用户名: 密码: 验证码:
气体钻井用贯通式潜孔锤关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
空气锤钻井技术的成功应用为气动潜孔凿岩工具的发展和使用提供了广阔的空间。本文针对气体钻井用贯通式潜孔锤的关键技术问题进行了研究,旨在将贯通式潜孔锤全孔反循环钻进技术引入油气勘探开发气体钻井领域,为解决当前石油工业上游领域所面临的低压、低渗、低产油气藏的高效开发问题和提高复杂地层、深井硬岩地层钻进速度等难题提供有利技术支持。
     首先,本文综合分析了贯通式潜孔锤在气体钻井中应用的可行性及贯通式潜孔锤反循环气体钻井潜在的技术优势,确定专用反循环钻头的研制与循环系统注气参数的选择为气体钻井用贯通式潜孔锤关键技术所在。
     其次,为设计出适合气体钻井用的、性能良好的反循环钻头,从流体通道改进设计与钻头体底面轮廓形状优选两面进行了研究。研制了反循环钻头井底流动模拟实验器,通过实验测试对比了不同结构形式内喷孔,不同钻头底面轮廓形状及不同底喷孔布置方式对反循环形成效果的影响,确定了有利于提高反循环钻头性能的流道设计形式和钻头底面轮廓形状。借勘商用CFD软件对反循环钻头局部流场进行了数值模拟分析,揭示了不同结构形式流道及底面轮廓形状对反循环形成效果的影响机理。理论分析、实验研究和数值模拟得出的结论和认识为大直径反循环钻头的设计提供了重要依据,基于上述结论设计制造了气体钻井用反循环钻头。
     最后,对贯通式潜孔锤气体钻井循环系统注气参数选择进行了初步研究,建立了中心反循环排渣通道与双壁钻具环状注气通道内压力分布模型,给出了一种计算反循环排渣所需最小气体体积流量的方法,为贯通式潜孔锤气体钻井地表注气设备的配置提供了参考。
The underbalanced drilling technology was born in 1950s, after that, it was maturated and rapidly developed into a new drilling technology in 1990s. It got wide application in china and abroad, and became other development hotspots after horizontal well technology. Gas drilling was the important branch of the underbalanced drilling technology, and among them, air drilling which took the compressed air as drilling circulating fluid was the earliest developing underbalanced drilling technology. In recent years, research and application of the gas drilling technology bring a new climax at china and abroad after experiencing several high tides and low ebbs. The air hammer underbalanced drilling technology compatible with their advantages was the organic combination of gas drilling and percussive rotary drilling, and its successful application was provided wide space for the development and operation of the air hammer-down the hole hammer (DTH)and pneumatic hammer.
     The hollow-through DTH hammer was also called down-the-hole hammer rock drilling tools which possessed with the special structure form. The hollow-through DTH hammer with the whole process into reverse circulation drilling craft, which was relative to the hollow-through DTH hammer, was a high technology combined with three technique-DTH hammer impacting breaking rock, fluid medium full hole reverse circulation and continuous obtaining rock core sample-into one system, and had got more widely applied in the solid mineral exploration and hydrology water well drill. At present, the DTH hammer has been formed series specification. The drilling process and the outfitting tools gradually become maturation, so the application area is continuously extended and has a broad prospect.
     The paper supported by the project of "feasible research on air reverse circulation drilling system ", aiming at characteristics of the gas drilling used in the oil and gas exploration, carried out the relative technique research on hollow-through DTH hammer used in gas drilling in order to import the hollow-through DTH hammer with the whole process into reverse circulation drilling craft into the oil and gas exploration, exerting its unique technical advantage, to solve the efficient development problems that the low-presser, low permeability and low yield reservoir faced when it was applied in the oil and gas exploration drill field currently, and to supply the favorable technical support for enhancing the drill speed of the complex strata and deep well ground consisting of hard rock. The main research contents and conclusions are the following:
     1. The feasibility and basic requirements of hollow-through DTH used in oil and gas exploration and development was conducted a comprehensive analysis. The hollow-through DTH hammer which merged gas drilling, percussive rotary drilling and reverse circulation drilling into one body, had broad application prospects in the field of oil and gas exploration and development, and possessed inimitableness advantages of single technique, for example, dramatically reducing compressed air consumption, avoiding sidewall erosion disturbance, avoiding severities accident of well leak, disposing formation water production, undamaging reservoir. The hollow-through DTH hammer would confront with large diameter and deep hole work conditions when it was applied in gas drilling, so it is required to have the great air consumption and the ability of high voltage and high temperature. The requirements of the craft are to ensure the reverse circulation stability developed by fluid medium and the smooth when rock ballasts was ejected.
