用户名: 密码: 验证码:
研抛大型自由曲面的微小机器人开发与加工作业研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高质、高效、低成本的大型模具的生产制造为产业和学术界所关注,而作为其中关键环节的自由曲面的精整加工是其最重要的制造内容。本文在分析大型模具自由曲面研抛加工特点的基础上,首次提出并开发了一种以轮式移动微小机器人研抛大型自由曲面的研抛加工系统。微小机器人可以在大型自由曲面上灵活地移动,依据曲面的几何信息和工艺信息,在行进中进行研抛作业,从而实现了一种以小型设备加工大型自由曲面的新的学术构思和技术解决方案。
     针对所开发的微小研抛机器人同时具有非完整约束和完整约束的特点,建立了多体系统动力学模型,运动仿真结果表明,机器人具有良好的动态性能。在机器人运动的全局坐标系内建立了其运动学模型,利用机器人在坐标平面内的行走轨迹变化,得到了其运动学正逆关系,运动实验验证了机器人行走运动的准确性和稳定性。研究了机器人的运动轨迹规划问题,提出在微小研抛机器人进行加工时,主要应采用等距法运动轨迹规划方式完成大型自由曲面的加工任务。为实现机器人在曲面上的自动加工,建立了基于PMAC和IPC的双处理器开放式微小研抛机器人运动控制系统。进行了机器人的研抛加工实验,结果表明,工件表面粗糙度Ra值在原始的1.5μm ~ 1.6μm基础上可以达到0.1μm ~ 0.2μm。证实微小研抛机器人能够有效地实现对大型自由曲面的研抛加工,并可达到较理想的加工效果。
With the development of automobile industry , aeronautics and astronautics industry and some new high-tech industries, high-quality, high-performance and low-cost manufacture of large-scale dies are widely concerned by researchers. And large free-form surfaces of the mold is the most important manufacturing content. Based on the traditional processing model, a large free-form surface must be polished by large equipment. But the large-scale polishing equipment is costliness and there is some contradictory between processing and precision, stiffness, stability and rapid movement. Therefore, in order to break the limitations using traditional numerical control machine tools and industrial robots, it should be searched that new ideas and technical means of polishing equipment.
     This paper study put forward a new idea. A wheeled mobile robot for polishing the large free-form surface has been researched and developed. The small robot with polishing device can move on the surface of the large free-form surface. On the basis of the geometric information of the free-form surface, the robot may achieve polishing process automaticly. In this paper, theoretical and experimental researches were done on the small polishing robot. It mainly includes the followings:
     Firstly, the frame of the small polishing robot was constructed. The mobile device of the robot was designed to be a wheeled configuration that consists of two driving wheels and a all-direction wheel. The polishing device was loaded by mobile device. Then, the three-dimensional model of the robot is established by CATIA platform. A virtual model of the robot was founded and the interference test were done. The results show that the design of the robot is reasonable. The small polishing robot has been manufactured as a whole.
     Secondly, the kinematic reseach on small polishing robot was done.Small polishing robot is a kind of wheeled mobile robot, which is different from other robot systems. Wheeled mobile robot have kinematic constraints that limits the movement of the wheel. the kinematic equations of the robot were foundeded by the vector coordinates. Then, the overall kinematic model in the robot's movement coordinates were established. The kinematics simulating was done. It shows that the kinematic relationship of the robot is correct and the robot can move alone the anticipative track. According to the robot polishing tool, the work coordinates of the polishing point is researched. The path of movement and attitude controlof the robot is due to the processing requirements.
     Then, the movement trajectory planning problems of the robot was studied. When the robot polished on large free-form surface, it should be mainly used equidistant method of longitudinal trajectory planning. The robot moved and polished on free-form surface alone y direction. The distance of every two movement trajectory was always equation. by this way it can be completed most of the surface processing tasks. When the surface appears a small area of the local processes, it should be used circular cut-law trajectory planning. It should be adjusted the location of the robot and the angle of the polishing tools to keep a rational gesture moving in the planning trajectory.
     The robot's movement capability experiment was done.The robot moved on the tilt surface. The results show that the robot can move well and truly on the tilt surface in the 0°~ 22°angle of inclination. The robot begins to slip when the angle are greater than 22°. Then, the movement experimenn is done. The robot moves along the planning trajectory which speed is 1mm / s. The results show that the Y offset error is about 1.0 mm ~ 1.5 mm. At the same time it was contrasted to the Y error at different speeds within the same section of track, it can be seen that the speed of the robot has no obvious influence on the accuracy of moving track.The results also approve that the kinematic model of the robot is correct and equidistant method of longitudinal trajectory planning is feasible.
