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science. 2001; 294:858-862.
    9. Lee RC, Ambros V. An extensive class of small RNAs in Caenorhabditis elegans. Science. 2001; 294:862- 864.
    10. Lagos-Quintana M, Rauhut R, Yalcin A, Meyer J, Lendeckel W, Tuschl T. Identification of tissue-specific microRNAs from mouse. Curr Biol. 2002; 12:735-739.
    11. Krek A, Grun D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, Mac- Menamin P, da Piedade I, Gunsalus KC, Stoffel M, Rajewsky N. Combinatorial microRNA target predictions. Nat Genet. 2005; 37: 495-500.
    12. Baskerville S, Bartel DP. Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes. RNA. 2005; 11:241-247.
    13. Rodriguez A, Griffiths-Jones S, Ashurst JL, Bradley A. Identification of mammalian microRNA host genes and transcription units. Genome Res. 2004; 14:1902-1910.
    14. Nervi C, Fazi F, Rosa A, Fatica A, Bozzoni I. Emerging role for microRNAs in acute promyelocytic leukemia. Curr Top Microbiol Immunol. 2007; 313:73- 84.
    15. Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH, Kim VN. MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 2004; 23: 4051-4060.
    16. Borchert GM, Lanier W, Davidson BL. RNA polymerase III transcribes human microRNAs. Nat Struct Mol Biol. 2006; 13:1097-1101.
    17. Han J, Lee Y, Yeom KH, Nam JW, Heo I, Rhee JK, Sohn SY, Cho Y, Zhang BT, Kim VN. Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex. Cell. 2006; 125:887-901.
    18. Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, Lee J, Provost P, Radmark O, Kim S, Kim VN. The nuclear RNase III Drosha initiates microRNA processing. Nature. 2003; 425:415-419.
    19. Lee Y, Jeon K, Lee JT, Kim S, Kim VN. MicroRNA maturation: stepwise processing and Subcellular localization. EMBO J. 2002; 21: 4663-4670.
    20. Landthaler M, Yalcin A, Tuschl T. The human DiGeorge syndrome critical region gene 8 and its D. melanogaster homolog are required for miRNA biogenesis. Curr Biol. 2004; 14:2162-2167.
    21. Kim VN. MicroRNA precursors in motion: exportin-5 mediates their nuclear export. Trends Cell Biol. 2004; 14:156-159.
    22. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004; 116:281-297.
    23. Peters L, Meister G. Argonaute proteins: mediators of RNA silencing. Mol Cell. 2007; 26:611-623.
    24. Liu J, Valencia-Sanchez MA, Hannon GJ, Parker R. MicroRNAdependent localization of targeted mRNAs to mammalian P-bodies. Nat Cell Biol. 2005; 7:719-723.
    25. Eulalio A, Behm-Ansmant I, Izaurralde E. P bodies: at the crossroads of post-transcriptional pathways. Nat Rev Mol Cell Biol. 2007; 8:9 -22.
    26. Okamura K, Hagen JW, Duan H, Tyler DM, Lai EC. The mirtron pathway generates microRNA-class regulatory RNAs in Drosophila. Cell. 2007; 130:89 -100.
    27. Ruby JG, Jan CH, Bartel DP. Intronic microRNA precursors that bypass Drosha processing. Nature. 2007; 448:83- 86.
    28. Ambros V, Bartel B, Bartel DP, Burge CB, Carrington JC, Chen X, Dreyfuss G, Eddy SR, Griffiths-Jones S, Marshall M, Matzke M, Ruvkun G, Tuschl T. A uniform system for microRNA annotation. RNA. 2003; 9:277-279.
    29. Valencia-Sanchez MA, Liu J, Hannon GJ, Parker R. Control of translation and mRNA degradation by miRNAs and siRNAs. Genes Dev. 2006; 20:515-524.
    30. Lee YS, Nakahara K, Pham JW, Kim K, He Z, Sontheimer EJ, Carthew RW. Distinct roles for Drosophila Dicer-1 and Dicer-2 in the siRNA/miRNA silencing pathways. Cell. 2004; 117:69-81.
    31. Pham JW, Pellino JL, Lee YS, Carthew RW, Sontheimer EJ. A Dicer-2-dependent 80s complex cleaves targeted mRNAs during RNAi in Drosophila. Cell. 2004; 117:83-94.
    32. Lim LP, Lau NC, Weinstein EG, Abdelhakim A, Yekta S, Rhoades MW, Burge CB, Bartel DP. The microRNAs of Caenorhabditis elegans. Genes Dev. 2003; 17:991-1008.
    33. Lim LP, Glasner ME, Yekta S, Burge CB, Bartel DP. Vertebrate microRNA genes. Science. 2003; 299:1540.
    34. Nam JW, Kim J, Kim SK, Zhang BT. ProMiR II: a web server for the probabilistic prediction of clustered, nonclustered, conserved and nonconserved microRNAs. Nucleic Acids Res. 2006; 34:W455-W458.
    35. Doran J, Strauss WM. Bio-informatic trends for the determination of miRNA-target interactions in mammals. DNA Cell Biol. 2007; 26: 353-360.
    36. Bentwich I. Prediction and validation of microRNAs and their targets. FEBS Lett. 2005; 579:5904-5910.
    37. Brown JR, Sanseau P. A computational view of microRNAs and their targets. Drug Discov Today. 2005; 10:595-601.
    38. Lindow M, Gorodkin J. Principles and limitations of computational microRNA gene and target finding. DNA Cell Biol. 2007; 26:339 -351.
    39. Berezikov E, Guryev V, van de Belt J, Wienholds E, Plasterk RH, Cuppen E. Phylogenetic shadowing and computational identification of human microRNA genes. Cell. 2005; 120:21-24.
    40. Griffiths-Jones S. The microRNA Registry. Nucleic Acids Res. 2004; 32: D109-D111.
    41. Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ. miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res. 2006; 34:D140-D144.
    42. Lai EC. Micro RNAs are complementary to 3_ UTR sequence motifs that mediate negative post-transcriptional regulation. Nat Genet. 2002; 30:363-364.
    43. Pillai RS, Bhattacharyya SN, Artus CG, Zoller T, Cougot N, Basyuk E, Bertrand E, Filipowicz W. Inhibition of translational initiation by Let-7 microRNA in human cells. Science. 2005; 309:1573-1576.
    44. Humphreys DT, Westman BJ, Martin DI, Preiss T. MicroRNAs control translation initiation by inhibiting eukaryotic initiation factor 4E/cap and poly(A) tail function. Proc Natl Acad Sci USA. 2005; 102: 16961-16966.
    45. Olsen PH, Ambros V. The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation. Dev Biol. 1999; 216:671- 680.
    46. Maroney PA, Yu Y, Fisher J, Nilsen TW. Evidence that microRNAs are associated with translating messenger RNAs in human cells. Nat Struct Mol Biol. 2006; 13:1102-1107.
