用户名: 密码: 验证码:
冰川积雪区流域热力学水文模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于REW的流域热力学系统水文模型(THModel)直接在宏观尺度描述流域水文过程,克服了传统物理性水文模型固有的方程适用尺度和模型应用尺度不匹配的问题,为水文模拟提供了新思路。THModel对REW的重新定义,为描述不同下垫面的水文过程,探究水文过程与其他过程之间的耦合规律奠定了基础,尤其为冰川积雪区水文过程的的模拟提供了灵活的模型框架。
     流域是个以水分运动为主导、多过程耦合的、具有一定自组织性的复杂系统,其中水分运动与能量交换过程的耦合是寒区水文模拟的关键。论文在THModel的模型框架下,采用能量平衡、度日因子和最大未冻水含量模型等方法闭合了冰川子区、积雪子区以及考虑土壤冻融的非饱和子区的质量、能量守恒方程,建立了冰川积雪区流域热力学水文模型,以土壤水分特征曲线为例,探讨了在气象条件、土壤类型、地下水埋深不同组合的虚拟情景下宏观尺度土壤水分特征曲线的特性。
     模型分别应用于不同气候特点的我国乌鲁木齐河源区和美国Reynolds Creek实验流域。在乌鲁木齐河源区,对8年的夏季径流模拟取得了较好的效果,并发现能量输入的季节变化对径流形成有很大影响;在美国Reynolds Creek实验流域,各年径流过程的模拟效果不同,其中对年均流量小于0.2m3/s的年份模拟效果较差,这与研究区域流量较小,模型采用一套率定参数不能反映流域的空间变异性等因素有关,但模型对积雪面积、雪盖温度、雪盖密度变化的模拟基本反映了积雪消融过程的物理规律。
     结合实例应用对模型参数开展了不确定性分析。在乌鲁木齐河源区,分别采用扰动分析法和极大似然不确定性估计方法(GLUE)对模型的主要参数进行了敏感性分析,结果表明冰川辐射系数最为敏感,而增加模型输入数据在一定程度上将降低模型的不确定性;在美国Reynolds Creek实验流域应用时,针对积雪消融的空间变异性,分析了不同积雪消融曲线形式对径流过程的影响。
Representative Elementary Watershed (REW) approach first proposed by Reggiani et al. (1998) presents a different perspetive for hydrological modeling via developing scale adaptable equations. Thermodynamic watershed Hydrological Model (THModel) developed by Tian et al. (2006) further extends the REW theory by explicitly incorpotating energy balance equations. In this extensible framework, the energy sensitive hydrological processes such as evaporation, transpiration, snow and glacier melting, soil freezing and thawing can be modeled in a physically reasonable way, which provides a flexbile modeling framework for cold regions.
     Catchment is a complex system with a certain degree of self-organization. The interaction of different processes plays an important role in evolution of this particular system. For cold regions, water movement is intensively coupled with energy processes which should be coped with in a simultaneously manner. In this thesis, a thermodynamic hydrological model for cold regions is developed based on the THModel framework. The energy balance equations for the glacier zone, snow zone and unsaturated zone are closed aided by energy balance method, degree-day approach and the maximum unfrozen-water content model. Also, the characteristics of constitutive relationships at the REW scale are analyzed by virtual experimental method, and the promising method to develop the general closure relations is proposed.
     The Thermodynamic Hydrological Model for Cold regions is applied to two catchments, the headwaters of the Urumqi River basin and Reynolds Creek Experiment Watershed with different climates. In both basins the model can simulate the streamflow reasonable well. In the application of the headwaters of the Urumqi River basin, the significant influences of seasonality of energy input on the runoff generation which presents the tight coupling of water and energy. In the Reynolds Creek Experiment Watershed, the model can not reproduce the annual daily discharge below 0.2m3/s very well, but the simulated snowcover area ratio, snow temperature and snow density follow the physical law of snow accumulation and depletion.
     The sensitivity analysis of model parameter is carried out by both“one-at-a-time”approach and Generalized Likelihood Uncertainty Estimation (GLUE) method. The results show the heterogeneity coefficient of radiation has significant influences on the watershed hydrological responses, and additional data can reduce the uncertainty to a certain extent. The prediction uncertainty relating to the form of snow delption curve is also estimated for Reynolds Creek Experimental Watershed.
引文
[1] Dooge J C. Looking for hydrologic laws. Water Resources Research, 1986, 22(9):46-58.
    [2] Bloschl G, Sivapalan M. Scale issues in hydrolocial modeling: a review. Hydrological Processes, 1995, 9:251-290.
    [3] Sivapalan M. Pattern, process, and function: elements of a unified theory of hydrology at the catchment scale // Anderson M G, Encyclopedia of Hydrological Sciences, Wiley, Chichester, 2005:193-219.
    [4]夏军.现代水文学的发展与水文复杂性问题的研究//夏军,水问题的复杂性与不确定性研究与进展.北京:中国水利水电出版社, 2004:3-17.
