用户名: 密码: 验证码:
相山地区后遥感应用技术示范研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
后遥感应用技术是指将遥感技术与各领域传统方法和现代信息技术相结合的一种信息深化应用技术。其内容涵盖信息处理、信息解译、信息分析、信息表述和信息应用等。
     对于铀资源勘查领域,后遥感应用技术理念的应用思路就是要充分挖掘赋存在遥感图像中与铀矿找矿相关的信息,同时,应用现代信息技术,结合其它地学信息进行综合分析,总结认识,发现规律,并对得出的认识和发现的规律进行多维可视化分析和地学过程再现,为铀资源勘查提供有力的技术支持。
     相山地区是我国目前最大最富的火山岩型铀矿田所在地,也是重要的硬岩型铀资源生产基地,铀矿产于面积300余平方公里的相山火山.侵入杂岩体中,受构造、斑岩体、热液蚀变控制,具有很好的成矿远景和巨大的成矿潜力。作为一种全新的后遥感应用技术,在相山地区开展示范研究,对于后遥感应用技术的自身发展和相山地区的深入找矿均具有重要意义。
     以地球系统科学理论为指导,在基础地质、遥感、航放、重磁、DEM信息处理分析的基础上,以多源信息在铀资源勘查领域的深入挖掘和深化应用为目标,以相山地区深入找矿方向的厘定为目的,开展了相山火山.侵入杂岩总体研究、新构造运动研究、相山西北与东南部的对比研究,剥蚀程度与保存条件研究,以及华南红盆与铀矿保存研究等内容。通过文献调研、资料收集、建立空间数据库、以及野外地质调查、室内综合分析,取得以下创新成果:
     (1)通过华南地区构造岩浆演化的综合分析,首次提出相山火山-侵入杂岩受控于华南6条EW向花岗岩带最北的雪峰山—武功山—光泽岩带,其形成的构造背景与前侏罗纪的EW向构造作用有关,经历了前侏罗纪挤压—侏罗纪压扭—白垩-古近纪伸展减薄—中新世以来的挤压抬升这种“开-合”交替演变的构造活动历史,铀矿形成于白垩-古近纪伸展减薄这一特定的构造演化阶段。
     (2)对相山地区遥感影像进行了深入的判译,发现NE向、NNW向、SN向、NWW向及EW向多组线性构造形迹大多数是新构造运动导致的古构造复活的产物,即它们具有新构造的特点。首次提出新构造运动是矿床空间分布特征的主要影响因素之一。
     (3)运用中国地质调查局发展研究中心2005年开发的GeoExpl软件,对相山地区重磁数据进行了二次开发,不同高度重磁异常上延图、不同高度重磁异常方向导数计算结果显示,相山地区基底构造主要有EW向、NE向和NW向三组,基底构造的交汇是相山火山-侵入杂岩的定位机制。NE向相山-芙蓉山基底构造(F2),将杂岩体分划成具不同结构构造特征的西北部和东南部。
     (4)相山火山-侵入杂岩由酸性火山碎屑岩夹沉积岩、酸性熔岩及中酸性浅成-超浅成侵入岩组成。长期归属溢流相火山岩的流纹英斑岩获得单颗粒锆石U-Pb年龄为129.54±7.93Ma,该年龄小于相山火山-侵入杂岩的主体岩石—碎斑熔岩的年龄,结合其产状形态特征,认为流纹英安斑岩是火山期后的浅成-超浅成侵入体。参照上侏罗统与下白垩统的145.5Ma界线年龄,首次提出相山火山-侵入杂岩的形成时代为早白垩世的新认识(火山岩以前归属晚侏罗世)。
     (5)相山火山-侵入杂岩从喷发—侵出—侵入,SiO_2含量、Rb/Sr、Rb/Ba比值降低,而TFe(Fe_2O_3+FeO)、CaO、MgO、TiO_2、P_2O_5含量、固结指数SI、δEu则呈增高趋势,岩浆演化与正常岩浆房酸度逐渐增高的岩浆分异趋势相反,作者命名为“反方向岩浆演化系列”。不相容元素的比值如Th/U、Rb/Ba、Th/Nb、Zh/Ta、Nb/Ta、La/Nb变化幅度较大,与SiO_2等主量组分没有明显的正消长或反消长关系,稀土配分曲线也不尽一致,故认为火山喷发相、侵出相和侵入相岩石具有不同的源区性质,突破了前人“形成相山各类火山杂岩的岩浆不仅同源,而且它们是同一岩浆房中岩浆分异演化的产物”的观点。
     (6)通过对植被发育的相山铀矿田ETM~+数据主成分变换和比值处理,在一定程度上消除了植被的影响,获得了良好的含水矿物蚀变遥感异常信息,提出分布在相山矿田西北部碎斑熔岩中的或北部西段变质岩中的蚀变遥感异常是热液水云母化引起的,是重要的找矿标志。
     (7)针对相山矿田铀成矿特征,作者提出铀钍富集系数的概念(FD=U×Th/K),FD反映的是铀钍组合矿化情况,与(火山)岩浆热液作用有关。认为相山地区铀钍富集系数与矿床空间分布有一定相关性,即铀(含钍)矿床多数分布在FD相对较高区域或其附近。
     (8)矿床产于相山火山-侵入杂岩体内部及外侧,东南部矿床较少,西北部矿床无论是数量还是品位都明显好于东南部。基于DEM的面积-高程曲线计算表明,相山地区地表总体侵蚀严重,但由于组成地表物质的岩性差异和地质构造活动强度不同,侵蚀程度不均匀。通过地貌形态、花岗斑岩产状、碎斑熔岩物化性质、成矿类型特征的对比分析,提出相山矿田西北部与东南部具有不同的侵蚀程度,矿床不均衡的产出特征,不是成矿作用或地质结构差异引起的,而是侵蚀程度不同所致。从矿田西北部到东南部,矿床侵蚀深度逐渐加大。矿田西北部矿床保存条件较好,多数铀矿完整或较完整地保存下来了,这对相山地区今后找矿具有重要意义。
     (9)华南红层与铀矿化具有密切的时空关系,二者均形成于白垩—古近纪的拉张构造背景。本文从新的视角,即华南红盆的保矿作用再度审视华南红盆与铀矿的时空关系,首次提出红盆受后生断裂构造(新构造)控制,是残留构造盆地。产于红盆附近的矿床(田)过去曾被红层覆盖过,红盆附近和深部是有利于矿化保存的区域,也是找矿方向之所在。
     后遥感应用技术在相山地区的应用实践,促进了后遥感应用技术本身的发展,起到了应用研究的示范作用,并在构造-岩浆活动、成矿-保矿条件、找矿方向等方面,获得了一系列创新成果和认识,对相山矿田及其邻区进一步寻找新的富大铀矿提供了新的途径和技术思路。
The post-remote sensing application technology refers to a kind of information deepening application technology by combing the remote sensing technology with traditional technologies in various fields and modern information technology and it covers information processing, information interpretation, information analysis, information presentation and information application etc.