     2. The experimental study on the structural design of the private reverse circulation bit. The private reverse circulation bit is the key part for executing the hollow-through DTH hammer with the whole process into reverse circulation drilling craft, and it is not only the cutting rock tool at bottom hole, but also the function element of controlling fluid medium reverse circulation. It is found that to develop the reverse circulation bits suitable for gas drilling and good of reverse circulation performance is the more important link of the hollow-through DTH hammer with the whole process into reverse circulation drilling craft entering into the oil and gas exploration drilling field. In order to design the fluid passage and to choose the underside contour shape, the paper made a laboratory experimental study about the large diameter reverse circulation bit in gas drilling.
     (1) It was developed the simulated bottom-hole fluid flow tester, and its structure form of fluid passage was basically the same as the real situation when the bit was working at the bottom. With flexible and convenient features, the tester was an open platform, and it could experiment with different structure forms of fluid passage and different types of the underside contour shape bit models. It was more scientific and reasonable through measuring and comparing the air displacement of bit outer space to evaluate the formation effects of reverse circulation.
     (2) It was designed three type inner tubes with the different inner nozzle, and test results showed that: the pumping characteristic of the inner nozzle with new spiral model which was firstly put forward in this paper was better than the pumping characteristic of the inner nozzle with injection model which was currently used. The conclusion was conducive to improve the performance of reverse circulation drilling bit.
     (3) It was designed three type bit models with the different underside contour shape. To compare with the experimental results measured under the same condition was shown that: it was the concave bit model that was the best to form the reverse circulation effects, and it was also found that formation effects of reverse circulation of the convex bit model and the concave-convex bit model were almost same.
     (4) Based on the convex bit model and the concave-convex bit model, with the contrast experiment for bottom nozzle's arrangement mode, the results showed as following: under the same condition of the bottom nozzle's number, diameter, and total flow cross section area, the even layout in the same sphere was more favorable to form the reverse circulation than the layout in different sphere.
     With the experimental study, it was resolved a number of key problems about the structural design on the large diameter reverse circulation bit, and that provided the objective and reliable data foundation for the structural design on the reverse circulation bit used in the gas drilling.
     3. Numerical simulation analysis on local flow field of reverse circulation bit
     On the basis of experimental study, it was set up the numerical calculation model of the inner nozzle local flow field and the numerical calculation model of the hole- bottom flow field, and with the large commercial CFD software- FLUENT to simulate and analyze the flow field. The inner nozzle's local flow field simulation results showed the multiple jets flow pattern formed by the two different types inner nozzles. At the same time, it also proved that the jet angle was an important factor impacting the multiple jet pumping characteristics. Among these, the multiple jets formed by the spiral inner nozzle was more sensitive to the changes of jet angle, when the jet angle is greater than 45°, the pumping performance deteriorated rapidly. The numerical simulation results of the hole-bottom flow field revealed the influence mechanism about forming reverse circulation effects of the underside contour shape and the hole-bottom nozzle layout, which was of great significance to guide and optimize the structural design on the large diameter reverse circulation bit used in the gas drilling.