     In addition, the system dynamics of the robot was researched. Small polishing robot was limited by both nonholonomic constraint and holonomic constraint at the same time. It can not be established dynamic equations by lagrangian approach. In this paper, it was from the overall point of view. The adoption of additional constraint equations was input. Then, the dynamics of multi-body systems were established. The dynamic equations solving process wre clarified by Gear-correction algorithm and Newton-Laffer's iterative methods. Then the movement simulation is proceed. The results of the robot's visual simulation show that dynamic analysis of the robot is correct. And velocity and acceleration curve and its joint drive torque simulation curve is reasonable. The simulation results show that more stable and rational dynamics curve. can be get by adjusting the driver's joint of the robot.
     A dual-processor open control system based on programmable controller PMAC and IPC is designed. In the control system, IPC is a core controller and PMAC motion controller as the next crew. PMAC, IPC and DPRAM form the core of the control system. This is based on an inclusive structure of the three-tier structure of the hybrid system. The control system accords with the important open structure thinking. According as the hardware structure of the control system was established, the software system was designed. Then, a robot pneumatic system hardware platform was built. So the pneumatic system control model of the robot was founded. The pneumatic system were make up of oscillation tache and differential tache. when the input is the unit step signal, the system response a damping oscillation frequency vibration attenuation. The output signal is stabilized. the pneumatic system can be remained polishing powe of the cylinder stably in a certain range.
     Lastly, The machining experiment of small polishing robot was done. A large free-form surface of JETTA car was conducted a test workpiece. In the surface of the workpiece it was designated a regional ABJK as polishing processing zone. The region is flat similar to the plane. In this region, the original surface roughness value were about Ra1.5μm- Ra1.6μm. The results of the machining experiment showed that the surface roughness value had been about Ra 0.1μm-Ra0.2μm after machined by flexible tool. Three main factors affected the surface quality obviously. They are spindle speed, polishing pressure and moving speed. Among the three factors, the influencing trend can be concluded: the greater the polishing pressure becomes, the better the quality of processing gets; moving speed is more slowly, the better the quality of the surface obtains; the greater the spindle speed inputs, the better the quality is. And second polishing experimental results show that the surface roughness value reached about Ra0.06μm. The surface quality has been further improved. And the three factor affect processing quality indistinctively. And the machining experiment by rigid tools was done too. It can be contrasted between the rigid tools and the flexible tools. The results show that the surface roughness value were about Ra 0.35μm– Ra 0.6μm by rigid tools. It vibrated obviously and its wiping fficiency was better than flexible tools. Polished by rigid pole tool , the surface roughness was better than rigid ball tools, but the wiping depth was worse than rigid ball tools. So the robot is practicable and valid.
引文
[1]荣烈润.面向21世纪的超精密加工技术[J].机电一体化,2003,2:5-9
    [2]王先逵.广义制造论.机械工程学报[J],2003,39(10):86-94
    [3]肖作义,赵玉刚,吴文权.磁力研磨在模具型腔精加工的应用[J].模具工业,2003,1:51-53
    [4] Shinmuya T.Study on a new finishing process of fine ceramics by magnetic abrasive machining[J].Int. J. Japan Soc. Proc. Eng ., 1994, 28 (2):37-41
    [5]王都.模具工业发展中的几个问题[J].模具工业,2000,2: 3-6
    [6]肖作义.模具精加工综述[EB/OL]. www.SIPMexpo.com
    [7]王先逵,赵彤.精密特种加工是先进制造技术的重要发展方向[J].电加工与模具, 2002,1:1-4
    [8]周志斌,肖沙里,周宴,汪科.现代超精密加工技术的概况及应用[J].现代制造工程, 2005,1: 121-123
    [9]三好隆志.金型の磨き加工—现状と今后の课题型技术[J],JSPE. 1991,6(9):70-76
    [10] Weule H , Timmerman N. Automation of the Surface finishing in the Manufacturing of Dies and Moulds[J]. Annals of the CIRP ,1992,39:299-302
    [11]王先逵,吴丹,刘成颖.精密加工和超精密加工技术综述[J].中国机械工程,1999,10(5):570-576
    [12] kuo R. J. A Robotic Die Polishing System Through Fuzzy Neural Networks[J]. Computers in Industry, 1997,32 (3):273-280
    [13]赵学堂,张永俊.模具光整加工技术新进展[J].中国机械工程,2002,13(22):1977-1980
    [14] Bogdan Nowicki. The New Method of Free form surface Honing[J]. Annals of the CIRP,1993,42:425-428
    [15]黄毅宏,李明辉.模具制造工艺[M].北京:机械工业出版社,1996
    [16]徐德育.模具制造对设备的需求及市场开拓[J].电加工与模具,2000,1:33-35
    [17] Kurfess T R, et al. Predictive control of a robotic grinding predictive system[J]. Journal of Engineering for Industrial, 1992,114(4):412- 420
    [18] Whitney D E, et al. Robot grinding and finishing of cast iron stamping dies[J]. Journal of Dynamic Systems Measurement and Control, 1992,114(1):132 -140.