    47. Nottrott S, Simard MJ, Richter JD. Human let-7a miRNA blocks protein production on actively translating polyribosomes. Nat Struct Mol Biol. 2006; 13:1108-1114.
    48. Behm-Ansmant I, Rehwinkel J, Doerks T, Stark A, Bork P, Izaurralde E. mRNA degradation by miRNAs and GW182 requires both CCR4:NOT deadenylase and DCP1.DCP2 decapping complexes. Genes Dev. 2006; 20:1885-1898.
    49. Tang G. siRNA and miRNA: an insight into RISCs. Trends Biochem Sci. 2005; 30:106-114.
    50. Wu L, Fan J, Belasco JG. MicroRNAs direct rapid deadenylation of mRNA. Proc Natl Acad Sci U S A. 2006; 103:4034-^039.
    51. Schmitter D, Filkowski J, Sewer A, Pillai RS, Oakeley EJ, Zavolan M, Svoboda P, Filipowicz W. Effects of Dicer and Argonaute downregulation on mRNA levels in human HEK293 cells. Nucleic Acids Res. 2006; 34:4801-4815.
    52. Chu CY, Rana TM. Translation repression in human cells by microRNA-induced gene silencing requires RCK/p54. PLoS Biol. 2006; 4:e210.
    53. Eulalio A, Behm-Ansmant I, Schweizer D, Izaurralde E. P-body formation is a consequence, not the cause, of RNA-mediated gene silencing. Mol Cell Biol. 2007; 27:3970-3981.
    54. Hwang HW, Wentzel EA, Mendell JT. A hexanucleotide element directs microRNA nuclear import. Science. 2007; 315:97-100.
    55. Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007; 9: 654-659.
    56. Obernosterer G, Leuschner PJ, Alenius M, Martinez J. Posttranscriptional regulation of microRNA expression. RNA. 2006; 12: 1161-1167.
    57. Luciano DJ, Mirsky H, Vendetti NJ, Maas S. RNA editing of a miRNA precursor. RNA. 2004; 10:1174-1177.
    58. Kawahara Y, Zinshteyn B, Sethupathy P, Iizasa H, Hatzigeorgiou AG, Nishikura K. Redirection of silencing targets by adenosine-to-inosine editing of miRNAs. Science. 2007; 315:1137-1140.
    59. Das AK, Carmichael GG. ADAR editing wobbles the microRNA world. ACS Chem Biol. 2007; 2:217-220.
    60. Franco-Zorrilla JM, Valli A, Todesco M, Mateos I, Puga MI, Rubio- Somoza I, Leyva A, Weigel D, Garcia JA, Paz-Ares J. Target mimicry provides a new mechanism for regulation of microRNA activity. Nat Genet. 2007; 39:1033-1037.
    61. Weiler J, Hunziker J, Hall J. Anti-miRNA oligonucleotides (AMOs): ammunition to target miRNAs implicated in human disease? Gene Ther. 2006; 13:496 -502.
    62. Care A, Catalucci D, Felicetti F, Bonci D, Addario A, Gallo P, Bang ML, Segnalini P, Gu Y, Dalton ND, Elia L, Latronico MV, Hoydal M, Autore C, Russo MA, Dorn GW 2nd, Ellingsen O, Ruiz-Lozano P, Peterson KL, Croce CM, Peschle C, Condorelli G. MicroRNA-133 controls cardiac hypertrophy. Nat Med. 2007; 13:613-618.
    63. Ebert MS, Neilson JR, Sharp PA. MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat Methods. 2007; 4: 721-726.
    64. Krutzfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M, Stoffel M. Silencing of microRNAs in vivo with 'antagomirs'. Nature. 2005; 438:685-689.
    65. Zhao Y, Samal E, Srivastava D. Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature. 2005; 436:214-220.
    66. Ding Y, Chan CY, Lawrence CE. Sfold web server for statistical folding and rational design of nucleic acids. Nucleic Acids Res. 2004; 32: W135-W141.
    67. Long D, Lee R, Williams P, Chan CY, Ambros V, Ding Y. Potent effect of target structure on microRNA function. Nat Struct Mol Biol. 2007; 14:287-294.
    68. Grimson A, Farh KK, Johnston WK, Garrett-Engele P, Lim LP, Bartel DP. MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell. 2007; 27:91-105.
    69. Duan R, Pak C, Jin P. Single nucleotide polymorphism associated with mature miR-125a alters the processing of pri-miRNA. Hum Mol Genet. 2007; 16:1124 -1131.
    70. Poy MN, Eliasson L, Krutzfeldt J, Kuwajima S, Ma X, Macdonald PE, Pfeffer S, Tuschl T, Rajewsky N, Rorsman P, Stoffel M. A pancreatic islet-specific microRNA regulates insulin secretion. Nature. 2004; 432: 226-230.
    71. Xu P, Vemooy SY, Guo M, Hay BA. The Drosophila microRNA Mir-14 suppresses cell death and is required for normal fat metabolism. Curr Biol. 2003; 13:790-795.
    72. Chen JF, Mandel EM, Thomson JM, Wu Q, Callis TE, Hammond SM, Conlon FL, Wang DZ. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet. 2006; 38: 228-233.
    73. Dresios J, Aschrafi A, Owens GC, Vanderklish PW, Edelman GM, Mauro VP. Cold stress-induced protein Rbm3 binds 60S ribosomal subunits, alters microRNA levels, and enhances global protein synthesis. Proc Natl Acad Sci U S A 2005; 102:1865-1870.
    74. Xu P, Guo M, Hay BA. MicroRNAs and the regulation of cell death. Trends Genet. 2004; 20:617- 624.
    75. Xu C, Lu Y, Pan Z, Chu W, Luo X, Lin H, Xiao J, Shan H, Wang Z, Yang B. The muscle-specific microRNAs miR-1 and miR-133 produce opposing effects on apoptosis by targeting HSP60, HSP70 and caspase-9 in cardiomyocytes. J Cell Sci. 2007; 120:3045-3052.
    76. Jin P, Zarnescu DC, Ceman S, Nakamoto M, Mowrey J, Jongens TA, Nelson DL, Moses K, Warren ST. Biochemical and genetic interaction between the fragile X mental retardation protein and the microRNA pathway. Nat Neurosci. 2004; 7:113-117.
    77. Chen CZ, Li L, Lodish HF, Bartel DP. MicroRNAs modulate hematopoietic lineage differentiation. Science. 2004; 303:83- 86.
    78. Calin GA, Ferracin M, Cimmino A, Di Leva G, Shimizu M, Wojcik SE, Iorio MV, Visone R, Sever NI, Fabbri M, Iuliano R, Palumbo T, Pichiorri F, Roldo C, Garzon R, Sevignani C, Rassenti L, Alder H, Volinia S, Liu CG, Kipps TJ, Negrini M, Croce CM. A microRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med. 2005; 353:1793-1801.