     In the field of uranium resource exploration, the idea of applying the concept of post-remote application technology is to fully dig out the information on prospecting for uranium deposits in the remote sensing images, to comprehensively analyze it by combining with other geologic information, summarize and find out the regularity, to visualize the obtained understanding and regularity and to represent geological processes, providing powerful support for uranium resource exploration and prospective prognosis.
     Xiangshan area is an important production base of hard rock type uranium resources, where the largest and richest volcanic uranium orefield in China is located. Uranium deposits occur in Xiangshan volcanic - intrusive complex of over 300km in area, they are controlled by structures, porphyry mass and thermal alteration and thus there is a large prospect. As a kind of bran-new technology, the post-remote sensing application technology is applied on trial in Xiangshan area, which is of important significance on the development of post-remote sensing application technology and on the further prospecting for uranium deposits in Xiangshan area.
     Under the direction of scientific theories of earth system, based on processing and analyses of basic geology, remote sensing, airborne radioactive, gravitational, magnetic and DEM information and by taking the deep digging and application of multi-source information in the field of uranium resource exploration and the determination of further prospecting direction in Xiangshan as objectives, emphases are put on these researches, including the overall research on Xiangshan volcanic - intrusive complex, the research on neotectonic movements, comparative study of northwestern and southeastern parts in Xiangshan area, the research on the degree of erosion and preservation conditions and that on red basins in South China and the preservation of uranium. By searching references related, collecting data and creating a spatial database and though geologic investigation and comprehensive analyses, the following innovative achievements or conclusions are obtained.
     (1) Through the comprehensive analyses on tectonic and magmatic evolution in South China, it is proposed for the first time that Xiangshan volcanic—intrusive complex is under the control of the belt of Xuefeng Mountain—Wugong Mountain—Guangze, the northernmost belt among six EW-trending granite belts in South China, the tectonic setting for its formation is related to EW-trending tectonic process before Jurassic, undergoing "open-close" alternative tectonic evolution of squeezing before Jurassic - squeezing and twisting in Jurassic—stretching and thinning from Cretaceous to Paleogene and squeezing and uplifting since Miocene, and uranium mineralization was formed in the specific stage of tectonic evolution of stretching and thinning from Cretaceous to Paleogene.
     (2) The detailed interpretation on remote sensing image of Xiangshan area shows NE, NNW, SN, NWW and EW linear structures and these structural features most are products due to the reactivation of palaeostructures caused by neotectonic movement, that is to say, they have features of neotectonic movement. It is proposed for the first time that the neotectonic movement is one of dominant factors that affect the spatial distribution of uranium deposits.