     To ascertain the gas injection parameters of the circulation system- volume flow and pressure were critical of the hollow through DTH hammer reverse circulation in the gas drilling. It was not only the basis of the surface high-pressure gas injection system configuration, but also related to the formation of reverse circulation and the slag discharging effects. On the basis of the gas drilling theoretical study at home and abroad, it was built up the pressure plotting model of the hollow through DTH hammer twofold wall drill tools reverse circulation system, got the pressure distribution law of the circulation system, and derived the calculation formula. With the combination of the gas injection volume, the gas injection pressure, penetration rate and changes in hole depth, it was given a general calculation example of H = 2000m by programmed calculation. It was provides the basis for the hollow through DTH hammer reverse circulation gas drilling to select the gas injection parameters.
     The main creative point in this paper includes:
     (1) An inner jet nozzle with the new structure design was presented. With the lab experiments and numerical simulation results, it was proven that the new structure was more beneficial to form the reverse circulation, and it could improve the reverse circulation performance of drilling bits.
     (2) For the first time, it was studied the underside contour shape which was impacting the forming effects of the reverse circulation, and designed the reverse circulation bit hole -bottom flow field simulation tester. Experiments showed that the concave bit model was more favorable for the reverse circulation formation. And by means of CFD numerical simulation, the influence mechanism of the different bit underside contour shape to the reverse circulation formation was revealed.
     (3) By measuring the air displacement of bit outer space, it was compared and analyzed the influence of the hole-bottom nozzle even layout in the same sphere and grouped interleaving even layout in the different spheres on the reverse circulation formation, so gained the conclusion of that the even layout in the same sphere is more favorable for the reverse circulation formation.
     (4) On the basis of the gas drilling theoretical study at home and abroad, it was firstly built up the pressure plotting model of the hollow through DTH hammer twofold wall drill tools reverse circulation system, and got the pressure distribution law of the circulation system. It was provides the basis for the hollow through DTH hammer reverse circulation gas drilling to select the gas injection parameters.
     At present, the hollow through DTH hammer and the private reverse circulation bit which are special designed for the gas drilling have been completely processed and made, and are waiting for the appropriate wells to test. The above content in this paper are just the preliminary fundamental research about the hollow through DTH hammer used in oil and gas exploration field, and these are yet to be tested in practice. Further more, it is need to deeply comprehensive research based on the practice of the hollow through DTH hammer reverse circulation gas drilling.
引文
[1]曾义金,樊洪海译.空气和气体钻井手册[M].北京:中国石化出版社,2006.
    [2]赵业荣,孟英峰,雷桐,等.气体钻井理论与实践[M].北京:石油工业出版社,2007-09.
    [3]许期聪,刘奇林,侯伟等.四川油气田气体钻井技术[J].天然气工业.2007,27(3):60-62.
    [4]杨盛杰,张克明.吐哈气体钻井机技术的研究与应用[J].钻采工艺.2006,29(6):29-32,86.
    [5]许爱.气体钻井技术及其现场应用[J].石油钻探技术.2006(7):16-19.
    [6]程宏英.天然气欠平衡钻井技术研究及其在长庆油气田中的应用[D].成都:西南石油学院,2001.
    [7]刘权萍,孟英峰,梁红,等.空气锤在石油钻井中的应用前景[J].天然气工业,2006,26(4):50-53.
    [8]周英操,翟洪军,等.欠平衡钻井技术与应用[M].北京:石油工业出版社,2003.
    [9]杨振平,蒋宏伟,王少春,等.欠平衡钻井技术的优势和挑战[J].内蒙古石油化工.2006(8):74-76.
    [10]王波.欠平衡钻井流体动力学参数计算理论及方法研究[D].成都:西南石油学院,2005.
    [11]Bennion D.B.UBD technology offers pathway to solving comlex reservior problems[J].Amer.Oil Gas Rep,1999,42(2):49-54,84.
    [12]罗世应,孟英峰,李允.欠平衡钻井的应用前景[J].天然气工艺.1999,19(4):55-58.
    [13]张军,孟英峰,叶何茜,等.欠平衡钻井技术研究现状[J].南方油气.2005,18(4):54-56.
    [14]William C L.Air and Gas Drilling Manual(Second Edition).New York(USA):McGraw-Hill Companies,2001.
    [15]George E,Cannon and Ralph A Watson.Review of Air and Gas Drilling[J].1956,SPE,703-G.