    79. Mansfield JH, Harfe BD, Nissen R, Obenauer J, Srineel J, Chaudhuri A, Farzan-Kashani R, Zuker M, Pasquinelli AE, Ruvkun G, Sharp PA, Tabin CJ, McManus MT. MicroRNA-responsive 'sensor' transgenes uncover Hox-like and other developmentally regulated patterns of vertebrate microRNA expression. Nat Genet. 2004; 36:1079-1083.
    80. Sokol NS, Ambros V. Mesodermally expressed Drosophila microRNA-1 is regulated by Twist and is required in muscles during larval growth. Genes Dev. 2005; 19:2343-2354.
    81. Wienholds E, Kloosterman WP, Miska E, Alvarez-Saavedra E, Berezikov E, de Bruijn E, Horvitz HR, Kauppinen S, Plasterk RH. MicroRNA expression in zebrafish embryonic development. Science. 2005; 309:310-311.
    82. Brennecke J, Stark A, Cohen SM. Not miR-ly muscular: microRNAs and muscle development. Genes Dev. 2005; 19:2261-2264.
    83. Wang D, Chang PS, Wang Z, Sutherland L, Richardson JA, Small E, Krieg PA, Olson EN. Activation of cardiac gene expression by myocardin, a transcriptional cofactor for serum response factor. Cell. 2001; 105:851- 862.
    84. Zhao Y, Ransom JF, Li A, Vedantham V, von Drehle M, Muth AN, Tsuchihashi T, McManus MT, Schwartz RJ, Srivastava D. Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2. Cell. 2007; 129:303-317.
    85. Farh KK, Grimson A, Jan C, Lewis BP, Johnston WK, Lim LP, Burge CB, Bartel DP. The widespread impact of mammalian microRNAs on mRNA repression and evolution. Science. 2005; 310:1817-1821.
    86. Stark A, Brennecke J, Bushati N, Russell RB, Cohen SM. Animal microRNAs confer robustness to gene expression and have a significant impact on 3_ UTR evolution. Cell. 2005; 123:1133-1146.
    87. Rao PK, Kumar RM, Farkhondeh M, Baskerville S, Lodish HF. Myogenic factors that regulate expression of muscle-specific microRNAs. Proc Natl Acad Sci U S A. 2006; 103:8721-8726.
    88. van Rooij E, Sutherland LB, Liu N, Williams AH, McAnally J, Gerard RD, Richardson JA, Olson EN. A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proc Natl Acad Sci U S A. 2006; 103:18255-18260.
    89. Cheng Y, Ji R, Yue J, Yang J, Liu X, Chen H, Dean DB, Zhang C. MicroRNAs are aberrantly expressed in hypertrophic heart. Do they play a role in cardiac hypertrophy? Am J Pathol. 2007; 170:1831-1840.
    90. Tatsuguchi M, Seok HY, Callis TE, Thomson JM, Chen JF, Newman M, Rojas M, Hammond SM, Wang DZ. Expression of microRNAs is dynamically regulated during cardiomyocyte hypertrophy. J Mol Cell Cardiol. 2007; 42:1137-1141.
    91. Sayed D, Hong C, Chen IY, Lypowy J, Abdellatif M. MicroRNAs play an essential role in the development of cardiac hypertrophy. Circ Res. 2007; 100:416-424.
    92. Thum T, Galuppo P, Wolf C, Fiedler J, Kneitz S, van Laake LW, Doevendans PA, Mummery CL, Borlak J, Haverich A, Gross C, Engelhardt S, Ertl G, Bauersachs J. MicroRNAs in the human heart: a clue to fetal gene reprogramming in heart failure. Circulation. 2007; 116:258-267.
    93. Brown JH, Del Re DP, Sussman MA. The Rac and Rho hall of fame: a decade of hypertrophic signaling hits. Circ Res. 2006; 98:730 -742.
    94. Ke Y, Wang L, Pyle WG, de Tombe PP, Solaro RJ. Intracellular localization and functional effects of P21-activated kinase-1 (Pak1) in cardiac myocytes. Circ Res. 2004; 94:194-200.
    95. Mariotti M, Manganini M, Maier JA. Modulation of WHSC2 expression in human endothelial cells. FEBS Lett. 2000; 487:166 -170.
    96. van Rooij E, Sutherland LB, Qi X, Richardson JA, Hill J, Olson EN. Control of stress-dependent cardiac growth and gene expression by a microRNA. Science. 2007; 316:575-579.
    97. Luo X, Xiao J, Lin H, Li B, Lu Y, Yang B, Wang Z. Transcriptional activation by stimulating protein 1 and post-transcriptional repression by muscle-specific microRNAs of I(Ks)-encoding genes and potential implications in regional heterogeneity of their expressions. J Cell Physiol. 2007; 212:358 -367.
    98. Xiao J, Luo X, Lin H, Zhang Y, Lu Y, Wang N, Yang B, Wang Z. MicroRNA miR-133 represses HERG K_ channel expression contributing to QT prolongation in diabetic hearts. J Biol Chem. 2007; 282: 12363-12367.
    99. Yang B, Lin H, Xiao J, Lu Y, Luo X, Li B, Zhang Y, Xu C, Bai Y, Wang H, Chen G, Wang Z. The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2. Nat Med. 2007; 13:486-491.
    100.Yang WJ, Yang DD, Na S, Sandusky GE, Zhang Q, Zhao G. Dicer is required for embryonic angiogenesis during mouse development. J Biol Chem. 2005; 280:9330-9335.
    101.Kuehbacher A, Urbich C, Zeiher AM, Dimmeler S. Role of Dicer and Drosha for endothelial microRNA expression and angiogenesis. Circ Res. 2007; 101:59—68.
    102.Suarez Y, Fernandez-Hernando C, Pober JS, Sessa WC. Dicer dependent microRNAs regulate gene expression and functions in human endothelial cells. CircRes. 2007; 100:1164-1173.
    103.Poliseno L, Tuccoli A, Mariani L, Evangelista M, Citti L, Woods K, Mercatanti A, Hammond S, Rainaldi G. MicroRNAs modulate the angiogenic properties of HUVECs. Blood. 2006; 108:3068 -3071.
    104.Felli N, Fontana L, Pelosi E, Botta R, Bonci D, Facchiano F, Liuzzi F, Lulli V, Morsilli O, Santoro S, Valtieri M, Calin GA, Liu CG, Sorrentino A, Croce CM, Peschle C. MicroRNAs 221 and 222 inhibit normal erythropoiesis and erythroleukemic cell growth via kit receptor down-modulation. Proc Natl Acad Sci U S A. 2005; 102: 18081-18086.
