用户名: 密码: 验证码:
层序地层自动划分与对比方法研究及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
层序地层单元的划分、对比在油气勘探中是必不可少的步骤之一,因此,开发出具有实际生产价值的层序地层单元自动划分、对比分析技术是十分必要的。本文以小波变换理论为依据实现了GR、SP曲线数据融合、层序地层单元自动划分;根据层序地层单元自动划分结果,使用动态波形匹配算法实现了层序地层单元的自动对比,在二者结合的基础上,提出了一套层序地层单元自动划分、对比方法。为了综合利用测井曲线中的层序地层特征信息,提升层序地层单元划分、对比的准确性和可靠度,使用基于小波多尺度边缘检测的模极大值原理,实现了测井曲线的数据融合,并采用信息熵和方差作为评判标准,说明了数据融合过程中不同尺度融合曲线的选取原则及最优权值的选取。提出了归一化最大谱能法确定最佳尺度,并使用最佳尺度对应的小波系数划分层序地层单元。对比了Morlet、DMeyer和Mexihat小波对三种典型沉积特征井段进行层序地层单元划分的结果,得出Mexihat的划分结果准确而且性能比较稳定,适合进行层序地层单元的划分。最后,提取自动划分后的层序地层单元测井曲线特征参数,应用动态波形匹配算法,通过特征参数的匹配,实现了层序地层单元的连井对比。应用上述方法,在乌马营—舍女寺地区选取三条剖面,对其进行层序地层单元的自动划分和对比,自动划分和对比结果符合乌马营—舍女色地区沙三段沉积过程,说明该方法的正确性。最后在黄骅坳陷孔南地区沙河街组的7条格架剖面上,应用本文的层序地层自动划分与对比方法,建立了等时地层对比格架,并对该区域的旋回对比情况进行分析,加深了对该区油气藏发育模式的认识。
With the growth in demand for resources,and the development in the exploration technology,a large amounts of geology data should be systematic analyzed,extracting more useful geology information for a more effective exploration and utilization of oil and gas resources.Sequence stratigraphy correlation is one of the necessary steps in oil and gas exploration,we can study the change in reservoir,and identify the distribution of the connectivity layer of oil and gas situation,search for beneficial oil and gas areas from sequence stratigraphy correlation.This study will provide useful evidence for effective exploitation of oil and gas.
     Although the sequence boundary's identification and stratigraphy correlation methods have made the certain progress,but the technology has been not mature enough by now.At present,in the study of sequence stratigraphy,the division of sequence stratigraphy and the wells tie is mainly accomplished by the geology analyzer,but the quality of the results of the analysis depends on the the knowledge structure and experience of the analyzer,the result is subjective.The same block in the same area,the resultes from the different geology analyzers are different,and the working strength is very big.Therefore,it is necessary to develop a practical sequence stratigraphy auto correlation methods,the methods will have important theoretical and practical value.
     Based on the modulo maximum principle about wavelet multi-scale edge detection, multi-logging curves data fusion is realized.In order to enhance the accuracy and reliability of the sequence stratigraphy division and correlation,we need to extract the advantages of different logging curves,and fuse the advantages into one curve,use it to automatically divide and correlate sequence stratigraphy.The research analyzed several types of logging curve that is frequently used,in which natural gamma ray curve(GR) and spontaneous potential curve(SP) can be a very good reflection about the change of clay content in stratigraphy,it is beneficial to divide and correlate sequence stratigraphy.We need to integrate the two curves together,using the advantages of GR in the high-frequency and the advantages of SP in low-frequency.This research is based on the wavelet decomposition and reconstruction,using the wavelet multiscale edge detection, decomposites GR and SP after de-noising and normalization by the dyadic wavelet,askes the approximation coefficient matrix and detail coefficient matrix after decomposition in every scalees modulus maxima and location,and compare GR and SP's detail coefficient modulus maximum maxima,using the maximum method we can get the fusion detail coefficient modulus maximum maxima,then,using the optimal weighted method we can get the fusion approximation matrix to the approximation coefficient modulus maximum maxima in the two curves' same scale,the last,based on approximation coefficient modulus maximum maxima and detail coefficient modulus maximum maxima,applicate the Mallat alternation foldover algorithm to wavelet reconfiguration,we can get the different scalees fusion curves.