    [16]朱江,王萍,蔡利山,等.空气钻井技术及其应用[J].钻采工艺.2007,30(2):145-148.
    [17]王洪英,赵德云.气体钻井技术在大庆徐家围子地区应用探讨[J].西部探矿工程.2006,18(1):179-181.
    [18]马光长,杜良民.空气钻井技术及其应用[J].钻采工艺.2004,27(3):4-8.
    [19]任双双,刘刚,沈飞.空气钻井的应用发展[J].断块油气田.2006,13(6):62-64.
    [20]Cooper,Leonard W,and Hook.Air Drilling Techniques.1977,SPE,6435-MS.
    [21]耿瑞伦,等.多工艺空气钻进技术[M].北京:地质出版社,1995.
    [22]PRATT C A.Modification to and experience with air percussion drilling[J].SPE,16166.
    [23]WHITEI EY M C.Air drilling operations by percussion bit/hammer tool tandem[J].SPE,13429.
    [24]JOHNS R P.Hammer bits control deviation in crooked hole country[J].SPE,18659.
    [25]JOHN M.Air hammers cut barnett shale drilling time in half[J].World Oil,2004.
    [26]CHASTOLAIN A G.The use of the hammer drill in the foothill[J].SPE,74.
    [27]REINOVOLD.Diamond-enhanced hammer bits reduce cost per foot in the arkoma and application basins[J]SPE,17185.
    [28]陈志学.气体钻井工艺技术理论及应用研究[D].成都:西南石油学院,2006.
    [29]R R Angel.Volume Requirements for Air or Gas Drilling[J].1957,SPE,873-G.
    [30]lkoku,Azar J J,Williams C.Department of Energy Practical Approach to Volume Requirements for Air and Gas Drilling[J].1980,SPE,9445-MS.
    [31]Alan P Roberts.Future Development of Water Control Methods in Air Drilling Operations[J].SPE,1420-G,1959.
    [32]Hook R.A,Cooper L.W and Payne B R,Air,Mist and Foam Drilling:A Look at Latest Techniques:Parts Ⅰ and Ⅱ[J].World Oil,April and May 1977.
    [33]Wilson G E.A General Overview of Air Drilling and Deviation Control[J].1981,SPE,9529-PA.
    [34]魏武.空气钻井技术的应用[C].集团公司欠平衡钻井技术交流论文集,2004.
    [35]申威.空气/泡沫钻井技术在伊朗19+2项目中的应用[J].钻采工艺.2005,28(4):31-34.
    [36]王立超,范光永,张秋菊.空气钻井技术在伊朗项目TBK油田的应用[J].西部探矿工程.2004,11:83-85.
    [37]刘伟,陶冶,郑传义,等.空气钻井设备配套技术[J].新疆石油科技.2006,16(1):4-8.
    [38]杨振杰.空气钻井设备配置选型及性能分析[J].石油矿场机械.2008,37(5):113-119.
    [39]肖润德,潘登,杨玻.四川油气田欠平衡钻井装备的研究与应用[J].钻采工艺.2003,26(5):60-63.
    [40]刘权萍.空气锤工作机理的计算机仿真研究[D].成都:西南石油大学,2006.
    [41]孟庆昆,王向东,于兴胜.KQC系列空气锤在油田气体钻井中的应用[J].石油矿场机械.2007,36(11):54-57.
    [42]罗整,徐忠祥,李晓慧,等.空气锤钻井技术在气体钻井中的应用[J]. 钻采工艺.2007,30(6):9-10,15.
    [43]石祥超,孟英峰,梁红.空气锤提速防斜研究[J].南方油气,2007,20(1-2):13-17
    [44]李生红,杨启明.双壁钻杆反循环钻进的优点浅析[J].中国煤田地质.1990,2(2):83-86.
    [45]孟英峰,练章华,唐波,等.反循坏钻头井底流场研究及其新产品开发[J].天然气工业,2004,24(9):51-53.