     (3) Gravitational and magnetic data of Xiangshan area are developed secondarily using GeoExpl software developed in 2005 by Development Research Center of Geologic Survey Bureau, China. Upward continuations of gravitational and magnetic anomalies at different heights and calculation results of directional derivatives of gravitational and magnetic anomalies at different heights show there are three groups of major basement structures in Xiangshan area: EW, NE and NW trending. NW trending Xiangshan - Furongshan basement structure (F2) divides Xiangshan volcanic—intrusive complex into the northwestern and southern parts with different structural features.
     (4) Xiangshan volcanic - intrusive complex consists of acid pyroclastic rocks interbedded with sedimentary rocks, acidic lava, intermediate—acidic shallow—super-shallow intrusive rocks. The U-Pb age of single grain zircon of rhyolitic dacitic porphyry that was considered as volcanic rock of effluent facies is 129.54±7.93Ma, which is less than the age of porphyroclastic lava, the main rock in Xiangshan volcanic - intrusive complex. Combined with features in its occurrence and shape, it is believed that the rhyolitic dacitic porphyry is a post-volcanic shallow or super shallow intrusive body. Referring to the fact that the boundary age of Jurassic and Cretaceous is 145.5Ma, it is proposed for the first time that the formation age of Xiangshan volcanic—intrusive complex is early Cretaceous.
     (5) SiO_2 content, Rb/Sr, Rb/Ba ratios of Xiangshan volcanic - intrusive complex decrease from eruption - effluent - intrusion and however, TFe (Fe_2O_3+FeO) , CaO, MgO, TiO_2, and P_2O_5 contents, solidification index SI and 8Eu increases, and the magmatic evolution is contrary to the magmatic differentiation of normal magmatic chamber whose acidity increases gradually, which is called as reverse magmatic evolution series. Ratios of incompatible elements such as Th/U, Rb/Ba, Th/Nb, Th/Ta, Nb/Ta and La/Nb vary in relatively large amplitude, which is of no evident positive or negative relation with major components such as SiO_2 and so on, REE distribution patterns are not identical totally and therefore, it is believed that rocks of eruptive, effluent and intrusive facies are from different source areas, breaking through the former understanding that "that magma for various complex in Xiangshan area is not only from a same source but also the product of magmatic differentiation from a same magmatic chamber."
     (6) Through the principal component conversion and ratio processing of ETM~+ data of Xiangshan uranium orefield where vegetation is well developed, the effect of vegetation is eliminated to some extent and good remote sensing anomaly information on alteration of hydrous minerals is acquired, where the remote sensing anomalies of alteration distributed in the porphyroclastic lava in the northwest or metamorphic rocks in the western section in the north of Xiangshan uranium orefield are caused by hydrothermal hydromicazation and this is an important criteria for ore prospecting.
     (7) Aimed at the metallogenic characteristics of Xiangshan uranium orefield, the concept of U-Th concentration coefficient (FD=U X Th / K) is presented in this dissertation, FD reveals the combined U and Th mineralization information and thus it is related to (volcanic) magmatic hydrothermalism. The U-Th concentration coefficient has a certain correlation with the distribution of deposits in Xiangshan area; namely, uranium (thorium-bearing) deposits are distributed mostly in or near the areas with relatively high FD.
     (8) Deposits occur in the interior and outside of Xiangshan volcanic - intrusive complex, fewer deposits are distributed in the southeast and however, whether the number or grade of deposits in the northwest is evidently better than that in the southeast. The calculation results of DEM-based area vs elevation curves show that the earth is eroded seriously in Xiangshan, but the degree of erosion is heterogeneous due to differences in lithology of matter at the earth surface and in intensity of geologic and tectonic activities. Through comparative analyses on geomorphic features, occurrences of granite porphyry, physical and chemical properties of porphyroclastic lava, metallogenic type and characteristics, it is proposed for the first time that the degree of erosion in the northwest is different from that in the southeast of Xiangshan uranium orefield, deposits are characterized by unbalanced occurrence, which is not caused by the differences in mineralization or geologic framework, but by the different degree of erosion. From the northwest to the southeast of Xiangshan uranium orefield, the erosion depth of deposits increases gradually. There are better preservation conditions for deposits in the northwest of orefield and most uranium deposits are well or relatively well kept, which thus is of important significance in the prospecting for uranium deposits in Xiangshan area in the future.
     (9) Red beds of South China have a close relation of time and space with the uranium mineralization and were formed in the pull-apart tectonic setting from Cretaceous to Paleogene. From a new view, namely, the preservation of red basins in South China to uranium deposits and reconsidering the time and space relation between red basins in South China and uranium deposits, it is proposed for the first time in this dissertation that red basins are under the control of epigenetic faulted structures (neotectonics) and they are residual structural basins; deposits occurring near red basins were covered by red beds and thus area near and in the deep of red beds are favorable for mineralization preservation, which is the prospecting direction as well.
     The application of post-remote sensing technology promotes its development, plays a role in demonstrating the application and a series of creative achievements or conclusions have obtained in the aspects of tectonic - magmatic activities, metallogenic conditions - preservation conditions for deposits, prospecting direction and so on, providing a new idea to further prospect for new large and high-grade uranium deposits in Xiangshan orefield and its adjacent areas.