    [5] Wagener T, Sivapalan M, McDonnell J J, et al. Predictions in Ungauged Basins (PUB)– A catalyst for multi-disciplinary hydrology. EOS, Newsletter of American Geophysical Union, 2004, 85(44):451-457.
    [6] Schaetzl R J, Anderson S. Soils: genesis and geomorphology. Cambridge: Cambridge University Press, 2005.
    [7]芮孝芳.水文学原理.北京:中国水利水电出版社, 2004.
    [8]芮孝芳,刘方贵,邢贞相.水文学的发展及其所面临的若干前沿科学问题.水利水电科技进展, 2007, 27(1):75-79.
    [9]夏军,左其亭.国际水文科学研究的新进展.地球科学进展, 2006, 21(3):256-261.
    [10] Woodward F I. Climate and Plant Distribution. Cambridge: Cambridge University Press. 1987.
    [11] Rodriguez I, Rinaldo A. Fractal River Basins. Cambridge: Cambridge University Press, 2000.
    [12] Dietrich W E, Reiss R, Hsu M L, et al. A process-based model for colluvial soil depth and shallow landsliding using digital elevation data. Hydrological Processes, 1995, 9:383-400.
    [13] Budyko M I. Climate and Life. New York: Academic Press, 1974.
    [14] Beven K J. How far can we go in distributed hydrological modeling? Hydrology and Earth System Sciences, 2001, 5 (1):1-12.
    [15] Singh V P, Woolhiser D A. Mathematical modeling of watershed hydrology. Journal of Hydrologic Engineering, 2002, 7(4):270-292.
    [16]胡和平,田富强.物理性流域水文模型研究新进展.水利学报, 2007, 38(5):511-517.
    [17]杨大文,夏军,张建云.中国PUB研究与发展//夏军,水问题的复杂性与不确定性研究与进展.北京:中国水利水电出版社, 2004:47-54.
    [18]熊立华,郭生练.分布式流域水文模型.北京:中国水利水电出版社, 2004.
    [19]贾仰文,王浩,倪广恒,等.分布式流域水文模型原理与实践.北京:中国水利水电出版社, 2005.
    [20] Sherman L K. Streamflow from rainfall by the unit-graph method. Engineering News Record, 1932, 108:501-505.
    [21] Nash J E. The form of the instantaneous unit hydrograph. Hydrol. Sci. Bull, 1957, 3:114-121.
    [22]文康,梁庚辰.总径流线性响应模型与线性扰动模型.水利学报, 1986, 17(6):1-10.
    [23] Govindaraju R S. Artificial neural networks in hydrology II: Hydrologic applications. Journal of Hydrologic Engineering. 2000, 5(2):124-137.
    [24]胡铁松,袁鹏,丁晶.人工神经网络在水文水资源中的应用.水科学进展, 1995, 6(1):76-82.
    [25]黄国如,胡和平.基于BP神经网络的黄河下游引黄灌区引水量分析.灌溉排水, 2000, 19(3):20-23.
    [26]黄国如,胡和平,田富强.用径向基函数神经网络模型预报感潮河段洪水位.水科学进展, 2003, 14(2):158-162.
    [27] Crawford N H, Linsley R K. The synthesis of continuous streamflow hydrographs on a digital computer // Technical Report 12, Dept. of Civil Engineering, Stanford Univ. Palo Alto, Calif.,1962.
    [28] Burnash R J C, Ferrai R L, Mcquire R A. A generalized streamflow simulation system conceptual model for digital computers // US National Weather Service. Sacramento, California, USA, 1973.
    [29] Feldam A D. HEC models for water resources system simulation: theory and experience. Adnvances in Hydroscience, 1981, 12:297-423.
    [30]赵人俊.流域水文模拟.北京:水利水电出版社, 1984.
    [31] Zhao R J, Zuang Y L, Fang L R, et al. Xinanjiang model. Hydrol Forecast Symp, Proc of the Oxford Symposium, IAHS-AISH Publication (International Association of Hydrological Sciences-Association Internationale des Sciences Hydrologiques), 1980, 129:351-356.
    [32] Sugawara M. The flood forecasting by a series storage type model // International Symposium Floods and their Computation, IAHS. Leningrad, USSR. 1967:1-6.
    [33] Kachro R K. River flow forecasting.Part5: Applications of a conceptual model .Journal of Hydrology, 1992, 133(1-2):141-178.
    [34] Freeze R A, Harlan R L. Blueprint for a physically-based, digitally- simulated hydrologic response model. Journal of Hydrology, 1969, 9(3):237-58.
    [35] Abbott M B, Bathurst J C, Cunge J A, et al. Introduction to the European hydrological system - Systeme Hydrologique Europeen, 'SHE', 1: history and philosophy of a physically-based, distributed modelling system. Journal of Hydrology, 1986, 87(1-2):45-59.