    105.Tuccoli A, Poliseno L, Rainaldi G. miRNAs regulate miRNAs: coordinated transcriptional and post-transcriptional regulation. Cell Cycle. 2006; 5:2473-2476.
    106.Ji R, Cheng Y, Yue J, Yang J, Liu X, Chen H, Dean DB, Zhang C. MicroRNA expression signature and antisense-mediated depletion reveal an essential role of microRNA in vascular neointimal lesion formation. Circ Res. 2007; 100:1579 -1588.
    107.Clop A, Marcq F, Takeda H, Pirottin D, Tordoir X, Bibe B, Bouix J, Caiment F, Elsen JM, Eychenne F, Larzul C, Laville E, Meish F, Milenkovic D, Tobin J, Charlier C, Georges M. A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep. Nat Genet. 2006; 38:813-818.
    108.Xiao J, Yang B, Lin H, Lu Y, Luo X, Wang Z. Novel approaches for gene-specific interference via manipulating actions of microRNAs: examination on the pacemaker channel genes HCN2 and HCN4. J Cell Physiol. 2007; 212:285-292.
    109.Fattal E, Bochot A. Ocular delivery of nucleic acids: antisense oligonucleotides, aptamers and siRNA. Adv Drug Deliv Rev. 2006; 58:1203-1223.
    110.Gleave ME, Monia BP. Antisense therapy for cancer. Nat Rev Cancer. 2005; 5:468-479.
    111 .Krutzfeldt J, Kuwajima S, Braich R, Rajeev KG, Pena J, Tuschl T, Manoharan M, Stoffel M. Specificity, duplex degradation and Subcellular localization of antagomirs. Nucleic Acids Res. 2007; 35:2885-2892.
    1.Suri C,Jones PF,Patan S,Bartunkova S,Maisonpierre PC,Davis S,Sato TN,Yancopoulos GD.Requisite role of angiopoietin-1,a ligand for the TIE2 receptor,during embryonic angiogenesis.Cell 1996;87:1171-1180.
    2.Dumont D,Gradwohl G,Fong G,Purl M,Gertsenstein M,Auerbach A,Breitman M.Dominant-negative and targeted null mutations in the 1020 Circulation Research April 28,2006 endothelial receptor tyrosine kinase,tek,reveal a critical role in vasculogenesis of the embryo.Genes Dev.1994;8:1897-1909.
    3.Sato T,Tozawa Y,Deutsch U,Wolburg-Bucholz K,Fujiwara Y,Gendron-Maguire M,Gridley T,Wolburg H,Risau W,Qin Y.Distinct roles of the receptor tyrosine kinases Tie-1 and Tie-2 in blood vessel formation.Nature.1995;376:70 - 74.
    4.Patan S.TIE1 and TIE2 receptor tyrosine kinases inversely regulate embryonic angiogenesis by the mechanism of intussusceptive microvascular growth.Microvasc Res.1998;56:1-21.
    5.Puri MC,Partanen J,Rossant J,Bernstein A.Interaction of the TEK and TIE receptor tyrosine kinases during cardiovascular development.Development.1999;126:4569-4580.
    6.Maisonpierre PC,Suri C,Jones PF,Bartunkova S,Wiegand SJ,Radziejewski C,Compton D,McClain J,Aldrich TH,Papadopoulos N,Daly TJ,Davis S,Sato TN,Yancopoulos GD.Angiopoietin-2,a natural antagonist for Tie2 that disrupts in vivo angiogenesis.Science.1997;277:55-60.
    7.Scharpfenecker M,Fiedler U,Reiss Y,Augustin HG.The Tie-2 ligand Angiopoietin-2 destabilizes quiescent endothelium through an internal autocrine loop mechanism.J Cell Sci.2005;118:771-780.
    8.Hanahan D.Signaling vascular morphogenesis and maintenance.Science.1997;277:48 - 50.
    9. Saharinen P, Kerkela K, Ekman N, Marron M, Brindle N, Lee GM, Augustin H, Koh GY, Alitalo K. Multiple angiopoietin recombinant proteins activate the Tie1 receptor tyrosine kinase and promote its interaction with Tie2. J Cell Biol. 2005; 169:239-243.
    10. Dallabrida SM, Ismail N, Oberle JR, Himes BE, Rupnick MA. Angiopoietin-1 promotes cardiac and skeletal myocyte survival through integrins. Circ Res. 2005; 96:e8-e24.
    11. Carlson TR, Feng Y, Maisonpierre PC, Mrksich M, Morla AO. Direct cell adhesion to the angiopoietins mediated by integrins. J Biol Chem. 2001; 276:26516-26525.
    12. Davis S, Aldrich TH, Jones PF, Acheson A, Compton DL, Jain V, Ryan TE, Bruno J, Radziejewski C, Maisonpierre PC, Yancopoulos GD. Isolation of angiopoietin-1, a ligand for the TIE2 receptor, by secretion-trap expression cloning. Cell. 1996; 87:1161-1169.
    13. Valenzuela DM, Griffiths JA, Rojas J, Aldrich TH, Jones PF, Zhou H, McClain J, Copeland NG, Gilbert DJ, Jenkins NA, Huang T, Papadopoulos N, Maisonpierre PC, Davis S, Yancopoulos GD. Angiopoietins 3 and 4: diverging gene counterparts in mice and humans. Proc Natl Acad Sci U S A. 1999; 96:1904 -1909.
    14. Kim I, Kim J-H, Moon S-O, Kwak HJ, Kim N-G, Koh G-Y. Angiopoietin-2 at high concentration can enhance endothelial cell survival through the Phosphatidylinositol 3_-kinase/Akt signal transduction pathway. Oncogene. 2000; 19:4549-4552.
    15. Teichert-Kuliszewska K, Maisonpierre PC, Jones N, Campbell AI, Master Z, Bendeck MP, Alitalo K, Dumont DJ, Yancopoulos GD, Stewart DJ. Biological action of angiopoietin-2 in a fibrin matrix model of angiogenesis is associated with activation of Tie2. Cardiovasc Res. 2001; 49:659-670.
    16. Lee HJ, Cho C-H, Hwang S-J, Choi H-H, Kim K-T, Ahn SY, Kim J-H, Oh J-L, Lee GM, Koh GY. Biological characterization of angiopoietin-3 and angiopoietin-4. FASEB J. 2004; 18:1200-1208.
    17. Procopio WN, Pelavin PI, Lee WM, Yeilding NM. Angiopoietin-1 and -2 coiled coil domains mediate distinct homo-oligomerization patterns, but fibrinogen-like domains mediate ligand activity. J Biol Chem. 1999; 274:30196 -30201.