    [46]练章华,孟英峰,唐波,等.反循环空气钻井钻头结构设计及其流场分析[J].石油机械,2003,31(增刊):15-17.
    [47]王忠生,廖兵.双壁钻杆反循环空气钻井循环参数的分析与计算[J].钻采工艺,2008,31(3):1-4.
    [48]李爱军.空气钻井井眼稳定问题初探[J].西部探矿工程.1994,6(1):11-14.
    [49]项德贵,葛云华,孙梦慈,等.空气钻井井斜控制问题的探讨[J].钻采工艺,2005,28(5):1-3.
    [50]项德贵,余金海,赖晓晴,等.空气钻井在玉门青西油田的应用[J].西部探矿工程.2006-6:177-179.
    [51]唐贵,程宏英,孟英峰.气体钻井过程中的瞬态流动分析[J].钻采工艺.2006,29(2):5-6,19.
    [52]唐贵,雷桐,舒秋贵,等.气体钻井井筒与地层流动耦合分析[J].石油钻采工艺.2005,27(4):15-17.
    [53]李占彬.革命性的突破--四川油气阳应用气体钻井技术综述[J/OL].中国石油报[2006-06-20].http://www.cnpc.com.cn/Paper/2006/06/20/plate2/006.
    [54]蒋荣庆,等.冲击回转多工艺钻进方法的新发展.长春地质学院建院40周年科学研究论文集(勘察技术与方法Ⅰ)[C].长春:吉林科学技术出版社,1992.
    [55]张祖培,殷琨,等.岩土钻掘工程新技术[M].北京:地质出版社,2003.
    [56]殷琨,蒋荣庆.潜孔锤反循环钻进技术及其应用[J].探矿工程[岩土钻掘工程],1996(5):13-15.
    [57]蒋荣庆,殷琨.气动贯通式潜孔锤反循环连续取心(样)钻具系统研制及使用效果[J].地质与勘探.1996(3):55-60.
    [58]蒋荣庆,殷琨.潜孔锤多工艺钻进在水文水井及工程中的应用[J].水文地质工程地质.1998(6):51-54.
    [59]蒋荣庆等.潜孔锤钻进在复杂地层中应用[J].地质与勘探,1999,35(6).
    [60]郝树青,殷琨,高科,等.气动贯通式潜孔锤反循环连续取心(样)钻进新技术在河南钼矿中的应用[J].钻采工艺,2006,29(4):1-3.
    [61]王文龙.王禹.李永哲,等.贯通式潜孔锤反循环连续取心(样)钻井工艺在新疆某矿 区复杂地层中的应用实验[J].探矿工程(岩土钻掘工程),2006(2):54-56.62.
    [62]何宜章.潜孔锤技术及其国内市场分析[J].岩石钻凿工程,2000(5):25-29.
    [63]耿瑞伦.潜孔锤(冲击器)的应用领域[J].新疆石油科技,2006,16(2):13-17.
    [64]陈丽霞,刘清友,单代伟.气动冲击器研究现状及发展趋势[J].石油矿场机械.2007,36(6):19-22.
    [65]胡铭,董鑫业.瑞典高风压潜孔凿岩钻具[J].矿山机械,2005(6):15-18.
    [66]http://www.cgs.gov.cn/JRgengxin/8-1760.htm.
    [67]http://old.cgs.gov.cn/NEWS/Geology/2007/20070122.htm.
    [68]张鲲鹏,薛飞,潘卫明,等.高压气体引射器的试验研究和仿真[J].热科学与技术.2004,3(2):133-138.
    [69]廖达雄,任泽斌,余永生,等.等压混合引射器设计与实验研究[J].强激光与粒子束.2006,18(5):729-732.
    [70]廖达雄.引射器性能优化和增强混合方法研究[D].西安:西北工业大学,2006.
    [71]王如生,殷琨,王茂森,等.贯通式潜孔锤钻头钻进复杂地层防卡堵试验研究[J].煤矿机械.2005,7:40-43.
    [72]晁文学,林勇.国外空气钻井钻头的研究与应用[J].石油钻探技术,2001,29(1):39-40.