    [19] Mizugaki Y, Sakamoto M, Kamijo K. Development of a metel-mold PolishingRobot System with Contact Pressure Control Using CAD/CAM Data[J]. Ann. CIRP. 1990, 39(1):523-526
    [20] Yoshimi Takeuchi, Naoki Asakawa , Ge Dong fang . Automation of Polishing Work by an Industrial Robot[J]. JSME International Journal Series C, 1992,58(1):289-294
    [21] M.Kunieda,T.Nakagawa,H,Hiramatsu,T.Higuch.Magnetically Pressed Polishing Tool for a Die Finishing Robot[C],Proc.of 24th Int. IMTDR Conf. 1983,(8):295-303
    [22] T. Y. Guo, D. K. Qu. Research on Path Planning for Polishing Robot Based on Improved Genetic Algorithm[C], Proceedings of the IEEE Int. Con. On Robotic and Biomimetics, 2004:300-305
    [23] Seok Jo Go,Min Cheol Lee,Byung Su Kim. User-friendly Automatic Polishing Robot System and Its Remove Operation Based on Network[C].ISIE2001,Pusan,Korea: 1435-1440
    [24] K. Saito, T. Miyoshi, T. Sasaki. Automation of polishing Process for a Cavity Surface on Dies and Molds by using an Expert System[J]. Ann. CIRP, 1993,42(1):553-556
    [25]幸田盛觉.金型自动磨き装置KM05の机能と使い方[J].机械と工具, 1997(3): 52-57
    [26] Márquez J.J,J.M. Pérez , J. R. Vizán.Process modeling for robotic polishing [J].Journal of Materials Processing Technology,2005 (159):69–82
    [27] M.C.Lee,S.J.Go.A robust trajectory tracking control of a polishing robot system based on CAM data[J] , Robotics and Computer Integrated Manufacturing,2001(17):177-183
    [28] X. Q. Chen,Z. M. Gong,H. Huang,S. S. Geetal. Development of S MART 3D polishing system [J]. Industrial Automation Journal-A Singapore Industrial Automation Association Publication,1999, 8(2):6–11
    [29]蔡明俊,林荣贵,石永山.自动抛光系统之研制[EB/OL]. http://www. trndia .org. tw/ chinesetechexch /sub-23.shtml
    [30] Hon-yuen Tam,Osmond Chi-hang Lui,Alberet C.K. Mok.Robotic polishing of free-form surfaces using scanning paths[J].Journal of Materials Processing Technology ,1999 (95):191-200
    [31] Fusaomi Nagata, Yukihiro Kusumoto, Keigo Watanabe.Polishing Robot for PET Bottle Molds Using a Learning-Based Hybrid Position / ForceController[C].5th Asian Control Conference, 2004: 9l4-921
    [32] Fusaomi Nagata,Keigo Watanabe,Yukihiro Kusumoto.New Finishing System for Metallic Molds Using a Hybrid Motion/Force Contro1[C].International Conference on Robotics& Automation, 2003(9):14-19
    [33] Robert Muszynski.A solution to the singular inverse kinematic problem for a manipulation robot mounted on a track[J].Control Engineering Practice,2002 (10) : 35–43
    [34] T.Furkawa,D.C.Rye,etc.Automated polishing of an unknown three dimensional surface[J].Robotics & Computer-integrated Manufacturing,1996,12(3):261-270
    [35] C. Zielinski,W. Szynkiewicz.Mechatronic design of open-structure multi-robot controllers[J]. Mechatronics , 2001(11):987-1000
    [36] Yong-Jin. SecOxide-chemical mechanical polishing characteristics using silica slurry retreated by mixing of original and used slurry[J].Microelectronic Engineering,2005 (77): 263–269
    [37] Min Cheol Lee, Seok JO Go, Young Jung ,et al. Development of a user-friendly polishing robot system[C] . Proceedings of 1999 lEEE/RSJ International Conference on Intelligent Robots And Systems:1914-1919