    [36] Refsgaard J C, Storm B. Chapter 23 MIKE SHE // Singh V P, Computer models of watershed hydrology, Littleton, Colo: Water Resources Publications, 1995.
    [37] Beven K J, Calver A, Morris E M, The Institute of Hydrology distributed model //, Report No. 98, UK Institute of Hydrology. Wallingford, Oxon, United Kingdom, 1987.
    [38] Beven K J, Kirkby M J. A physically based, variable contributing area model of basin hydrology. Hydorl. Sci., Bull, 1979, 24(1):43-69.
    [39] Bergstrom S. Chapter 13 The HBV Model // Singh V P, Computer models of watershed hydrology, Littleton, Colo: Water Resources Publications, 1995.
    [40]黄平,赵吉国.流域分布型水文数学模型的研究及应用前景展望.水文, 1997, 17(5):5-10.
    [41] Yang D W, Herath S, Musiake K. Developement of a geomorphology - based hydrological model for large catchments. Annual Journal of Hydraulic Engineering, JSCE, 1998, 42:169-174.
    [42] Yang D W, Herath S, Musiake K. Hillslope - based hydrological model using catchment area and width functions. Hydrological Sciences Journal, 2002, 47(1):49-65.
    [43]郭生练,熊立华.基于DEM的分布式流域水文物理模型.武汉水利电力大学学报, 2000, 33(6):1-5.
    [44]李兰,钟名军.基于GIS的LL-2分布式降雨径流模型的结构.水电能源科学, 2003, 21(4):35-38.
    [45] Arnold J G, Srinivasan G R, Muttiah R S. Large area hydrologic modeling and assessment Part I: model development. Journal of American Water Resources Association, 1998, 34(1):73–89.
    [46] Jia Y W, Ni G H, Kawahara H, et al. Development of WEP model and its application to an urban watershed. Hydrological processes, 2002, (15):2175-2194.
    [47]王蕾.基于不规则三角形网格的物理性流域水文模型研究[博士论文].北京:清华大学, 2006.
    [48]任立良,刘新仁.基于DEM的水文物理过程的模拟.地理研究, 2000, 19(4):369-376.
    [49]俞鑫颖,刘新仁.分布式冰雪融水雨水混合水文模型.河海大学学报:自然科学版, 2002, 30(5):23-27.
    [50]夏军,王纲胜,吕爱锋,等.分布式时变增益流域水循环模拟.地理学报, 2003, 58(5):789-796.
    [51]夏军,王纲胜,谈戈,等.水文非线性系统与分布式时变增益模型.中国科学D辑:地球科学, 2004, 34(11):1062-1071.
    [52] Wigmosta M S, Vail L W, Lettenmaier D P. A distributed hydrology-vegetation model for complex terrain. Water Resources Research, 1994, 30(6):1665-1679.
    [53]唐莉华,张思聪.小流域产汇流及产输沙分布式模型的初步研究.水利发电学报, 2002, 3:119-127.
    [54]刘卓颖.黄土高原地区分布式水文模型的研究与应用[博士论文].北京:清华大学, 2005.
    [55]许欣,任立良.考虑水土保持措施的分布式水文泥沙耦合模型研究.水利学报, 2007, 10:475-481.
    [56]孙鹏森,刘世荣.大尺度生态水文模型的构建及其与GIS集成.生态学报, 2003, 23(10):2115-2124.
    [57]陆桂华,吴志勇,雷Wen,等.陆气耦合模型在实时暴雨洪水预报中的应用.水科学进展, 2006, 17(6):848-852.
    [58]王忠静,李宏益,杨大文.现代水资源规划若干问题及解决途径与技术方法――还原“失真”与“失效”.海河水利, 2003, 1:13-16.
    [59]杨大文,李翀,倪广恒,等.分布式水文模型在黄河流域的应用.地理学报, 2004, 1(59):53-154.
    [60]刘昌明,夏军,郭生练.黄河流域分布式水文模型初步研究与进展.水科学进展, 2004, 15(4):495-500.
    [61]朱芮芮.基于GIS的分布式水文模型在水资源中的应用研究[硕士论文].武汉:武汉大学, 2005.
    [62]许继军.分布式水文模型在长江流域的应用研究[博士论文].北京:清华大学, 2007.
    [63] Jia Y W, Wang H, Zhou Z, et al. Development of the WEP-L distributed hydrological model and dynamic assessment of water resources in the Yellow River basin. Journal of Hydrology, 2006, 331(3-4):606-629.
    [64]贾仰文,王浩,王建华,等.黄河流域分布式水文模型开发和验证.自然资源学报, 2005, 20(2):300-308.
    [65]胡和平,汤秋鸿,雷志栋,等.干旱区平原绿洲散耗型水文模型——Ⅰ模型结构.水科学进展, 2004, 15(2):140-145.