    [73]http://www.drillking.net/hbgeni.html
    [74]http://www.centerrock.com/
    [75]赵承庆,姜毅.气体射流动力学[M].北京:北京理工大学出版社,1998.
    [76]董志勇.射流力学[M].北京:科学出版社.2005.
    [77]陆宏圻,等.喷射技术理论及应用[M].武汉:武汉大学出版社,2004.
    [78]林建忠,等.流体力学[M].北京:清华大学出版社.2005.
    [79]钱翼稷.空气动力学[M].北京:北京航空航天大学出版社,2004.
    [80]郝树青,殷琨,王清岩.反循环钻头引射孔倾角的仿真分析[J].煤田地质与勘探,2006,34(4):77-79.
    [81]郝树青,殷琨,王清岩,等.引射孔倾角与孔径对钻头体反循环形成影响的仿真分析与实验研究[J].探矿工程(岩土钻掘工程),2006(5):37-41.
    [83]郝树青,殷琨,王清岩,等.潜孔锤反循环钻头体的改进与内部流场的仿真分析[J].世界地质,2007,26(1):98-101.
    [84]陆润林,郭秉荣译.射流工程学[M].北京:科学出版社,1977.
    [85]平浚.射流理论基础及应用[M].北京:宇航出版社,1995.
    [86]余常昭.紊动射流[M].北京:高等教育出版社,1993.
    [87]董志勇.冲击射流[M].北京:海洋出版社,1997.
    [88]徐惊雷,徐忠,肖敏,等.冲击射流的研究概述[J].力学与实践.1999,21(6):8-16.
    [89]Faggiani S,Grass W.Impinging liquid jets on heated surface[C].9~(th) Int.Heat Transfer Conference:Israel,1990
    [90]耿铁,李德群,周华民,等.冲击射流换热数值模拟技术研究概述[J].航空制造技术.2006(2):77-79.
    [91]刘国勇,李谋渭,王邦文,等.缝隙冲击射流换热数值模拟[J].北京科技大学学报.2006,28(6):581-586.
    [92]牛珏,温治,王俊升.圆形喷口紊流冲击射流流动与传热过程数值模拟[J].冶金能源.2007,26(1):16-20.
    [93]陈庆光,王涛,吴玉林,等.三维湍流冲击射流流动与传热特性的数值研究[J].空气动力学学报.2006,24(2):227-231.
    [94]http://www.chem17.com/st99813/Article_18410.html南京亿源仪表有限公司
    [95]http://www.shrhyb.com上海荣华仪表厂
    [96]刘欣荣.流量计第二版[M].北京:水力水电出版社,1990.
    [97]吴子牛.计算流体力学基本原理[M].北京:水力水电出版社,1990.
    [98]王福军.计算流体动力学分析-CFD软件原理与应用[M].北京:清华大学出版社,2004.
    [99]王瑞金,等.FLUENT技术基础与应用实例[M].北京:清华大学出版社,2007.
    [100]韩占忠,等.FLUENT流体工程仿真计算实验与应用[M].北京:北京理工大学出版社,2004.
    [101]周天孝,白文.CFD多块网格生成新进展[J].力学进展.1999,29(3):344-365.
    [102]FLUENT6.3 User's Guide.FLUENT Inc,2006.
    [103]FLUENT Inc.GAMBIT Modeling Guide.FLUENT Inc,2003.
    [104]刘星,卞恩荣,朱金福.非结构网格生成技术[J].南京航空航天大学学报.1999,31(6):696-700.
    [105]刘伟,刘君,李沁.复杂外形数值网格生成技术[J].弹道学报.2000,12(4):41-43.
    [106]胡仁喜等.SolidWorks 2005中文版机械设计高级应用实例[M].北京:机械工业出版社,2005.
    [107]张也影.流体力学[M].北京:高等教育出版社.1998.
    [108]Cooper D,Jackson D C,Launder B E,etal.Impinging jet studies for turbulence model assessment Flow Field Experiments[J].International Journal of Heat and Mass Trasfer,1993,36(10):2675-2684.