引文
1.北京大学地质系.1978.地质力学教程[M].北京:地质出版社,85-110
    2.包世泰,夏斌,崔学军,黎华.2004.地质体三维信息模型研究及其应用[J].大地构造与成矿学,28(4):470-476
    3.蔡宏渊,邓贵安,郑跃鹏.2001.新疆乔霍特铜矿床地质特征及控矿条件[J].矿产与地质,12(6):692-698.
    4.陈迪云,周文斌,吴伯林.1994.相山碎斑熔岩铷-锶、氧、铅同位素地球化学研究[J].南京大学学报(地球科学),6(1):45-49.
    5.陈贵华,陈名佐.1999.相山铀矿田成矿条件分析[J].铀矿地质,15(6):329-337
    6.陈功,邓金贵,田儒,陈戴生.1983.我国中、新生代盆地的成矿条件及成因模式探讨[J].地质学报,57(3):283-293
    7.陈骏,季俊峰,田庆久,吴昀昭.2003.遥感地球化学研究[J].地球科学进展,18(2):228-235
    8.陈述彭.2005.中国遥感应用协会2005年年会论文集导读.见庄逢甘,陈述彭主编《2005遥感科技论坛》.北京.中国宇航出版社
    9.陈小明,陆建军,刘昌实,赵连泽,王德滋,李惠民.1999.桐庐、相山火山-侵入杂岩单颗粒锆石U-Pb年龄[J].岩石学报,15(2):272-278.
    10.陈跃辉,陈祖伊,蔡煜琦,施祖海,封全宏,付锦.1997.华东南中新生代伸展构造时空演化与铀矿化时空分布.铀矿地质,13(3):129-138
    11.陈肇博.1985.显生宙脉型铀矿成矿理论的几个基本问题[J].铀矿地质,1(1):1-16
    12.陈肇博,季树藩,仇本良,张绍明,朱有根.1980.相山矿田主要铀钍矿物及铀钍的地球化学特征[R].核工业北京地质研究院内部资料.
    13.陈祖伊,黄世杰.1990.试论华东南中新生代不整合面型铀矿床[J].铀矿地质,6(6):349-358
    14.陈祖伊,张邻素,陈树昆.1983.华南断块运动-陆相红层发育期与区域铀矿化[J].地质学报,57(3):294-303
    15.承继成,郭华东,史文中.2004.遥感数据的不确定性问题[M].北京:科学出版社,38-55
    16.Clark R N,King T V V,Klejwa M.Swayze G,Vergo N.High Spectral Resolution Reflectance Spectroscopy of Minerals[J].J Geophys Res,1990,95:12653-12680
    17.Clark R N.1999,Spectroscopy of Rocks and Minerals,and Principles of Spectroscopy[M/OL].http://speclab.cr.usgs.gov(last revised June 25,1999)
    18.党安荣,贾海峰,易善桢,刘钊.2003.ArcGIS 8 Desktop地理信息系统应用指南[M].北京:清华大学出版社,1-5
    19.戴昌达,雷莉萍.TM图像的光谱信息特征与最佳波段组合[J].环境遥感,1989,(4):282-292
    20.杜乐天.1990.硅谜与碱盲——近代热液成矿学的两大暗区[J].铀矿地质.6(6):338-348
    21.杜乐天.2001.中国热液铀矿基本成矿规律和一般热液成矿学[M].北京:原子能出版社,39-263
    22.杜乐天.2005.迎接铀矿找矿新高潮——华南二轮找矿势在必行[J].铀矿地质,21(3):146-151
    23.地质矿产部《南岭项目》构造专题组.1988.南岭区域构造特征及控岩控矿构造研究[M].北京:地质出版社,80-82
    24.范洪海.2001.江西相山壳源型火山-侵入杂岩及其深部成矿作用[D].南京大学博士学位论文
    25.范洪海,凌洪飞,王德滋,刘昌实,沈渭洲,姜耀辉.2003.相山铀矿田成矿机理研究[J].铀矿地质,19(4):208-213
    26.范洪海,王德滋,沈渭洲,等.2005.江西相山火山-侵入杂岩及中基性脉岩形成时代研究[J].地质论评,51(1):86-91.
    27.F.M.Gradstein等编,金玉王干,王向东,王王月译.2005.国际地层表(2004).地层学杂志,29(2):98
    28.冯明月.1997.多源地学信息技术在铀成矿条件分析和远景预测中的应用[R].核工业北京地质研究院内 部资料
    29.傅明毅,孙自法.中国成功发射第二颗“资源二号”卫星已入预定轨道.http://www.chinanews.com.cn,2002-10-27.