    [66]汤秋鸿,田富强,胡和平.干旱区平原绿洲散耗型水文模型——Ⅱ模型应用.水科学进展, 2004, 15(2):146-150.
    [67]关志成.寒区流域水文模拟研究[博士论文].南京:河海大学, 2002.
    [68]李志龙,新安江模型在资料缺乏的寒区流域的应用研究[硕士论文].南京:河海大学, 2006.
    [69]张建云,庄一鸰.岩溶地区流域水文模型的探讨及应用.河海大学学报, 1988,16(3):68-79.
    [70]赵旭峰,陈植华,周天智.西南岩溶地区水资源预测评价中流域水文模型应用的特点及展望.水资源与水工程学报, 2007, 18(3):22-26.
    [71]张金存,芮孝芳.分布式水文模型构建理论与方法述评.水科学进展, 2007, 18(2):286-292.
    [72] Tromp V, Meerveld H I, McDonnell J J. Threshold relations in subsurface storm flow 1: A 147 storm analysis of the Panola hillslope trench, Water Resources Research, 2006, 42, W02410, doi:10.1029/2004WR003778.
    [73] Kichner J W. A double paradox in catchment hydrology and geochemistry. Hydrological Processes, 2003, 17: 871-874.
    [74] Kavvas M L. On the coarse-graining of hydrologic processes with increasing scales. Journal of Hydrology, 1999, 217(3-4):191-202.
    [75] Chen Z Q, Kavvas M L, Yoon J Y, et al. Matsuura Geomorphologic and Soil Hydraulic Parameters for Watershed Environmental Hydrology (WEHY) Model. Journal of Hydrologic Engineering, 2004, 11:465-479.
    [76]杨志勇.基于概率描述的宏观尺度空间均化流域水文模型研究[博士论文].北京:清华大学, 2007.
    [77] Reggiani P, Sivapalan M, Hassanizadeh S. Unifying framework for watershed thermodynamics: balance equations for mass, momentum, energy and entropy, and the second law of thermodynamics. Advance in Water Resources, 1998, 22(4): 367-398.
    [78] Reggiani P, Hassanizadeh S M, Sivapalan M. Unifying framework for watershed thermodynamics: constitutive relationships. Advance in Water Resources, 1999, 23(1): 15-39.
    [79] Lee H, Sivapalan M, and Zehe E. Representative Elementary Watershed (REW) approach, a new blueprint for distributed hydrologic modeling at the catchment scale: the development of closure relations. Ottawa, Canada: Canadian Water Resources Association (CWRA), 2005, 165-218.
    [80] Zhang G P, Savenije H H G: Rainfall-runoff modeling in a catchment with a complex groundwater flow system: application of the Representative Elementary Watershed (REW) approach. Hydrology and Earth System Sciences, 2005, 9:243-261.
    [81] Tian F Q, Hu H P, Lei Z D, et al. Extension of the representative elementary watershed approach for cold regions via explicit treatment of energy related processes. Hydrology and Earth System Sciences, 2006, 10: 619-644.
    [82]田富强.流域热力学系统水文模型研究[博士论文].北京:清华大学, 2006.
    [83]吴险峰,刘昌明.流域水文模型研究的若干进展.地理科学进展, 2002, 21(4):341-348.
    [84]傅国斌,李丽娟,刘昌明.遥感水文应用中的尺度问题.地球科学进展, 2001,16(6):755-760.
    [85]赵少华,邱国玉,杨永辉,等.遥感水文耦合模型的研究进展.生态环境, 2006, 15(6):1391-1396.
    [86] Schaefli B, Gupta H V. Do Nash values have value? Hydrological Processes, 2007, 21:2075-2080.
    [87] Krause P, Boyle D P, B?se F. Comparison of different efficiency criteria for hydrological model assessment. Advances in Geosciences, 2005, 5:89-97.
    [88]王振亚,任立良,袁飞.信息熵在新安江模型和NAM模型比较中的应用.水文, 2007, 27(2):30-33.
    [89] Pachepsky Y, Guber A, Jacques D. Information content and complexity of simulated soil water fluxes. Geodema, 2006, 134:253-266.
    [90]尹雄锐,夏军,张翔,等.水文模拟与预测中的不确定性研究现状与展望.水力发电, 2006, 32(10):27-31.
    [91]武震,张世强,丁永建.水文系统模拟不确定性研究进展.中国沙漠, 2007, 27(5):890-896.
    [92] Hornberger G M, Spear R C. An approach to the preliminary of environmental systems. Journal of Environment Management, 1981, 12:7-18.
    [93] Choi J, Harvey J W, Conlin M. Use of Multi- parameter sensitivity analysis to determine relative importance of factors influencing natural attenuation of mining contaminants // Proceedings of the Toxic Substances Hydrology Program Meeting. Charleston, USA. 1999, 185-192.