    [38]王通,袁楚明,陈幼平,周祖德.机器人模具抛光自由曲面刀具轨迹的生成研究[J].中国机械工程,2001,12(4):401-404
    [39]袁楚明,张雷,陈幼平,周祖德.模具曲面机器人智能抛光系统的研究[J].高技术通讯,2001,11(9):76-80
    [40]郎志,李成群,费超.机器人柔性抛光系统研究[J].机械工程师,2006(6):26-8
    [41]郭彤颖曲道奎徐方.机器人研磨抛光工艺研究[J].机械加工与自动化技术,2006(1):84-85
    [42]李瑜波,张永俊,赵学堂.机器人模具抛光三维实体造型及其运动仿真[J].组合机床与自动化加工技术,2004(7):50-52
    [43] Guvenc L,Srinivasan K . An Overview of Robot-assisted Die and Mold Polishing with Emphasis on Process Modeling [J]. In Unormal of Manufacturing System,1997, 16 (1): 48-58
    [44]中国科学院沈阳自动化所.研磨抛光机器人的研制[EB/OL].http://www.cas.ac.cn/ html/Dir/2004/03/25/6006.htm
    [45] Inter-Smart. Flexible Manufacturing Technologies[EB/OL].http://www.inter-smart.com/ Project/ project1.asp
    [46]金仁成,赵继,王立江.机器人超声波振动弹性研磨[J].机械工业自动化,1997(2):28-30
    [47]于淼.自动超声电火花复合加工模具曲面的干涉预报[J].模具工业,2002(3):47-49
    [48] Yu Miao, Zhao Ji, Zhu Peixing, Zhang Daizhi. Dynamics Model of Rigid-Flexible Coupling for a Five Degrees of Freedom Virtual Axis Polishing Machine tool[C]. IFTOMM Proceedings of the 11th World Congress in Mechanism and Machine Science,Tianjin, China . April 1-4, 2004, 652-655
    [49] Yu Miao, Zhao Ji, Zhong Sheng, Zhang Lei. Study on Dynamics of Virtual Axis Hybrid Polishing Machine Tool with Clearance[C]. Proceedings of 7th International Conference on Progress of Machining Technology, Suzhou, China,8~11 December, 2004, 123-128
    [50]于淼,赵继,张代治,祝佩兴.混联虚拟轴研抛机床的多柔体动力学研究[J].机械科学与技术, 2004, 23(6): 748-751
    [51]张代治,赵继. 3—PTT单支杆支链并联平台的运动及参数分析[J].机床与液压, 2003,(6):55-57
    [52]于淼,赵继.五自由度虚拟轴机床刚-柔耦合动力学仿真研究[J].机床与液压, 2003,(3):57-58
    [53]赵继,张代治,于淼.混联虚拟轴自由曲面研抛机床的运动学和多柔体动力学若干问题的研究[J].数字制造科学, 2003,1(14):482-497
    [54]谢哲东.五坐标虚拟轴研抛机床数控系统的研究[D].长春:吉林大学,2004
    [55] Chi-Hang Lui,Hon-yuan Tam. To speed up robotic mold polishing by hard tools[C].Proceedings of IEEE International Conference on Industrial Technology,1996,5:13-51
    [56] Y.Kashimura,N.Yashima.Study on simplification of teaching method for polishing robot[J].Jpn.Soc.Prec.Eng,1993,5919(9):1489-1494
    [57] Yoshimi Takeuchi,Naoki Asakawa,Dong-Fang GE.Automation of polishing work by an industrial robot[J].JSME International Journal Series C:Dynamics Control Robotics Design and Manufacturing,1993,36 (4):556-561
    [58] Y T WANG,Y J JAN. Robot-assisted finishing system with an active torque Controller[C]. Proceedings of 2000 IEEE International Conference on Robotics & Automation,San Francisco:1568-1573
    [59] Dong-Fang GE,Yoshimi Takeuchi,Naoki Asakawa. Polishing of Over hangingScruptured Surface with a 6–Axis Control Robots[C]. IEEE International Conference On Robotics And Automation,1995,2:2090-2095
    [60] M. Kunieda, T. Nakagawa, T. Mguchi. Robot-polishing of curved surface with Magnetically pressed polishing tool[J]. JSPE. 1988,54(1):125-131
    [61] Y.Mizugaki, M.Sakamoto,T.Sata.Fractal path generation for a metal-mold polishing robots system and its evaluation the operability[J].Ann. CIRP,1992(41):531-534
    [62] U Cho,D G Eom,D Y Lee,J O Park.A flexible polishing robot system for die and mould[C].23rd International Symposium on Industrial Robots,1992: 449-456