     Using the message entropy and variance as the yardstick,illustrates different scalees fusion curves'selecting principle and the optimal weight's selecting principle after data fusion.The message entropy and variance are the important target to measure the signal message abundance degree.The message entropy and variance are bigger,the message is more.Comparing the message entropy and variance in different scalees after the fusion, along with the decomposition scale increasing,the message entropy and variance is less,it illustrates that the scale increases then the fusion curves' message is less.The minimal scale fusion curve should be selected as a standard for dividing the stratigraphic sequence.In the process of the data fusion,for the reasonable assigning weight to GR and SP's approximation coefficient,in accordance with the certain grading step size,we can assign weight to GR and SP's approximation coefficient matrix to get the fusion curve. Through calculating the different weight fusion curves' message entropy,variance and time-frequency color spectrum,we discover that the message entropy and variance increase along with increasing the GR's value and decreasing the SP's weight.That illustrates that we can finally choose the GR's weight is 0.7,the SP's weight is 0.3 as the fusion curve's optimal weight when the fusion curve's message increases and combinate the time and the black contour's message in the frequency color spectrum.
     This research proposes normalization maximal energy spectrum to define the best scale,and use the optimal scale correspondence wavelet coefficient to divide stratigraphic sequence.In the process of using the wavelet transform dividing the stratigraphic sequence,it is important to choose the wavelet coefficient,choosing the wavelet coefficient is the same as choosing the scale correspondence wavelet coefficient.From the viewpoint of Fourier series expansion and spectrum energy,the optimal scale and the optimal scale factor correspondence spectrum energy accounts for the entire frequency band's total energy's proportion is the largest,that is the "normalization the maximal energy spectrum".Using the normalization wavelet coefficient frequency spectrum,we can search the maximal value of the energy in the scope of the wavelet scale.The maximal value correspondence wavelet scale is the optimal scale factor.Firstly,choose a wavelet to transform the logging signal,secondly,square the wavelet transform coefficient's modulus maxima,differentiate and eliminate DC components,calculate the normalization wavelet coefficient frequency spectrum,finally,search the optimal scale in the scope of the wavelet scale.
     By comparing the results of Morlet,DMeyer and Mexihat wavelet carrying on the sequence stratigraphy unit division among three kinds of wells with typical sedimentary characteristics,it can be concluded that using Mexihat to distinguish is accurate,and the performance is stable and suitable to carry on the sequence stratigraphy unit division. Using the above three wavelets to transform the fusion curve of the three kinds of wells with typical sedimentary characteristics,based on the time frequency color spectrum information of wavelet coefficient and normalization the maximal energy spectrum the most superior criterion and the corresponding wavelet coefficient can be determined,and the sequence stratigraphic units can be distinguished based on wavelet coefficient.When Morlet and DMeyer wavelet are used to distinguish the sequence stratingraphic units,the extrem point of the wavelet coefficient criterion is used as the demarcation of the sequence stratigraphic units,While Mexihat wavelet uses the slope throught the zero of the wavelet coefficient to distinguish the sequence stratigraphic units.By using the methods mentioned above to correlation the results of three wavelets carrying on the sequence stratigraphic unit sedimentary characteristics,it can be concluded that Morlet wavelet can not make an accurate distinction among the wells with the characteristics of the longer mudstone,and DMeyer wavelet can not distinguish the wells of interbreeded thin sandstone and mudstone accurately,while Mexihat wavelet can distinguish the sequence stratingraphic units accurately among the three kinds of wells with different sedimentary characteristics,which can be used to distinguish the sequence stratigraphic units among the related wells in the research area.
     Applying the dynamic waveform matching algorithm realizes well tie correlation.Fit the fusion curves of two wells respectively,and then extract curve characteristic parameters from fitting curves which correspond to each distinguished sequence stratigraphic units.The characteristic parameters of logging well curves usually include depth,thickness mean of curves,standard deviation,the curve slope fitted by straight lines,curves patterns,and so on.Using these characteristic parameters can realize the correlation among the different stratigraphy in the dy(?)ic wave matching way.During the process of correlation,a 'matching cost' is required when contrasting every two layers. If the total matching cost reaches the minimum number,the matching relationship between the layers of the two wells is the perfect one on such an occasion.