    [94] Wagener T, McIntyre N, Lees M J, et al. Towards reduced uncertainty in conceptual rainfall-runoff modeling: Dynamic identifiability analysis. Hydrological Processes, 2003, 17: 455-476.
    [95] Beven K J, Binley A. The future of distributed models: model calibration and uncertainty prediction. Hydrological Processes, 1992, 6:279-298.
    [96] Beven K J, Freer J. Equifinality, data assimilation and uncertainty estimation in mechanistic modeling of complex environmental systems using the GLUE methodology. Journal of Hydrology, 2001, 249:11-29.
    [97] Kelly K S, Krzysztofowicz R. Precipitation uncertainty processor for probabilistic river stage forecasting. Water Resources Research, 2000, 36(9): 2643-2653.
    [98]杨针娘,刘新仁,曾群柱,等.中国寒区水文.北京:科学出版社, 2000.
    [99]施雅风.中国冰川与环境:现在、过去和未来.北京:科学出版社, 2000.
    [100]王建,李硕.气候变化对中国内陆干旱区山区融雪径流的影响.中国科学D辑:地球科学. 2005, 35(7):664-670.
    [101]李新,程国栋.冻土-气候关系模型评述.冰川冻土, 2002, 24(3):315-321.
    [102]杨针娘,曾群柱.冰川水文学.重庆:重庆出版社, 2001.
    [103]康尔泗.寒区和干旱区水文研究的回顾和展望.冰川冻土, 1998, 20(3) :238-244.
    [104]程国栋.中国冰川学和冻土学研究40年进展和展望.冰川冻土, 1998, 20(3):213-226.
    [105]康尔泗,施雅风,杨大庆,等.乌鲁木齐河山区流域径流形成的试验研究.第四纪研究, 1997, 5(3):139-145.
    [106]叶柏生,陈克恭,施雅风.冰川及其径流对气候变化响应过程的模拟模拟——以乌鲁木齐河源1号冰川为例.地理科学, 1997, 17(1):32-40.
    [107]杨志怀,杨针娘.祈连山冰沟流域径流分析与估算.冰川冻土, 1992, 14(3):251-257.
    [108]杨广云,阴法章,刘晓凤,等.寒冷地区冻土水文特性与产流机制研究.水利水电技术, 2007, 38(1):39-42.
    [109] Finsterwalder S, Schunk H, Suldenferner D. Zeit schrift des Deut schen und Oesterreichischen Alpenvereins. 1887, 18:72-89.
    [110] Tarboton, D G, Chowdhury, T G, Jackson T H. A spatially distributed energy balance snowmelt model // Tonnessen K A, Biogeochemistry of Seasonally Snow-Covered Catchments, Proceedings of a Boulder Symposium, IAHS Pub l. No. 228, 1995.
    [111] Marks D. Climate, Energy Exchange, and Snowmelt in Emerald Lake Watershed, Sierra Nevada [PhD Thesis]. CA: University of California Santa Barbara, 1988.
    [112]孙菽芬,李敬阳.用于气候研究的雪盖模型参数化方案.大气科学, 2002, 26(4):558-576.
    [113] Jordan R. A one-dimensional temperature model for a snow cover // US Army Corps of Engineers, Cold Regions Research and Engineering Laboratory, Special Report. 1991, 91(16):49.
    [114] Narendra K T, Conleth C. Modeling coupled transport of mass and energy into the snowpack-model development, validation and sensitivity analysis. Journal of Hydrology, 1997, 195:232-255.
    [115] Morland L W, Kelly R J, Morris E M. A mixture theory for a phase-changing snowpack. Cold Regions Science and Technology, 1990, 17:271-285.
    [116]张勇,刘时银,丁永建.中国西部冰川度日因子的空间变化特征.地理学报, 2006, 61(1):89-98.
    [117]张勇,刘时银.度日模型在冰川与积雪研究中的应用进展.冰川冻土, 2006, 28(1):101-107.
    [118]王建,丁永建,刘时银.高寒草地春季积雪融水和雨水混合补给径流模拟.干旱区资源与环境, 2006, 20 (1): 88-92.
    [119]康尔泗天山冰川作用流域能量、水量和物质平衡及径流模型.中国科学B辑:化学,1994, 24(9):983-991.
    [120]马虹,程国栋. SRM融雪径流模型在西天山巩乃斯河流域的应用试验.科学通报, 2003, 48(19):2088-2093.
    [121]周建伟,何新林,钱杰.天山山区径流模拟模拟研究.石河子大学学报:自然科学版, 2000, 4(1):69-72.
    [122]康尔泗,程国栋,蓝永超,等.概念性水文模型在出山径流预报中的应用.地球科学进展, 2002, 17(1):18-26.
    [123]陈仁升,康尔泗,杨建平,等.内陆河流域分布式日出山径流模型——以黑河干流山区流域为例.地球科学进展, 2003, 18(2):198-206.
    [124]何新林,郭生练.天山山区水平衡法径流模型的研究.西北水资源与水工程, 1996, 7(3) :8-14.