    [63] M C Lee, S J Go, M.H.Lee, et al.A robust trajectory tracking control of a polishing robots ystem based on CAM data[J] . Robotics and Computer Integrated Manufacturing,2001(1 7):177-183
    [64]赵春霞,什宜利,王树国等.机器人仿真与离线编程系统[J].高技术通讯,1994(10):4-6
    [65]季善平,姚宇明,徐毓良等.机器人系统的图形仿真工具[J].浙江大学学报,1995(29) : 108-112
    [66]崔培莲,孙增劲.微机机器人仿真系统PCROBSM[J].机器人,1995,170(1): 25-31
    [67]丁汉,陈家新,熊有伦.机器人最佳轨迹规划和图形仿真的研究[J].华中科技大学学报(自然科学版),1989,3(2):8-14
    [68] Bemhard Klaassen, Hermann Streich, Frank Kirchner. Modeling Simulation and Control of a Segmented Inspection Robot[C]. Autonomic intelligent System(AIS): 1-5 St. 3754 August in Germany .
    [69] Jan Rosell,Jaume Gratacos,Luis Basanez. Automatic programming tool for robotic polishing tasks[C]. Proceedings of 2000 IEEE International Symposium on Assembly and Task Planning. Portugal , July 1999:250-255
    [70]吴克寿,黄心汉,王敏.基于OPenGL和AutoCAD机器人运动三维仿真系统的设计[J].洛阳工学院学报,2001,22(1):51-54
    [71]张征,刘斌,成晓阳等.工业机器人的三维实体造型和运动学约束[J].组合机床与自动化加工技术,2000 (9):4-6
    [72]徐国华,谭民.移动机器人的发展现状及其趋势[J].机器人技术与应用,2001 ,(3 ):7-14
    [73] K.Sato, M. Watanabe, Y. Fukagawa . On -wall Traveling Robot for NuclearPower Plant. Conference on Robots and Remote System[C].Charleston S .C. in the USA. March 13-18, 1989: 387-396
    [74]蔡鹤皋.机器人将是21世纪技术发展的热点[J].中国机械工程,2000, 11(2): 58-60
    [75] Luca Ferrarini, Gianni Claudio. Maffezzoni & Gian Antonio Magnani, Hybrid Modeling and Simulation for the Design of an Advanced Industrial Robot Controller[J]. IEEE Robotics& Automation Magazine, June,1997
    [76]何克忠,郭木河等.智能机器人技术研究[J].机器人技术与应用, 1997,54( 1) :19-21
    [77]赵春霞,什宜利,王树国等.机器人仿真与离线编程系统[J].高技术通讯,1994(10):4-6
    [78]李磊,叶涛,谭民,陈细军.移动机器人技术研究现状与未来[J].机器人,2002,24(5):476-480
    [79]潘沛霖,韩秀琴,赵严正,等.日本磁吸附爬壁机器人的研究现状[J].机器人, 2001, 23(2):380-382
    [80] Sheng L , Goldenberg A. Robust damping control of mobile manipulators[J].IEEE Transactions on Systems, Man and Cybernetics Part B,2002,32 (1):126-132
    [81] Bourhis G , Hom O . An autonomous vehicle for people with motor disabilities[J].IEEE Robotics and Automation, 2001,8:20-28
    [82]赵言正.全方位壁面移动机器人系统的研究[D].哈尔滨:哈尔滨工业大学,1999
    [83] Kuwana Y,himoyama I,et al. Steering control of a mobile robot using insect antennae[C]. Proceedings of the IEEE International Conference on Intelligent Robots and Systems.Pittsburgh:1995.530-53
    [84] Talwar S K,Xu S H,Hawley E S,et al . Behavioural neuron science: rat navigation guided by remote control[J]. Nature,2002,417(6884):37-38
    [85]江泽民,徐德,王麟昆,谭民.微操作机器人的研究现状与发展趋势[J].机器人,2003,25(6):554-559
    [86]朱长宏.轮式可移动机器人的研究[D].南京:南京航空航天大学,2000
    [87]林志信.空间机器人[J].机器人技术与应用,2005,4:48
    [88]蔡自兴.机器人学[M].北京:清华大学出版社,2000
    [89]孟庆春,齐勇,张淑军.智能机器人及其发展[J].中国海洋大学学报,2004,34(5):831-838
    [90]金周英.关于我国智能机器人发展的几点思考[J].机器人技术与应用,2001,(4):5-7
    [91] Kawaguchi Y, Yoshida I, Kumatani H, et al. Development of an in-pipe inspection robot for iron pipes[J].Jounal of Robotics Society of Japan,1996,14(1):137-143
    [92] Augllo, S. Cardona, J. Vivancos. Kinematics of Vehicles with Directionally Sliding Wheels[J]. Mech. Mach. Theory. 1987,22(4):295-301