    30.Frazer,S.J.,and Gree,A.A..1987.A Software defoliant for Geological Analysis of Band Rations International Journal of Remote Sensing,8:525-532
    31.方锡珩,万国良,候文尧.1980.相山火山岩的岩石化学及地球化学特征[R].核工业北京地质研究院内部资料
    32.甘甫平,陈伟涛,张绪教,闫柏琨,刘圣伟,杨苏明.2006.热红外遥感反演陆地表面温度研究进展[J].国土资源遥感,2006,(1):6-11
    33.甘甫平,王润生.2004.遥感岩矿信息提取基础与技术方法研究[M].北京:地质出版社.1-42
    34.甘甫平,王润生,马蔼乃,张宗贵.2002.光谱遥感岩矿识别基础与技术研究进展[J].遥感技术与应用,17(3):140-147
    35.郭鹏,孙艳玲,白洁,刘洪斌,武伟.2003.数字高程模型在坡耕地调查中的应用.国土资源遥感[J].(4):59-62
    36.Gupta R P.Remote sensing geology[M].1991.Germany:Springer-Verlag Berlin Heidelberg.1-356.
    37.华东地质局49-5.1项目组.1995.相山火山岩型富大铀矿找矿模式及攻深方法技术研究.国防科工委“八五”重点科技攻关项目49-5.1成果报告.
    38.华东六0八队第一分队1963年《610矿床611地段最终储量报告(上册)》[R]
    39.核工业261大队.1982.610矿田花岗质侵入体中的副矿物研究及其对岩体含铀性评价[R].科研成果报告
    40.核工业261大队.1985.江西省乐安、崇仁县相山矿田1:2.5万岩性岩相填图总结报告[R].内部资料
    41.核工业261大队.1996.江西省相山地区1:2.5万地面高精度磁法测量工作报告[R].内部资料
    42.核工业266大队.1997.江西省相山地区1:5万重力测量工作报告[R].内部资料
    43.核工业270研究所,261大队,265大队,268大队,269大队.1988.赣杭构造火山岩成矿带铀成矿规律及成矿预测[R].国家科技进步一等奖项目成果报告
    44.核工业270研究所,261大队,266大队.1995.相山火山岩型富大铀矿找矿模式及攻深方法技术研究[R].部级科技进步二等奖获奖项目(49—5·1)成果报告.
    45.霍宏涛.2003.数字图像处理[M].北京:机械工业出版社,1-14
    46.胡瑞忠,毕献武,苏文超,彭建堂,李朝阳.2004.华南白垩—第三纪地壳拉张与铀成矿的关系[J].地学前缘,11(1):153-160
    47.Hunt G R.1977.Spectral Signature of Particular Minerals.in the Visible and Infrared[J].Geophysics,(42):501-513
    48.Hunt G R.1982.Spectroscopic Properties of Rocks and Minerals,in Handbook Of Physical Propertics of Rocks,Volune Ⅰ,(R.S.Carmichael,ed)CRC Press,Boca Raton,295-385
    49.Jaques L A,WybornL A I,Gal laghe R.1994.The role of geographic information system,empirical modeling and expert systems in metallogenic research[A].12~(th) Australian Geological Convention.Geological Society of Australia Abstracts(No.37)[C].Perth:196-197
    50.蒋兴泉.1988.相山矿田富矿赋存地质特征[J].华东铀矿地质,第一、二期,7-18
    51.江西省地质矿产局.1984.江西省区域地质志[M].北京:地质出版社,286-357
    52.江西省地质矿产局.1986.戴坊街幅1:5万地质图及说明书.
    53.江西省地质矿产局.1996.抚川市幅、浒湾镇幅1:5万地质图及说明书.
    54.姜耀辉,蒋少涌,凌洪飞.2004.地幔流体与铀成矿作用[J].地学前缘,11(2):491-499
    55.康讯科技,王瑞民.2001.MapInfo 5.X使用指南[M].北京:中国铁道出版社,1-3
    56.李慈俊.1987.试论华南红盆与铀成矿作用的关系[J].华东铀矿地质,(2):1-4
    57.李德仁.1997.论RS,GPS与GIS集成的定义、理论与关键技术[J].遥感学报,1(1):64-68
    58.李剑峰,赵英俊,刘德长,付锦.1999.灵泉盆地多源地学信息综合岩性识别方法探讨[J].国土资源遥感,(2):43-49
    59.李建星,王永和.2003.三维影像地质图制作及其应用前景展望——以阿尔金中段苏吾什杰地区为例[J].西北地质,2003,36(1):94-97
    60.李祥根.2003.中国新构造运动概论[M].北京:地震出版社,1-2,19-41,305
    61.李志林,朱庆.2003.数字高程模型[M].武汉:武汉大学出版社,260-271
    62.李子颖,李秀珍,林锦荣.1999.试论华南中新生代地幔柱构造、铀成矿作用及其找矿方向[J].铀矿地质,15(1):9-17
    63.李子颖.2006.华南热点铀成矿作用[J].铀矿地质,22(2):65-69
    64.李远华,姜琦刚,张秉仁.2005.利用等高线数据制作大规模3D遥感影像[J].国土资源遥感,(2):76-79
    65.楼性满,葛榜军.1994.遥感找矿预测方法[M].北京:地质出版社,26-32
    66.Loughlin W P.1991.Principal component analysis for alteration mapping[J].Photogrammetric Engineering and Remote Sensing,57:1163-1169
    67.刘斌,段光贤.1997.NaCl-H_2O溶液包裹体的密度式和等容式及其应用[J].7(4):345-352
    68.刘建军,杨武年,刘登忠.1999.腾格尔拗陷查干诺尔地区古河道型砂岩铀矿遥感信息提取[J].物探化探计算技术,21(3):248-251.