    [125]王红娟.基于GIS和RS的分布式融雪径流模型在干旱区的应用研究——以乌鲁木齐河为例[硕士论文].新疆:新疆大学,2004.
    [126] Hassanizadeh S M. Derivation of basic equations of mass transport in porous media, part 1: Macroscopic balance laws. Advance in Water Resources. 1986, 9:196-206.
    [127] Hassanizadeh S M. Derivation of basic equations of mass transport in porous media, part 2: Generalized Darcy's law and Fick's law. Advance in Water Resources. 1986, 9: 207-222.
    [128] Reggiani P, Sivapalan M, Hassanizadeh S M. Conservation equations governing hillslope responses: Exploring the physical basis of water balance. Water Resources Research. 2000, 36(7):1845-1863.
    [129] Reggiani P, Sivalpalan M. Coupled equations for mass and momentum balance in a stream network: theoretical derivation and computational experiments. Proc. R. Soc. Lond. 2001, 457: 157-189.
    [130] Reggiani P, Schellekens J. Modelling of hydrological responses: The representative elementary watershed approach as an alternative blueprint for watershed modelling. Hydrological Processes, 2003, 17(18): 3785-3789.
    [131] Reggiani P, Rientjes T H M. Flux parameterization in the representative elementary watershed approach: Application to a natural basin. Water Resources Research, 2005, 41(4): 1-18.
    [132] Lee H, Sivapalan M, Zehe E. Representative Elementary Watershed (REW) approach, a new blueprint for distributed hydrologic modelling at the catchment scale // Predictions in Ungauged Basins: International Perspectives on State-of-the-Art and Pathways Forward. Wallingford, Oxon, UK: IAHS Press, 2005.
    [133] Lee H, Zehe E, Sivapalan M. Predictions of rainfall-runoff response and soil moisture dynamics in a microscale catchment using the CREW model, Hydrology and Earth System Sciences, 2007, 11: 819–849.
    [134] Zhang G P, Savenije H H G, Fenicia F, et al. Modelling subsurface storm flow with the Representative Elementary Watershed (REW) approach: application to the Alzette River Basin. Hydrology and Earth System Sciences, 2006, 11:937-955.
    [135]周筑宝.最小耗能原理及其应用材料的破坏理论、本构关系理论及变分原理.北京:科学出版社, 2001.
    [136]雷志栋,杨诗秀,谢森传.土壤水动力学.北京:清华大学出版社, 1988.
    [137] Beven K J. Searching for the Holy Grail of scientific hydrology: Qt =H( SR )A as closure, Hydrology and Earth System Sciences, 2006, 10:609-618.
    [138] Duffy C J. A two-state integral-balance model for soil moisture and groundwater dynamics in complex terrain. Water Resources Research, 1996, 32(8): 2421-2434.
    [139] Zehe E, Maurer T, Ihringer J, et al. Modeling Water Flow and Mass Transport in a loess Catchment. Phys. Chem. Earth (B), 2001, 26(7-8):487-507.
    [140] Rogers A D. The development of a simple infiltration capacity equation for spatially variable soils[B.E (honours) Thesis]. Australia: The University of Western Australia, 1992.
    [141] Smith R E, Goodrich D C. A model to simulate rainfall excess patterns on randomly heterogeneous areas. Journal of Hydrologic Engineering, 2000, 5(4): 355-362.
    [142] Govindaraju R S, Morbidelli R, Corradini C. Areal infiltration modeling over soil with spatially-correlated hydraulic conductivities. Journal of Hydrologic Engineering, 2001, 6(2):150-158.
    [143] Corradini C, Govindaraju R S, Morbidelli R. Simplified modelling of areal average infiltration at the hillslope scale. Hydrological Processes, 2002, 16(9):1757-1770.
    [144] Morbidelli R, Corradini C, Govindaraju R S. A field-scale infiltration model accounting for spatial heterogeneity of rainfall and soil saturated hydraulic conductivity. Hydrological Processes, 2006, 20(7):1465-1481.
    [145] Viney N R, Sivapalan M. A framework for scaling of hydrologic conceptualisations based on a disaggregation-aggregation approach. Hydrological Processes, 2004, 18:1395-1408.
    [146] Beven K J. Towards an alternative blueprint for a physically based digitally simulated hydrologic response modelling system. Hydrological Processes, 2002, 16:189-206.
    [147]刘铁良.国外计算冻结或融化深度公式概述.冰川冻土, 1983, 5(2): 85-95.
    [148]林风桐.大小兴安岭多年冻土地区供水水源选择与评价.冰川冻土, 1980, 2(1): 32-36.
    [149] Shuttleworth W J. Evaporation. // Maidment D R, Handbook of Hydrology, New York: McGraw-Hill, 1993.
    [150] Allen R G, Pereira L S, Raes D, ea al. Crop evapotranspiration: Guidelines for computing crop water requirements, FAO, Rome, 1998.