    [93] M. West, H. Asada. Design of a Holonomic Omni-directional Vehicle[C]. IEEE Int. Conference on Robotics and Automation, 1992:97-10
    [94] M. West, etc. A Unified Transportation/Manipulation System with Holonomic Omni directional Vehicles for Flexible Convey or less Manufacturing[J], Japan-U.S.A. Symposium on Flexible Automation,1992:89 7-904
    [95] M.H.E. Larcommbe. Tracking Stability of Wire Guided Vehicles[C]. Int. Conference on Automated Guided Vehicle Systems,1981:137-144
    [96] G. KOPP. Wireless Guided of AGVS[C]. Int. Conference on Automated Guided Vehicle Systems,1987:157-170
    [97] S. K. Premi , C. B. Berrant. A Review of Various Vehicle Guidance Techniques that can b e used by Mobile Robots or AGVS[C]. Int. Conference on Automated Guided Vehicle Systems,1983:195-209
    [98]白小波.一种新型万向轮结构及其构成的移动机器人[C].中国第五届机器人学术会议论文集, 1998:247-254
    [99] J. F. blumrich. Omni-directional Wheel[J]. U.S. Patant. No.3, 789, 974, 1974
    [100] H. Bradbury. Omni-directional Transport Device. U.S. Patant. No.4, 223, 974, 1980
    [101] Carlisle. Omni-directional Mobile Robot in Developments in Robotics[J]. IFS Publishing td. Kempston, Bedfordshire, England, 1983: 61-65
    [102]范印越.机器人技术[M].北京:电子工业出版社,1988
    [103] Greyy W. Pondar. The URANUS Mobile Robot[R]. The Robotics Institute Technical Report. Carnegie-Mellon University, 1986:127-129
    [104] Partrick F. muir, Charles, P. Neuman. Resolved Motion Rate and Resolved Acceleration Servo-Control of Wheeled Mobile Robots[C]. Proceedings of 1990 IEEE International Conference on Robotics and Automation, 1990: 1133-1140
    [105] Nobuhiro Lguchi, hommaand Yoshio komdoh. single-wheeled mobile robot with a gyrostabiIizer[J]. Advanced Robotics,1992,6(3):371-372
    [106] T. Benoit, B. huilot. Modeling Robots Equipped With Several Steering Wheels[J]. IEEE Transactions on Robotics and Automation, 1996, 12(3):33-41
    [107] J. C. Alexander, H. Maddocks. Research On the Kinematics of Wheeled Mobile Robots[J]. IEEE Transactions on Robotics and Automation,1989,8( 5):15-27
    [108] Authony, M .Bloch, N .Haris. Nonholonomic Multibody Mobile Robots: Control ability and Motion Planning[C].Proceedings of 1992 IEEE International.Automation, 1992: 2328-2335
    [109] Yilin Zhao, Spencer L. Bement. Kinematics Dynamics and Control of Wheeled Mobile Robots[J]. Proceedings of 1992 on Robotics and Automation,1992:91-95
    [110] Freeman R A., Tesar D. Dynamic Modelling of Serial and Parallel Mechanisms Robotic System [J].Part 1 ,ASME. 1988a, 15(3):7-18
    [111] Sklar M, Tesar D. Dynamic Analysis of Hybrid Serial Manipulator System Containing Parallel Modules[C]. J. Mech. Trans. And Aut. Des.,1988:105-115
    [112] Chiacchio P. Task Space Dynamic Analysis of Multiarm System Configuration[C]s. The Int. J. of Rob. Res., 1991b,10(6):708-715
    [113] Freeman R A., Tesar D. Dynamic Modelling of Serial and Parallel Mechanisms Robotic System[J]. Part 2. ASME. 1988, 15(3):19-27
    [114] Song S M, Liu B S. Dynamic Modelling Stability and Energy Efficiency of a Quadruped Walking Machine[C]. IEEE Conf. on Rob.& Aut. 1993:367-373