    69.刘德长,叶发旺.2004.后遥感应用技术的提出与思考[J].世界核地质科学,21(1):33-37.
    70.刘德长,叶发旺,张杰林,赵英俊,黄贤芳,黄树桃,张静波,祝民强.2004.后遥感应用技术研究与地质实践[J].国土资源遥感,(1):11-14
    71.刘德长,孙茂荣,朱德龄.1993.以航空放射性测量为主的多源信息综合技术及应用[J].中国科学(D辑),23(6):659-664
    72.刘德长,张杰林,赵英俊.2005.砂岩型铀矿区构造地球化学障的后遥感应用技术研究[J].世界核地质科学,22(1):50-54
    73.刘大任.2000.初论邵武-河源断裂带的活动性[J].江西地质,14(2):81-87
    74.刘少峰,王陶,张会平,程三友,孙亚平,雷国静.2005.数字高程模型在地表过程研究中的应用[J].地学前缘,12(1):303-309
    75.刘训.1983.中国东部中新生代沉积建造及构造发展[J].中国区域地质,(4):5-20
    76.刘义发.1986.赣杭构造带火山岩型铀矿床的形成与白垩纪红层具有时空一致性[J].华东铀矿地质,(2):1-2
    77.刘英俊,曹励明,李兆麟,王鹤年,储同庆,张景荣.1984.元素地球化学[J].北京:科学出版社,40-50,216-235
    78.卢焕章.1997.成矿流体[M].北京:地质出版社
    79.Markhan B L,Barker J L.1986.Landsat MSS and TM post-calibration Dynamics Ranges,Exoatmospheric Reflectances and at-satellite Temperature[J].EOSAT Landsat Tech.Notes,1:3-8
    80.Michael A.2000.Geomorphology and global tectonics[M].London:John Wiley & Sons,Ltd.Press,
    81.毛晓长,刘文灿,杜建国,许卫.2003.ETM~+和ASTER数据在遥感矿化蚀变信息提取应用中的比较——以安徽铜陵凤凰山矿田为例[J].现代地质,19(2):309-314
    82.潘永正,张建新.1994.诸广岩体南部伸展构造与铀成矿关系的探索[J].铀矿地质,10(3):138-143
    83.庞之浩.“锁眼”紧盯“眼中钉”.http://www.chinamil.com.cn,2004-09-14.
    84.Potter R W Ⅱ.1997.Pressure correction for fluid inclusion homogenization tempreture based on the volumetre properties of the system NaCl-H_2O.J Res V S Geo Surv,5:603-607
    85.Qin Z,Karnieli A,Berliner P.A mono-window aogorithm for retrieving land surface temperature from Landsat TM data and its application to the Israel-Egypt border region[J].International Journal of Remote Sensing,2001,22(18):3719-3746
    86.邱爱金.2001.江西相山铀矿田东西向隐伏构造的发现及其地质意义[J].地质论评,47(6):637-641
    87.邱爱金,郭令智,郑大瑜,舒良树.2002.大陆构造作用对相山富大铀矿形成的制约[M].北京:地质出版社,5-12
    88.邱爱金,郭令智,郑大瑜,舒良树.2002.大陆构造作用对相山富大铀矿形成的制约[M].北京:地质出版社,58-95
    89.邱家骧,林景仟.1991.岩石化学[M].北京:地质出版社,64-75.
    90.翟裕生.1999.论成矿系统[J].地学前缘,6(1):13-27
    91.翟裕生.2000.矿床变化与保存的研究内容和研究方法[J].地球科学—中国地质大学学报,25(4):340—345
    92.覃志豪,Li Wenjuan,Zhang Minghua,Arnon Karnieli,Pedro Berliner.2003.单窗算法的大气参数估计方法[J].国土资源遥感,(2):37-43
    93.覃志豪,Zhang M,Karnieli A,et al.2001.用陆地卫星TM6数据演算地表温度的单窗算法[J].地理学报,56(4):456-466
    94.齐泽荣,郗海莉.2004.提高中巴卫星IRMSS图像空间分辩能力的光谱保真融合方法[J].国土资源遥感,(2):21 25
    95.Reiche P.1943.Graphic representation of chemical weathering.Journal of Sedimentary Petrology,(13):58-68
    96.Schmidberger S SHegner E.1999.Geochemistry and isotope systematics of calc-alkaline volcanic rocks from the Saar-Nahe basin(SW Germany)-implications for Later Vaiscan orogenic development [J].Contrib Mineral Pertrol,135:373-385.