    18. Barton WA, Tzvetkova D, Nikolov DB. Structure of the angiopoietin-2 receptor binding domain and identification of surfaces involved in Tie2 recognition. Structure (Camb). 2005; 13:825-832.
    19. Davis S, Papadopoulos N, Aldrich TH, Maisonpierre PC, Huang T, Kovac L, Xu A, Leidich R, Radziejewska E, Rafique A, Goldberg J, Jain V, Bailey K, Karow M, Fandl J, Samuelsson SJ, Ioffe E, Rudge JS, Daly TJ, Radziejewski C, Yancopoulos GD. Angiopoietins have distinct modular domains essential for receptor binding, dimerization and superclustering. Nat Struct Biol. 2003; 10:38-44.
    20. Kim K-T, Choi H-H, Steinmetz MO, Maco B, Kammerer RA, Ahn SY, Kim H-Z, Lee GM, Koh GY. Oligomerization and multimerization is critical for angiopoietin-1 to bind and phosphorylate tie2. J Biol Chem. 2005; 280:20126 -20131.
    21. Kim I, Kim HG, So J-S, Kim JH, Kwak HJ, Koh GY. Angiopoietin-1 regulates endothelial cell survival through the Phosphatidylinositol 3_-kinase/Akt signal transduction pathway. Circ Res. 2000; 86:24 -29.
    22. Stratmann A, Risau W, Plate KH. Cell type-specific expression of angiopoietin-1 and angiopoietin-2 suggests a role in glioblastoma angiogenesis. Am J Pathol. 1998; 153:1459-1466.
    23. Fiedler U, Scharpfenecker M, Koidl S, Hegen A, Grunow V, Schmidt JM, Kriz W, Thurston G, Augustin HG. The Tie-2 ligand Angiopoietin-2 is stored in and rapidly released upon stimulation from endothelial cell Weibel-Palade bodies. Blood. 2004; 103:4150-4156.
    24. Jones PF. Not just angiogenesis-wider roles for the angiopoietins. J Pathol. 2003; 201:515-527.
    25. Gerritsen ME, Tomlinson JE, Zlot C, Ziman M, Hwang S. Using gene expression profiling to identify the molecular basis of the synergistic actions of hepatocyte growth factor and vascular endothelial growth factor in human endothelial cells. Br J Pharmacol. 2003; 140:595-610.
    26. Yamakawa M, Liu LX, Date T, Belanger AJ, Vincent KA, Akita GY, Kuriyama T, Cheng SH, Gregory RJ, Jiang C. Hypoxia-inducible factor-1 mediates activation of cultured vascular endothelial cells by inducing multiple angiogenic factors. Circ Res. 2003; 93:664-673.
    27. Partanen J, Armstrong E, Makela TP, Korhonen J, Sandberg M, Renkonen R, Knuutila S, Huebner K, Alitalo K. A novel endothelial cell surface receptor tyrosine kinase with extracellular epidermal growth factor homology domains. Mol Cell Biol. 1992; 12:1698-1707.
    28. Dumont DJ, Yamaguchi TP, Conlon RA, Rossant J, Breitman ML. Tek, a novel tyrosine kinase gene located on mouse chromosome 4, is expressed in endothelial cells and their presumptive precursors. Oncogene. 1992; 7:71- 80.
    29. Runting AS, Stacker SA, Wilks AF. Tie2, a putative protein tyrosine kinase from a new class of cell surface receptor. Growth Factors. 1993; 9:99 -105.
    30. Fiedler U, Krissl T, Koidl S, Weiss C, Koblizek T, Deutsch U, Martiny-Baron G, Marme D, Augustin HG. Angiopoietin-1 and angiopoietin-2 share the same binding domains in the Tie-2 receptor involving the first Ig-like loop and the epidermal growth factor-like repeats. J Biol Chem. 2003; 278:1721-1727.
    31. Marron MB, Hughes DP, Edge MD, Forder CL, Brindle NPJ. Evidence for heterotypic interaction between the receptor tyrosine kinases TIE-1 and TIE-2. J Biol Chem. 2000; 275:39741-39746.
    32. Tsiamis AC, Morris PN, Marron MB, Brindle NPJ. Vascular endothelial growth factor modulates the Tie-2: Tie-1 receptor complex. Microvasc Res. 2002; 63:149 -158.
    33. Chen-Konak L, Guetta-Shubin Y, Yahav H, Shay-Salit A, Zilberman M, Binah O, Resnick N. Transcriptional and post-translation regulation of the Tiel receptor by fluid shear stress changes in vascular endothelial cells. FASEB J. 2003; 17:2121-2123.
    34. Weber CC, Cai H, Ehrbar M, Kubota H, Martiny-Baron G, Weber W, Djonov V, Weber E, Mallik AS, Fussenegger M, Frei K, Hubbell JA, Zisch AH. Effects of protein and gene transfer of the ANGPT1 fibrinogen-like receptor-binding domain for endothelial and vessel organization. J Biol Chem. 2005; 280:22445-22453.
    35. Cascone I, Napione L, Maniero F, Serini G, Bussolino F. Stable interaction between {alpha} 5 {beta} 1 integrin and Tie2 tyrosine kinase receptor regulates endothelial cell response to Ang-1. J Cell Biol. 2005; 170:993-1004.
    36. Kwak HJ, So JN, Lee SJ, Kim I, Koh GY. Angiopoietin-1 is an apoptosis survival factor for endothelial cells. FEBS Lett. 1999; 448: 249-253.
    37. Kwak HJ, Lee SJ, Lee YH, Ryu CH, Koh KN, Choi HY, Koh GY. Angiopoietin-1 inhibits irradiation- and mannitol-induced apoptosis in endothelial cells. Circulation. 2000; 101:2317-3224.
    38. Papapetropoulos A, Garci'a-Carden~~a G, Dengler TJ, Maisonpierre PC, Yancopoulos GD, Sessa WC. Direct actions of angiopoietin-1 on human endothelium: evidence for network stabilization, cell survival, and interaction with other angiogenic growth factors. Lab Invest. 1999; 79: 213-223.
    39. Kim I, Moon S, Han C, Pak YK, Moon SK, Kim JJ, Koh GY. The angiopoietin-tie2 system in coronary artery endothelium prevents oxidized low-density lipoprotein-induced apoptosis. Cardiovasc Res. 2001; 49:872- 881.
    40. Chen J-X, Chen Y, DeBusk L, Lin W, Lin PC. Dual functional roles of Tie-2/angiopoietin in TNF-{alpha}-mediated angiogenesis. Am J Physiol Heart Circ Physiol. 2004; 287:H187-H195.
    41. Papapetropoulos A, Fulton D, Mahboubi K, Kalb RG, O'Connor DS, Li F, Altieri DC, Sessa WC. Angiopoietin-1 inhibits endothelial cell apoptosis via the Akt/survivin pathway. J Biol Chem. 2000; 275:9102-9105.