    [109]陈庆光,徐忠,吴玉林,等.平面倾斜冲击射流流场的数值分析[J].工程热物理学报.2005,26(2):237-239.
    [110]李艺伟,吕文朝,廖光煊.撞击射流对流换热过程的数值实验[J].火灾科学.1997,6(2):39-47.
    [111]谢俊石,何枫.收缩喷嘴内部流道型线对射流流场的影响[J].机械开发.2000,04:42-47
    [112]陈庆光,徐忠,张永建.RNG湍流模型在冲击射流数值计算中的应用[J].力学与实践.2002,24(6):21-23.
    [113]陈庆光,徐忠,张勇建.半封闭狭缝湍流冲击射流的数值模拟[J].应用力学学报.2003,20(2):88-91.
    [114]Yakhot V,etal.Development of Turbulence Model for Shear Flows by a Double Expansion Technique[J].Phys.Fluids A,1992,7(4):1510-1520.
    [115]徐惊雷,徐忠,黄淑娟.用非线性κ-ε模型对狭缝冲击射流进行数值计算[J].西安交通大学学报.1999,33(8):106-107.
    [116]况雨春,曾恒,周学军,等.CFD在PDC钻头水力结构优化设计中的应用[J].石油机械.2006,34(2):49-51.
    [117]Ledgerwood L W.Advanced Hydraulics Analysis Optimizes Performance of Roller Cone Drill Bits[J].SPE 59111.
    [118]陈小榆,刘义军,宋晓健,等.井底漫流场数值模拟研究[J].西南石油学院学报.2002,24(1):84-86.
    [119]谢翠丽,杨爱玲,陈康民.钻头头部旋转流场影响因素及优化设计[J].水动力学研究与进展.2003,18(6):769-773.
    [120]谢翠丽,杨爱玲,陈康民.旋转钻头井底流场的初步数值研究[J].石油钻探技术.2002,30(3):6-8.
    [121]苏义脑,周川,窦修荣.空气钻井工作特性分析与工艺参数的选择研究[J].石油勘探与开发.2005,32(2):86-90.
    [122]Boyun Guo,Ali Ghalambor.Gas Volume Requirements for Underbalanced Drilling 胥思平译.欠平衡钻井气体体积流量的计算[M].北京:中国石化出版社,2006.
    [123]王存新,孟英峰,姜伟,等.气体钻井中井眼温度变化及其对注气量的影响[J].天然气工艺,2007,27(10):67-69.
    [124]胡小房.干空气钻井中环空携岩理论研究[J].石油钻井工程.1996,3(2):1-7
    [125]罗世应.欠平衡钻井理论研究及数模[D].成都:西南石油学院,1999.
    [126]高如军,何世明,朴成中等.气体钻井环空岩屑颗粒碰撞对井壁稳定性的影响[J].钻井液与完井液,2007,24(增刊):69-71.
    [127]刘刚,朱忠喜,张迎进,等.空气钻井中的压力及注气量问题研究[J]. 钻采工艺,2005(3):4-6.
    [128]王存新,孟英峰,邓虎,等.气体钻井注气量计算方法研究进展[J].天然气工艺,2006,26(12):97-99.
    [129]JOHNSON P W.Cleaming Criteria and Minimum Flowing Pressure Gradients[J].The Journal of Canadian Petrol Technology,1995(5):18-26.
    [130]袁兆广,周开吉,孟英峰,等.气体钻大斜度水平井最小气量计算方法研究[J].天然气工艺,2007,27(4):65-68.
    [131]任双双,刘刚,沈飞,等.空气钻井最小排量研究与应用[J].内蒙古石油化工,2006(3):94-95.
    [132]毕雪亮,陶丽杰,翟洪军,等.空气钻井最小流量计算的修正模型[J].断块油气田,2008,15(2):86-87.
    [133]蒋宏伟,邢树宾,王克雄,等.空气钻井最小注气量和地层出水量关系研究[J].大庆石油地质与开发,2008,27(2):106-109.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700