    97.孙家柄.2003.遥感原理与应用[M].武汉:武汉大学出版社,162-168
    98.孙家柄主编.2003.遥感原理与应用[M].武汉:武汉大学出版社.220-281.
    99.苏守田,蒋桂玉,季树藩,肖薇.1980.相山矿田成岩成矿温度及沥青铀矿的沉淀环境与机理[R].核工业北京地质研究院内部资料
    100.Sugita M,Brusaert W.1993.Comparison of Land surface Temperatures Derived from Satellite Observation with Ground Truth During FIFE[J].international Journal of Remote Sensing,14(9):1659-1676
    101.舒孝敬.2005.航空伽玛能谱资料处理中有用信息提取的一些方法和应用效果.2005年核工业地质局物探会议论文.
    102.单向前,任建民.“神州”三号飞船发射成功并进入预定轨道.http://www.people.com.cn,2002-03-26.
    103.Taylor S R.and McClennan S..1985.The Continental Crust:Composition and Evolution.Blackwell Scientific Publications:54-372
    104.汤国安,陈正江,赵牡丹,刘万青,刘咏梅.2002.ArcView地理信息系统空间分析方法[M].北京:科学出版社,9-10
    105.汤国安,刘学军,闾国年.2005.数字高程模型及地学分析的原理与方法[M].北京:科学出版社 207-233
    106.汤国安,张友顺,刘咏梅,等.2004.遥感数字图像处理[M].北京:科学出版社,1-218.
    107.陶奎元,毛建仁,杨祝良,赵宇,邢光福,薛怀民.1998.中国东南部中生代岩石构造组合和复合动力学过程的记录[J].地学前缘,5(4):183-191
    108.唐永成,何义权,王永敏,王文联,邱瑞龙,高章红,曹静平,杨则东,曹奋起,赵华荣.2000.GIS应用于安徽东部地区金矿资源评价研究[M].北京:地质出版社,154-198
    109.Weaver B L.1991.The origin of ocean island basalt end-member composition:trace element and isotopic constraints[J].Earth Planet Sci Lett,104:381-397.
    110.王灿林.1980.相山矿田脉群型铀矿床的构造特征及其形成机制[R].内部资料
    111.王纯祥,白世伟,贺怀建.2003.三维地层可视化中地质建模研究[J].岩石力学与工程学 报,22(10):1722-1726
    112.王德滋,周新民等.2002.中国东南部晚中生代花岗质火山-侵入杂岩成因与地壳演化[M].北京:科学出版社.1-32.
    113.武汉地质学院地球化学教研室.1979.地球化学[M].北京:地质出版社,38-43
    114.吴培中.从地球观测-1卫星看21世纪卫星新技术.http://www.cast.ac.cn,2001-05-28.
    115.万天丰,詹灿惠,龙简廉,卢先泽.1986.福建燕山期构造应力场探讨.见王鸿祯,杨巍然,刘本培主编《华南地区古大陆边缘构造史》.武汉:武汉地质学院出版社,260-272
    116.Wuklic G E,Gibbons D E.1989.Martucci M.Radiometric Calibration of Landsat Thematic Mapper Thermal band[J].Remote Sensing of Environment,28:339-347
    117.魏祥荣.1998.一种有利于铀成矿的构造变形基底:相山盆地基底变质岩构造变形剖析[J].铀矿地质,14(2):65-71
    118.温志坚,杜乐天,刘正义.1999.相山铀矿田磷灰石与铀矿形成的关系[J].铀矿地质,15(4):217-224
    119.温志坚,杜乐天,刘正义,等.1999.相山铀矿田特富矿成矿模式[J].地质论评,45(增刊):765-767
    120.谢窦克,马荣生,张禹慎,赵西西,R.S.Coe.1996.华南大陆地壳生长过程与地幔柱构造[M].北京:地质出版社,174-185
    121.徐国庆.1985.1220铀矿田成矿模式的研究[J].铀矿地质,1(5):1-8
    122.夏林圻,夏祖春,张诚,R.Clocchiatti,J.Dardel,J.L.Joron.1992。相山中生代含铀火山杂岩岩石地球化学[M].北京:地质出版社,12-43
    123.谢家莹,陶奎元等.1996.中国东南大陆中生代火山地质及火山-侵入杂岩.北京:地质出版社,193-229,240-253
    124.徐良森,郎方.展望中国资源卫星发展前景.http://www.cnsa.gov.cn,2004-04-16.