    42. Valable S, Bellail A, Lesne S, Liot G, MacKenzie ET, Vivien D, Bernaudin M, Petit E. Angiopoietin-1-induced phosphatidyl-inositol Brindle et al Angiopoietin-1 in Vascular Protection 1021 3-kinase activation prevents neuronal apoptosis. FASEBJ. 2003; 17: 443-445.
    43. Kontos CD, Stauffer TP, Yang WP, York JD, Huang L, Blanar MA, Meyer T, Peters KG. Tyrosine 1101 of Tie2 is the major site of association of p85 and is required for activation of Phosphatidylinositol 3-kinase and Akt. Mol Cell Biol. 1998; 18:4131-4140.
    44. Jones N, Master Z, Jones J, Bouchard D, Gunji Y, Sasaki H, Daly R, Alitalo K, Dumont DJ. Identification of Tek/Tie2 binding partners. Binding to a multifunctional docking site mediates cell survival and migration. J Biol Chem. 1999; 274:30896-30905.
    45. Daly C, Wong V, Burova E, Wei Y, Zabski S, Griffiths J, Lai K-M, Lin HC, Ioffe E, Yancopoulos GD, Rudge JS. Angiopoietin-1 modulates endothelial cell function and gene expression via the transcription factor FKHR (FOXO1). Genes Dev. 2004; 18:1060-1071.
    46. Witzenbichler B, Maisonpierre PC, Jones P, Yancopoulos GD, Isner JM. Chemotactic properties of angiopoietin-1 and -2, ligands for the endothelial-specific receptor tyrosine kinase Tie2. J Biol Chem. 1998; 273: 18514-18521.
    47. Fujikawa K, de Aos Scherpenseel I, Jain SK, Presman E, Christensen RA, Varticovski L. Role of PI 3-kinase in angiopoietin-1-mediated migration and attachment-dependent survival of endothelial cells. Exp Cell Res. 1999; 253:663-672.
    48. Cascone I, Audero E, Giraudo E, Napione L, Maniero F, Philips MR, Collard JG, Serini G, Bussolino F. Tie-2-dependent activation of Rho A and Rac1 participates in endothelial cell motility triggered by angiopoietin-1. Blood. 2003; 102:2482-2490.
    49. Chen JX, Lawrence ML, Cunningham G, Christman BW, Meyrick B. HSP90 and Akt modulate Ang-1-induced angiogenesis via NO in coronary artery endothelium. J Appl Physiol. 2004; 96:612- 620.
    50. Jones N, Chen SH, Sturk C, Master Z, Tran J, Kerbel RS, Dumont DJ. A unique autophosphorylation site on Tie2/Tek mediates Dok-R phosphotyrosine binding domain binding and function. Mol Cell Biol. 2003; 23:2658 -2668.
    51. Master Z, Jones N, Tran J, Jones J, Kerbel RS, Dumont DJ. Dok-R plays a pivotal role in angiopoietin-1-dependent cell migration through recruitment and activation of Pak. EMBOJ. 2001; 20:5919 -5928.
    52. Audero E, Cascone I, Maniero F, Napione L, Arese M, Lanfrancone L, Bussolino F. Adaptor ShcA protein binds tyrosine kinase Tie2 receptor and regulates migration and sprouting but not survival of endothelial cells. J Biol Chem. 2004; 279:13224-13233.
    53. Li X, Hahn CN, Parsons M, Drew J, Vadas MA, Gamble JR. Role of protein kinase C {zeta} in thrombin-induced endothelial permeability changes: inhibition by angiopoietin-1. Blood. 2004; 104:1716-1724.
    54. Kosacka J, Figiel M, Engele J, Hilbig H, Majewski M, Spanel-Borowski K. Angiopoietin-1 promotes neurite outgrowth from dorsal root ganglion cells positive for Tie-2 receptor. Cell Tissue Res. 2005; 320:11-19.
    55. Iurlaro M, Scatena M, Zhu W-H, Fogel E, Wieting SL, Nicosia RF. Rat aorta-derived mural precursor cells express the Tie2 receptor and respond directly to stimulation by angiopoietins. J Cell Sci. 2003; 116: 3635-3643.
    56. Metheny-Barlow LJ, Tian S, Hayes AJ, Li LY. Direct chemotactic action of angiopoietin-1 on mesenchymal cells in the presence of VEGF. Microvasc Res. 2004; 68:221-230.
    57. Koblizek TI, Weiss C, Yancopoulos GD, Deutsch U, Risau W. Angiopoietin-1 induces sprouting angiogenesis in vitro. Curr Biol. 1998; 8:529 -532.
    58. Kim I, Kim HG, Moon S-O, Chae SW, So J-N, Koh KN, Ahn BC, Koh GY. Angiopoietin-1 induces endothelial cell sprouting through the activation of focal adhesion kinase and plasmin secretion. Circ Res. 2000; 86:952-959.
    59. Hansbury MJ, Nicosia RF, Zhu WH, Holmes SJ, Winkler JD. Production and characterization of a Tie2 agonist monoclonal antibody. Angiogenesis. 2001; 4:29 -36.
    60. Babaei S, Teichert-Kuliszewska K, Zhang Q, Jones N, Dumont DJ, Stewart DJ. Angiogenic actions of angiopoietin-1 require endotheliumderived nitric oxide. Am J Pathol. 2003; 162:1927-1936.
    61. Kim I, Ryu YS, Kwak HJ, Ahn SY, Oh JL, Yancopoulos GD, Gale NW, Koh GY. EphB ligand, ephrinB2, suppresses the VEGF- and angiopoietin 1-induced Ras/mitogen-activated protein kinase pathway in venous endothelial cells. FASEB J. 2002; 16:1126-1128.
    62. Harfouche R, Gratton JP, Yancopoulos GD, Noseda M, Karsan A, Hussain SN. Angiopoietin-1 activates both anti- and proapoptotic mitogen-activated protein kinases. FASEB J. 2003; 17:17.
    63. Huang L, Turck C, Rao P, Peters K. GRB2 and SH-PTP2: potentially important endothelial signaling molecules downstream of the TEK/TIE2 receptor tyrosine kinase. Oncogene. 1995; 11:2097-2103.
    64. Li W, Nishimura R, Kashishian A, Batzer AG, Kim WJH, Cooper JA, Schlessinger J. A new function for a phosphotyrosine phosphatase: Linking GRB2-Sos to a receptor tyrosine kinase. Mol Cell Biol. 1994; 14:509 -517.
    65. Kanda S, Miyata Y, Mochizuki Y, Matsuyama T, Kanetake H. Angiopoietin 1 is mitogenic for cultured endothelial cells. Cancer Res. 2005; 65:6820-6827.