    [151] Anderson E. A point energy and mass balance model of a snow cover. Office of Hydrology,National Weather Service, Silver Spring, Maryland, NOAA Technical Report NWS 19, 1976.
    [152] Kumar L, Skidmore A K, Knowles E. Modelling topographic variation in solar radiation in a GIS environment. International Journal of Geographical Information Science, 1997, 11(5):475-497.
    [153]李新,程国栋,陈贤章,等.任意地形条件下太阳辐射模型的改进.科学通报, 1999, 44(15): 1345-1350.
    [154]叶晗,王惠林,等.基于DEM的山区入射潜在太阳辐射模拟.遥感技术与应用, 2004,19(5): 415-419.
    [155]曾燕,邱新法,刘绍民.起伏地形下天文辐射分布式估算模型.地球物理学报, 2005, 48(5):1028-1033.
    [156] Price A D, Dunne T. Energy balance computations of snow melt in a sub-arctic area. Water Resources Research, 1976, 12:686-689.
    [157] Bathurst J C, Cooley K R. Use of the SHE hydrological modelling system to investigate basin response to snowmelt at Reynolds Creek, Idaho. Journal of Hydrology, 1996, 175:181-121.
    [158] Martinec J, Rango A, Roberts R. Snowmelt runoff model (SRM) user's manual (version4.0). Berne: University of Berne, 1998.
    [159] Elder K, Dozier J, Michaelson J, Snow accumulation and distribution in an alpine watershed. Water Resources Research, 1991, 27:1541-1552.
    [160] Tekeli A E, Akyurek Z, Sorman A A, et al. Using MODIS snow cover maps in modeling snowmelt runoff process in the eastern part of Turkey. Remote Sensing of Environment, 2005, 97:216-230.
    [161] López-Moreno J I, Nogués-Bravo D. Interpolating local snow epth data: an evaluation of methods. Hydrological Processes, 2006, 20:2217-2232.
    [162] Chang K T, Li Z. Modelling snow accumulation with a geographic information system. International Journal of Geographical Information Science, 2000, 14(7): 693-707.
    [163] Molotch N P, Colee M T, Bales R C, et al. Estimating the spatial distribution of snow water equivalent in an alpine basin using binary regression tree models: the impact of digital elevation data and independent variable selection. Hydrological Processes, 2005, 19:1459-1479.
    [164]陈祖铭,任守贤. FCHM结构与融雪模型——森林流域水文模型研究之一.四川水力发电, 1994, 1:11-15.
    [165] Skauge T. Estimating the mean areal snow water equivalent by integration in the time and space. Hydrological Processes, 1999, 13:2051-2066.
    [166] Liston G E. Interrelationships among Snow Distribution, Snowmelt and Snow CoverDepletion: Implications for Atmospheric, Hydrologic, and Ecologic Modeling. Journal of Aapplied Meteorology, 1999, 38:1474-1487.
    [167] Liston G E. Representing Subgrid Snow Cover Heterogeneities in Regional and Global Models. Journal of Climate, 2004, 17:1381-1397.
    [168] Luce C H, Tarboton D G, Cooley K R. Sub-grid parameterization of snow distribution for an energy and mass balance snow cover model. Hydrological Processes, 1999, 13(12-13):1921-1933.
    [169] Luce C H, Tarboton D G. The application of depletion curves for parameterization of subgrid variability of snow. Hydrological Processes, 2004, 18(8):1409-1422.
    [170]赖祖铭,叶柏生.高寒山区流域的水量平衡模型及气候变暖趋势下径流的可能变化——以天山乌鲁木齐河为例.中国科学B辑:化学, 1991, (6):652-658.
    [171] Zhao L T, Gray D M. Estimating snowmelt infiltration into frozen soils. Hydrological Processes, 1999, 13:1827-1842.
    [172] Lundin L C. Hydraulic properties in an operational model of frozen soil. Journal of Hydrology, 1990, 118:289-310.
    [173] Stahli M, Jansson P E. Preferential water flow in a frozen soil– a two domain model approach. Hydrological Processes, 1996, 10:1305-1316.
    [174]胡和平,杨诗秀,雷志栋.土壤冻结时水热迁移规律的数值模拟.水利学报, 1992, 7(7):1-8.
    [175] Clapp R B, Hornberer G M. Empirical equations for some soil hydraulic properties. Water Resources Reseach, 1978, 14:601-604.
    [176] Kongoli C E, Bland W L. Long-term snow depth simulations using a modified atmosphere–land exchange mode. Agricultural and Forest Meteorology, 2000, 104:273-287.
    [177] Horne F E, Kavvas M L. Physics of the spatially averaged snowmelt process. Journal of Hydrology, 1997, 191:179-207.
    [178] Hedstrom N R, Pomeroy J W. Measurements and modelling of snow interceptionin the boreal forest. Hydrological Processes, 1998, 12:1611-1625.