    125.许榕峰,徐涵秋.2004.ETM+全色波段及其多光谱波段图像的融合应用[J].地球信息科学,6(1):99-103
    126.徐瑞松,马跃良,何在成.2003.遥感生物地球化学[M].广州:广东科技出版社,1-11
    127.于伯川.1995.我国航空放射性测量资资料的整理研究现状和二发开发意见.铀矿地质,11(2):93-100
    128.杨达源.2001.自然地理学[M].南京:南京大学出版社,321-402
    129.叶发旺.2004.后遥感应用技术及其在鄂尔多斯分地北景铀资源勘查中的应用[D].北京:核工业北京地质研究院博士学位论文.
    130.闫积惠,康慧,陈怀亮.1996.TM图像地质应用中的几个重要概念[J].遥感与地质,(3,4):6-9
    131.杨森楠,游振东,杜国云.1986.华南燕山阶段古构造特征.见王鸿祯,杨巍然,刘本培主编《华南地区古大陆边缘构造史》.武汉:武汉地质学院出版社,78-96
    132.燕守勋,张兵,赵永超,郑兰芬,童庆禧,杨凯.2003.矿物与岩石的可见—近红外光谱特性综述[J].遥感技术与应用,18(4):191-201
    133.杨武年,廖崇高,濮国梁,徐强,于庆文,徐凌.2003.数字区调新技术新立法——遥感图像地质解译三维可视化及影像动态分析[J].地质通报,22(1):60-64
    134.袁学城,左愚,蔡学林,朱介寿.1989.华南岩石圈板块构造与地球物理.见地球物理学报编辑委员会编:八十年代中国地球物理学进展.北京:学术期刊出版社.243-249
    135.曾朝铬.2005.地质遥感应用要取其长.引自地质勘查导报记者金小平:——访遥感专家曾朝铬.http://www.cigem.gov.cn
    136.周成虎,骆剑承,杨晓梅,杨存键,刘庆生.1999.遥感地学理解与分析[M].北京:地质出版社,142-183
    137.中地软件丛书编委会.2003.MapGIS地理信息系统使用手册.
    138.张会平,杨农,张岳桥,孟晖.2004.基于DEM的岷山构造带构造地貌初步研究[J].国土资源遥感,(4):54-58
    139.张邻素.1987.红层的古气候标志[J].铀矿地质,3(2):127-128
    140.张满郎,党顺行.1996.多源遥感数据在冀东地区金矿资源调查中的应用研究[J].遥感与地 质,(1,2):16-22
    141.祝民强.2002.基于GIS的砂岩型盆地铀矿多源信息集成评价技术研究[D].核工业北京地质研究院博士学位论文
    142.张金带.2004.我国铀资源潜力概略分析与铀矿地质勘查战略[J].铀矿地质,20(5):260-265
    143.张学权,王思龙.1980.相山铀矿田主要热液蚀变的地质和地球化学特征及其找矿意义[R].核工业北京地质研究院内部资料
    144.张学权,王思龙.1980.交代钠长岩孔隙度形成的机理及孔隙和圈闭构造在成矿中的重要作用[R].核工业北京地质研究院内部资料
    145.张万良2001.相山、银山、紫金山次英安玢岩的对比研究[J].地质与勘探,37(4):39-42
    146.张万良.2005.相山火山-侵入杂岩的反方向岩浆演化系列研究[J].中国地质,32(4):548-556
    147.张万良.2005.遥感岩性识别研究的发展趋势——遥感与航空放射性信息集成[J].矿物岩石地球化学通报,24(1):88-91
    148.张万良,刘德长,李子颖,张静波.2005a.江西相山铀矿田遥感影像呈现的新构造运动及其意义[J].国土资源遥感,(4):52-56
    149.Zhang Wanliang,Li Ziying.2005.Metallogenic Time-Space Evolution of Xiangshan Uranium Ore Field in China.Jingwen MaD,frank P.Bierlein Editors:Mineral Deposit:Meeting the Global Challenge.Springer.Vulume,1,339-341
    150.张万良,李子颖.2005b.江西邹家山铀矿床成矿特征及物质来源[J].现代地质,19(3):369-374
    151.张星蒲.2001.论赣杭构造火山岩成矿带中生代火山盆地和红盆演化[J].见中国地质学会《第31届国际地质大会中国代表团学术论文集》.北京:地质出版社.52-57页
    152.张行南,郭亨波,倪斐,徐双全.2004.滩涂数字地形模型的建模与应用[J].国地资源遥感,(1):73-77
    153.张玉君,杨建民,陈薇.2002.ETM~+(TM)蚀变遥感异常提取方法研究与应用——地质依据和波谱前提[J].国土资源遥感,(4):30-36
    154.曾新平,杨自安,刘碧虹,张普斌,邹林,2005.地质体三维可视化建模的技术方法研究[J].19(1):102-106
    155.郑跃鹏,曾新平,蔡劲宏.2004.近年遥感技术新进展及几点思考[J].矿产与地质,18(3):269-273.
    156.朱志刚,林学閆,石定机等译.1998.数字图像处理[M].北京:电子工业出版社
    157.赵振华.1997.微量元素地球化学原理[M].北京:科学出版社,71-73,122.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700