    66. Kim I, Moon S-O, Park SK, Chae SW, Koh GY. Angiopoietin-1 reduces VEGF-stimulated leukocyte adhesion to endothelial cells by reducing ICAM-1, VCAM-1, and E-selectin expression. Circ Res. 2001; 89: 477-479.
    67. Gamble JR, Drew J, Trezise L, Underwood A, Parsons M, Kasminkas L, Rudge J, Yancopoulos G, Vadas MA. Angiopoietin-1 is an antipermeability and anti-inflammatory agent in vitro and targets cell junctions. Circ Res. 2000; 87:603-607.
    68. Lemieux C, Maliba R, Favier J, Theoret J-F, Merhi Y, Sirois MG. Angiopoietins can directly activate endothelial cells and neutrophils to promote proinflammatory responses. Blood. 2005; 105:1523-1530.
    69. Kim I, Oh JL, Ryu YS, So JN, Sessa WC, Walsh K, Koh GY. Angiopoietin-1 negatively regulates expression and activity of tissue factor in endothelial cells. FASEB J. 2002; 16:126-128.
    70. Hughes DP, Marron MB, Brindle NPJ. The antiinflammatory endothelial tyrosine kinase Tie2 interacts with a novel nuclear factor-{kappa}B inhibitor ABIN-2. Circ Res. 2003; 92:630-636.
    71. Satchell SC, Anderson KL, Mathieson PW. Angiopoietin 1 and vascular endothelial growth factor modulate human glomerular endothelial cell barrier properties. J Am Soc Nephrol. 2004; 15:566 -574.
    72. Wang Y, Pampou S, Fujikawa K, Varticovski L. Opposing effect of angiopoietin-1 on VEGF-mediated disruption of endothelial cell-cell interactions requires activation of PKCbeta. J Cell Physiol. 2004; 198: 53-61.
    73. Iwama A, Hamaguchi I, Hashiyama M, Murayama Y, Yasunaga K, Suda T. Molecular cloning and characterization of mouse TIE and TEK receptor tyrosine kinase genes and their expression in hematopoietic stem cells. Biochem Biophys Res Comm. 1993; 195:301-309.
    74. Batard P, Sansilvestri P, Seheinecker C, Knapp W, Debili N, Vainchenker W, Buhring H, Monier M, Kukk E, Partanen J, Matikainen M, Alitalo R, Hatzfeld J, Alitalo K. The tie receptor tyrosine kinase is expressed by human hematopoietic progenitor cells and by a subset of megakaryocytic cells. Blood. 1996; 87:2212-2220.
    75. Hashiyama M, Iwama A, Ohshiro K, Kurozumi K, Yasunaga K, Shimizu Y, Masuho Y, Matsuda I, Yamaguchi N, Suda T. Predominant expression of a receptor tyrosine kinase, TIE, in hematopoietic stem cells and B cells. Blood. 1996; 87:93-101.
    76. Arai F, Hirao A, Ohmura M, Sato H, Matsuoka S, Takubo K, Ito K, Koh GY, Suda T. Tie2/angiopoietin-l signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell. 2004; 118:149-161.
    77. Puri M, Rossant J, Alitalo K, Bernstein A, Partanen J. The receptor tyrosine kinase TIE is required for integrity and survival of vascular endothelial cells. EMBO J. 1995; 14:5884-5891.
    78. Kontos CD, Cha EH, York JD, Peters KG. The endothelial receptor tyrosine kinase Tie1 activates Phosphatidylinositol 3-kinase and Akt to inhibit apoptosis. Mol Cell Biol. 2002; 22:1704 -1713.
    79. Songyang Z, Shoelson SE, Chaudhuri M, Gish G, Pawson T, Haser WG, King F, Roberts T, Ratnofsky S, Lechleider RJ, et al. SH2 domains recognize specific phosphopeptide sequences. Cell. 1993; 72:767-778.
    80. Cho C-H, Kammerer RA, Lee HJ, Yasunaga K, Kim K-T, Choi H-H, Kim W, Kim SH, Park SK, Lee GM, Koh GY. Designed angiopoietin-1 variant, COMP-ANGPT1, protects against radiation-induced endothelial cell apoptosis. Proc Natl Acad Sci U S A. 2004; 101:5553-5558.
    81. Zhao YD, Campbell AIM, Robb M, Ng D, Stewart DJ. Protective role of angiopoietin-1 in experimental pulmonary hypertension. Circ Res. 2003; 92:984 -991.
    82. Thurston G, Suri C, Smith K, McClain J, Sato TN, Yancopoulos GD, McDonald DM. Leakage-resistant blood vessels in mice transgenically overexpressing angiopoietin-1. Science. 1999; 286:2511-2514.
    83. Thurston G, Rudge JS, Ioffe E, Zhou H, Ross L, Croll SD, Glazer N, Holash J, McDonald DM, Yancopoulos GD. Angiopoietin-1 protects the adult vasculature against plasma leakage. Nat Med. 2000; 6:460-463.
    84. Nambu H, Nambu R, Oshima Y, Hackett SF, Okoye G, Wiegand S, Yancopoulos G, Zack DJ, Campochiaro PA. Angiopoietin 1 inhibits 1022 Circulation Research April 28, 2006 ocular neovascularization and breakdown of the blood-retinal barrier. Gene Ther. 2004; 11:865- 873.
    85. Zhang ZG, Zhang L, Croll SD, Chopp M. Angiopoietin-1 reduces cerebral blood vessel leakage and ischemic lesion volume after focal cerebral embolic ischemia in mice. Neuroscience. 2002; 113:683-687.
    86. Joussen AM, Poulaki V, Tsujikawa A, Qin W, Qaum T, Xu Q, Moromizato Y, Bursell SE, Wiegand SJ, Rudge J, Ioffe E, Yancopoulos GD, Adamis AP. Suppression of diabetic retinopathy with angiopoietin-1. Am J Pathol. 2002; 160:1683-1693.
    87. Witzenbichler B, Westermann D, Knueppel S, Schultheiss H-P, Tschope C. Protective role of angiopoietin-1 in endotoxic shock. Circulation. 2005; 111:97-105.
    88. Nykanen AI, Krebs R, Saaristo A, Turunen P, Alitalo K, Yla-Herttuala S, Koskinen PK, Lemstrom KB. Angiopoietin-1 protects against the development of cardiac allograft arteriosclerosis. Circulation. 2003; 107: 1308-1314.
    89. Fiedler U, Reiss Y, Scharpfenecker M, Grunow V, Thurston G, Gale NW, Sobke A, Herrmann M, Preissner KT, Vajkoczy P, Augustin HG. Angiopoietin-2 sensitizes endothelial cells to TNF-alpha and has a crucial role in the induction of inflammation. Nat Med. 2006; 12: 235-239.