    [115]李桥梁,吴洪涛等. Stewart机床发展大事记[J].机械设计与制造工程,1999,28(4):6
    [116]周祖德,魏仁选,陈幼平.开放式控制系统的现状、趋势及对策[J].中国机械工程, 1999,1:4~5
    [117] Herrin, Golden E. Open architecture who defines it and who benefits[J]. Manufacturing Engineering, 1998,7:2
    [118]汪劲松,黄田等. VAMITY虚拟轴机床[J].制造技术与机床,1998,2
    [119]周立华,K H Modler, H Kerle,林松.简述德国并联机构之研究[J].机械设计, 2001,1:13~15
    [120]李佳宁,易建强.移动机器人体系结构研究进展[J].机器人, 2003,25(7): 756-760
    [121]王天然,朱枫.一个开放式移动机器人体系结构[J].机器人. 1995,17(4):193-199
    [122]朱淼良,杨建刚,吴春明.自主式智能系统[M].浙江大学出版社, 2000:255-277
    [123]黄闪.智能机器人与多机器人系统体系结构的研究与实现[D].哈尔滨:哈尔滨工业大学,1998
    [124] Saridis G. Toward the Realization of Intelligent Controls[J]. Proc. of the IEEE.1979, 67(8):1115-1133
    [125] Albus J S, Mcain H G, Lumia R. NASA/NBS standard reference model for tele-robot control system architecture[J]. NIST Technical Note 1235, 1989
    [126] Brooks R. A robust layered control system for a mobile robot[J]. IEEE Transactions on Robotics and Automation. 1986, 2(1):14-23
    [127] Conell J. Minimalist mobile robotics: a colony-style architecture for an artificial creature[M]. Academic Press, 1990
    [128] Gat E. Three layer architectures in artificial intelligence and mobile robots[M]. AAAI Press/The MIT Press, 1990
    [129]李磊.移动机器人系统设计与视觉导航控制研究[D].北京:中国科学院自动化研究所,2003
    [130] Sorensern S. Industry Standards Based Open Architecture Machine Controller[C]. Proceedings of the International Robotics and Vision Automation Conference, Detroit, M I, April,1993: 5-8
    [131]周学才,等.开放式机器人通用控制系统[J].机器人,1998,20: 105-115
    [132]谈世哲,等.基于Windows NT的开放式机器人控制系统的设计[J].组合机床与自动化加工技术,2001,(2): 91-95
    [133]范永,等.机器人控制器的现状及展望[J].机器人,1999,21(2):80-82
    [134]王天然,等.工业机器人控制体系的开放体系结构[J].机器人,2002,24 (3): 33-41
    [135] Manigel J, Leonhard W. Vehicle Control by Computer Vision[J]. IEEE Trans on Industrial Electronics,1992,39(3):181-188
    [136] Hu H., Brady M.A Parallel Processing Architecture for Sensor-based Control of Intelligent Mobile Robots[J]. Robotics and Autonomous Systems,1996,17:235-257
    [137] Kevin J. Brady, Robert J. Anderson, Ning Xi, Tzyh-Jong Tarn. Modular Controller Architecture for MultiArm Telerobotic System[C]. Proceedings of the 1996 IEEE International Conference on Robotics and Automation, Minneapolis, Minnesota, April, 1996
    [138]李开生,张慧慧,费仁元,宗光华.机器人控制器体系结构研究的现状和发展[J]. 2000,22 (3):235-237
    [139] Luca Ferrarini, Gianni, Ferretti, Claudio. Hybrid Modeling and Simulation for the Design of an Advanced Industrial Robot Controller[J]. IEEE Robotics and Automation Magazine, June,1997
    [140] Saridis G N. Architecture for Intelligent Control[C]. IEEE Symposium on Implicit and Nonlinear Systems. Ft .Worth, T X,1992, December:14-15
    [141] Griesmeyer J M,McDonald M J, Harrigan R W,Butler P L,Rigdon B. Generic Intelligent System Controller[R]. Sandia Internal Report, SAND 922159,Sandia National Laboratories,New Mexico, October 1992
    [142] Willian EFord. What is an Open Architecture Robot Controller[C]. IEEE International Symposium on Intelligent Control,1994:19
    [143]沈跃,刘国海,刘慧.基于PC/104总线的开放式机器人控制器的研究[J].组合机床与自动化加技术,2004,(1 ):67-73