    [179] Goodrich L E. The influence of snow covers on the ground thermal regime. Canadian Geotechnical Journal, 1982, 19:421-432.
    [180] Ling Feng, Zhang Tingjun. Sensitivity of ground thermal regime and surface energy fluxes to tundra snow density in northern Alaska. Cold regions science and technology, 2006, 44:121-130.
    [181]胡和平,叶柏生,周宇华,等.考虑冻土的陆面过程模型及其在青藏高原GAME/Tibet试验中的应用.中国科学D辑:地球科学, 2006, 36(8):755-766.
    [182]黄冠华.土壤水力特性空间变异的试验研究进展.水科学进展, 1999, 10(4):450-457.
    [183]贾宏伟,康绍忠,张富仓.土壤水力学特征参数空间变异的研究方法评述.西北农林科技大学学报:自然科学版, 2004, 32 (4):97-102.
    [184] Mantoglou A, Gelhar L W. Effective hydraulic conductivities of transient unsaturated flow in stratified soil. Water Resources Research, 1987, 23(1):57-671.
    [185]杨金忠,蔡树英,伍靖伟.宏观水力传导度及弥散度的确定方法.水科学进展, 2002, 13(2):179:183.
    [186] Zehe E, Lee H, Sivapalan M. Dynamical process upscaling for deriving catchment scale state variables and constitutive relations for meso-scale process models. Hydrology and Earth System Sciences, 2006, 10: 981-996.
    [187] Robinson J S, Sivapalan M. Temporal scales and hydrological regimes: Implications for flood frequency scaling. Water Resources Research, 1997, 33(22):2981-2999.
    [188] Harman J. Effects of heterogeneity on subsurface flow in hillslopes and approaches to closure [Master thesis]. USA: University of Illinois at Urbana Champaign, 2007.
    [189] Carsel R F, Parrish R S. Developing joint probability distributions of soil water retention characteristics. Water Resources Research, 1988, 24:755-769.
    [190] Salvucci G D, Entekhabi D. Comparison of the Eagleson statistical-dynamical water balance model with numerical simulation. Water Resources Research, 1994, 30(10):2751-2757.
    [191]杨大庆,姜彤,张寅生,等.天山乌鲁木齐河源降水观测误差分析及其改正.冰川冻土, 1988, 10(4):384-400.
    [192]李忠勤,韩添丁,井哲帆,等.乌鲁木齐河源区气候变化和1号冰川40年观测事实.冰川冻土, 2003, 25(2):117-123.
    [193]王中根,夏军,刘昌明,等.分布式水文模型的参数率定及敏感性分析探讨.自然资源学报, 2007, 22(4):649-655.
    [194] Freer J, Beven K J, Ambroise B. Bayesian estimation of uncertainty in runoff prediction and the value of data: an application of the GLUE approach. Water Resources Research, 1996, 32(7): 2161-2173.
    [195] Camron D S, Beven K J, Tawn J, et al. Flood frequency estimation by continuous simulation for a gauged upland caatcment (with uncertainty). Journal of Hydrology, 1999, 219(3-4):169-187.
    [196]黄国如,解长海.基于GLUE方法的流域水文模型的不确定性分析.华南理工大学学报, 2007, 35(3):137-142.
    [197] Franks S W, Beven K J. Bayesian estimation of uncertainty in land surface-atmosphere flux prediction. Geophysical Research, 1997, 102(D20): 23991- 23999.
    [198]李胜,梁忠民. GLUE方法分析新安江模型参数不确定性的应用研究.东北水利水电, 2006, (2):31-33.
    [199] Slaughter C W, Marks D, Flerchinger G N, et al. Research data collection at the Reynolds Creek Experiment Watershed, Idaho, USA. USDA-Agricultural Research Service Northwest Watershed Research Center, NWRC Research Report, 2000, 2.
    [200] Seyfried M S, Harris R C, Marks D, et al. A geographic database for watershed research, Reynolds Creek Experiment Watershed, Idaho, USA. USDA-Agricultural Research Service Northwest Watershed Research Center, ARS Technical Bulletin NWRC, 2000, 3.
    [201] Pierson F B, Slaughter C W, Cram Z K. Monitoring discharge and suspened sediment, Reynolds Creek Experimental Watershed, Idaho, USA. USDA-ARS Northwest Watershed Research Center, ARS Technical Bulletin NWRC, 2000, 8.
    [202] Krstanovic P F, Singh V P. Water Resources Evaluation of rainfall network using entropy: II. Water Resources Management, 1992, 6:295-314.
    [203] Daub C O, Steuer R, Selbig J, et al. Estimating mutual information using B-spline functions– an improved similarity measure for analysing gene expression data. BMC Bioinformatics, 2004, 5:118.
    [204]张继国.降水时空分布的信息熵研究[博士论文].南京:河海大学, 2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700