    90. Baffert F, Thurston G, Rochon-Duck M, Le T, Brekken R, McDonald DM. Age-related changes in vascular endothelial growth factor dependency and angiopoietin-1-induced plasticity of adult blood vessels. Circ Res. 2004; 94:984 -992.
    91. Ward NL, Haninec AL, Van Slyke P, Sled JG, Sturk C, Henkelman RM, Wanless IR, Dumont DJ. Angiopoietin-1 causes reversible degradation of the portal microcirculation in mice: implications for treatment of liver disease. Am J Pathol. 2004; 165:889-899.
    92. Thurston G, Wang Q, Baffert F, Rudge J, Papadopoulos N, Jean- Guillaume D, Wiegand S, Yancopoulos GD, McDonald DM. Angiopoietin 1 causes vessel enlargement, without angiogenic sprouting, during a critical developmental period. Development. 2005; 132: 3317-3326.
    93. Cho C-H, Kammerer RA, Lee HJ, Steinmetz MO, Ryu YS, Lee SH, Yasunaga K, Kim K-T, Kim I, Choi H-H, Kim W, Kim SH, Park SK, Lee GM, Koh GY. COMP-ANGPT1: A designed angiopoietin-1 variant with nonleaky angiogenic activity. Proc Natl Acad Sci U S A. 2004; 101: 5547-5552.
    94. Asahara T, Chen D, Takahashi T, Fujikawa K, Kearney M, Magner M, Yancopoulos GD, Isner JM. Tie2 receptor ligands, angiopoietin-1 and angiopoietin-2, modulate VEGF-induced postnatal neovascularization. Circ Res. 1998; 83:233-240.
    95. Nambu H, Umeda N, Kachi S, Oshima Y, Akiyama H, Nambu R, Campochiaro PA. Angiopoietin 1 prevents retinal detachment in an aggressive model of Proliferative retinopathy, but has no effect on established neovascularization. J Cell Physiol. 2005; 204:227-235.
    96. Morisada T, Oike Y, Yamada Y, Urano T, Akao M, Kubota Y, Maekawa H, Kimura Y, Ohmura M, Miyamoto T, Nozawa S, Koh GY, Alitalo K, Suda T. Angiopoietin-1 promotes LYVE-1-positive lymphatic vessel formation. Blood. 2005; 105:4649-4656.
    97. Tammela T, Saaristo A, Lohela M, Morisada T, Tornberg J, Norrmen C, Oike Y, Pajusola K, Thurston G, Suda T, Yla-Herttuala S, Alitalo K. Angiopoietin-l promotes lymphatic sprouting and hyperplasia. Blood. 2005; 105:4642- 4658.
    98. Perros F, Dorfmuller P, Humbert M. Current insights on the pathogenesis of pulmonary arterial hypertension. Semin Respir Crit Care Med. 2005; 26:355-364.
    99. Du L, Sullivan CC, Chu D, Cho AJ, Kido M, Wolf PL, Yuan JX, Deutsch R, Jamieson SW, Thistlethwaite PA. Signaling molecules in nonfamilial pulmonary hypertension. N Engl J Med. 2003; 348:500 -509.
    100.Sullivan CC, Du L, Chu D, Cho AJ, Kido M, Wolf PL, Jamieson SW, Thistlethwaite PA. Induction of pulmonary hypertension by an angiopoietin 1/TIE2/serotonin pathway. Proc Natl Acad Sci U S A. 2003; 100: 12331-12336.
    101.Kido M, Du L, Sullivan CC, Deutsch R, Jamieson SW, Thistlethwaite PA. Gene transfer of a TIE2 receptor antagonist prevents pulmonary hypertension in rodents. J Thorac Cardiovasc Surg. 2005; 129:268 -276.
    102.Wong AL, Haroon ZA, Werner S, Dewhirst MW, Greenberg CS, Peters KG. Tie2 expression and phosphorylation in angiogenic and quiescent adult tissues. Circ Res. 1997; 81:567-574.
    103.Yuan JX, Rubin LJ. Pathogenesis of pulmonary arterial hypertension: the need for multiple hits. Circulation. 2005; 111:534-538.
    104.Rudge JS, Thurston G, Yancopoulos GD. Angiopoietin-l and pulmonary hypertension: cause or cure? Circ Res. 2003; 92:947-949.
    105.Stefanec T. Endothelial apoptosis: could it have a role in the pathogenesis and treatment of disease? Chest. 2000; 117:841- 854.
    106.Jung H, Gurunluoglu R, Scharpf J, Siemionow M. Adenovirus-mediated angiopoietin-l gene therapy enhances skin flap survival. Microsurgery. 2003; 23:374-380.
    107.Persson CG. Role of plasma exudation in asthmatic airways. Lancet. 1986; 2:1126 -1129.
    108.Cunha-Vaz J. Diabetic macular edema. Eur J Ophthalmol. 1998; 8: 127-130.
    109.Fagan SC, Hess DC, Hohnadel EJ, Pollock DM, Ergul A. Targets for vascular protection after acute ischemic stroke. Stroke. 2004; 35: 2220-2225.
    110.Partanen J, Puri M, Schwartz L, Fischer K-D, Bernstein A, Rossant J. Cell autonomous functions of the receptor tyrosine kinase TIE in a late phase of angiogenic capillary growth and endothelial cell survival during murine development. Development. 1996; 122:3013-3021.
    111 .Puri MC, Bernstein A. Requirement for the TIE family of receptor tyrosine kinases in adult but not fetal hematopoiesis. Proc Natl Acad Sci U S A. 2003; 100:12753-12758.
    112.Suri C, McClain J, Thurston G, McDonald DM, Zhou H, Oldmixon EH, Sato TN, Yancopoulos GD. Increased vascularization in mice overexpressing angiopoietin-1. Science. 1998; 282:468-471.
    113.Gale N, Thurston G, Hackett S, Renard R, Wang Q, McClain J, Martin C, Witte C, Witte M, Jackson D, Suri C, Campochiaro P, Wiegand S, Yancopoulos G Angiopoietin-2 is required for postnatal angiogenesis and lymphatic patterning, and only the latter role is rescued by angiopoietin-1. Dev Cell. 2002; 3:411.
    114.Hackett SF, Wiegand S, Yancopoulos G, Campochiaro PA. Angiopoietin-2 plays an important role in retinal angiogenesis. J Cell Physiol. 2002; 192:182-187.
    115.DeBusk LM, Hallahan DE, Lin PC. Akt is a major angiogenic mediator downstream of the ANGPT1/Tie2 signaling pathway. Exp Cell Res. 2004; 298:167-177.
    116. Hayes AJ, Huang WQ, Mallah J, Yang D, Lippman ME, Li LY. Angiopoietin-1 and its receptor Tie-2 participate in the regulation of capillary-like tubule formation and survival of endothelial cells. Microvasc Res. 1999; 58:224 -237.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700