    [144] Miller D J, Lennox R C. An Object-Oriented Environment for Robot System Architec tures[J]. IEEE Control Systems,1991,11(2): 366-371
    [145] Wargui M, Rachid A. Application of Controller Area Network to Mobile Robots[C]. Proceedings of the Mediterranean Electro-technical Conference IEEE at MELECON,1996
    [146]孙斌,杨汝清.开放式机器人控制器综述[J].机器人,2001,23 (4):374-378
    [147] Saridis G N. Architecture for Intelligent Controls[C]. IEEE Symposium on Implict and Nonlinear Systems, Ft .Worth, T X, December ,1992:14-15
    [148] Wargni M, Rachid A. Application of controller area network to mobile robots[C]. Electro-technical Conference,1996, 1:205-207
    [149]王巍,崔维娜,宗光华.基于CAN总线壁面移动机器人分布式控制器研究[J].微计算机信息,2002,18(1): 4-6
    [150]张德民,张慧慧.基于CAN总线的分布式搬运机器人控制系统研制[J].微计算机信息,2001,17(12):4-5
    [151]白井良明.机器人工程[M].北京:科学出版社,2001
    [152]刘淑霞,王炎等.爬壁机器人技术的应用[J].机器人,1999,21(2):148-155
    [153]潘沛霖,韩秀琴,赵言正等.日本磁吸附爬壁机器人的研究现状[J].机器人,1994,16(6):379-382
    [154]徐殿国,王卫等.日本壁面移动机器人技术发展概况及我们的几点建议[J].机器人,1989,3(41):53-58
    [155]金仁成.机器人超声振动弹性研磨系统及力反馈的研究[D].长春:吉林工业大学,1998
    [156] Sankar Jayaram, et al . Virtual assembly using virtual reality techniques[J].Computer Aided Design,1997,29 (8):575-584
    [157] Angeles J. Fundamentals of Robotic Mechanical Systems: Theory, Methods and Algorithms[M]. New York :Springer-Verlag, 2003
    [158] Muir P F, Neuman C P. Kinematic. Modeling of Wheeled Mobile Robots[J].Journal of Robotic Systems, 1987,4(2): 281-340
    [159] Alexander J C, Maddocks J H. On the Kinematic of Wheeled Mobile Robots[J]. Journal of Robotics Research, 1989,8(5): 15-27
    [160] Campion G, Bastin G. Structural Properties and Classification of Kinematic and Dynamic Models of Wheeled Mobile Robots[J]. IEEE Transaction on Robotics and Automation, 1996,12(1): 47-61
    [161] Rajagopalan R. A Generic. Kinematic Formulation for Wheeled Mobile Robots[J]. Journal of Robotic System, 1997,14(2): 77-91
    [162]仲欣,吕恬生.在球面运行的万向轮式移动机器人运动学模型的建立[J].机器人,1999,21(3):184-190
    [163] Tiemin Hu, S.X.Yang. Real-time torque control of nonholonomic Mobile Robotics with Obstacle avoidance[J]. Symposium on Intelligent Control, Canada,2002:81-86
    [164] Fernandez J A, Gonzalez J. The NEXUS open system for integrating robotic software[J]. Robotics and Computer-Integrated Manufacturing, 1999, 15(6):431-440
    [165] Lindstrom M, Oreback A, Christensen H I. Berra : A research architecture for service robots[C]. Proc of 2000 IEEE Int Conf on Robotic and Automation. San Francisco, CA: IEEE, 2000. 3278-3283
    [166] Oreback A, Christensen H I. Evaluation of architectures for mobile robotics[J]. Autonomous Robots, 2003, 14(1): 33-49
    [167] PMAC USER'S MANUAL[M]. USA:Delta Tau Data System, Inc.
    [168] PMAC-PC HARDWARE REFERENCE[M]. USA:DELTA TAU Data System, Inc.
    [169] PMAC SOFTWARE REFERENCE MANUAL[M]. USA:DELTATAU Data System, Inc.
    [170]孟璇,邢玉生,等.基于PMAC的并行双CPU开放式数控系统的研究与开发[J].组合机床与自动化加工技术, 2000,(10): 28~30,37
    [171]孟健,王宇晗,等.基于PMAC的开放式数控系统的应用研究与开发[J].中国自动化在线, 2001,9: 14-15
    [172]陶国良,毛文杰,王宣银.气动伺服系统机理建模的实验研究[J].液压气动与密封,1999(5):26-31

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700