     Apply the above fusion methods of the logging well curves to obtain the fusion curves,distinguish the sequence stratigraphic units by the multi-criterion wavelet transformation and normalization the maximal energy spectrum,and auto correlate the sequence stratigraphic units with the dynamic wave matching way.First,choose three sections in the area of the Wu Maying—She Nvsi,and distinguish and correlation the sequence stratigraphys of the three parts automatically.Then,illustrate the correctness of the method based on the auto division and correlation results according with the sedimentary process of the three parts in the area of the Wu Maying—She Nvsi.Finally, on the seven framework section in the Shahe jie Formation of Kongnan area of Huanghua depression,apply the methods mentioned above to establish isochronstratigraphy correlation framework,and analyze the cycle correlation in that area,which deepens the cognition to the gas resource developmental mode.
     The method of auto division and correlation of sequence stratigraphy units mentioned above in this paper are an effective supplements,which can strengthen the reliability, objectivity of the stratigraphic correlation,and improve the stratigraphic correlation efficiency.These explorations provide a new way of thinking and an effective way to auto division and correlation the sequence stratigraphy and establish isochronstratigraphy correlation framework。
引文
[1]Adel Malallah,et al. Multiscale integration using Markov Random Fields and Markov Chain Monte Carlo:A field application in the Middle-East[J]. SPE 81544,2003: 14-21.
    [2]Andreas P.,Franz B.. Detection of nonstationarities in geological time series:wavelet transform of chaotic and cyclic sequences[J]. Computers&Geosciences,1996;22(10): 1097-1108.
    [3]Benveniste A,Nikoukhah R,Willsky A S. Multiscale system theory[R]. In: Proc.29th IEEE Conference on Decision and Control, Honolulu,HI,1990: 2484-2487.
    [4]Bruno Aiazzi,Luciano Alparone,Fabrizio Argenti. Wavelet and pyramid techniques for multisensor data fusion:a performance comparion varying with scale ratios[A]. Proc.SPIE[C],Florence,Italy, 1999,3871:251-262.
    
    [5]Chui C K. An introduction to wavelets[M]. NewYork:A2 Cadamic Press, 1992.
    [6]Daubechies I. Ten lectures on wavelet[M]. Philadephia, Pennsylvania: Society for Industrial and Appl,1992.
    [7]Duan T.Z.,Cedric M.G,Sverre O.J..High frequency sequence stratigraphy using syntactic methods and cluster applied to the upper limestone coal group of Kincardine Basin,United Kingdom[J].Mathematical Geology,2001, 33(7): 825-843.
    [8]Embry A.F..Sequence boundaries and sequency hierarchies: problems and proposals[J]. In:Sequency Stratigraphy on the Northwest European Margin.Amsterdam:Elsevier, 1995:1-11.
    [9]Guan L.,Du Y., Li L.. Wavelets in petroleum industry:past, present and future[J].SPE89952, 2004: 1-9.
    [10]Isha Sahni,Horne R.N.. Multiresolution wavelet analysis for improved reservoir description[J]. SPE Reservoir Evaluation&Engineering, 2005: 53-69.
    
    [11]Lee S.H.. Multiscale data integration using Markov Random Fields[J]. SPE76905, 2002: 68-78.
    [12]Mallat S G. A compact multiresolution representation:the wavelet model[J]. Dept.Of Computer and Info.Science.U.OfPenn.,Ms-CIS-87-22, GRASPLAB 113, 1987.
    [13]Mallat S. Complete signal representation with multiscale edges[J]. NYU, Computer Science Tech.Report, 1989: 483-495.
    
    [14]Mallat S. Multiresolution approximation and wavelets[J]. Trans.Amer.Math.Soc, 1989, 315:69-88.
    [15]Mallat S. Zero-crossings of a wavelet transform[J]. IEEE Trans on Information Theory, 1991, 37(4): 1019-1033.
    [16]Mann C.J.,Dowell J.T.P.. Quantitative lithostratigraphy correlation of subsurface sequence[J]. Computers and Geosciences, 1978, 4:295-306.
    [17]Olea R.A. Lithostratigraphic correlation of wireline logs from the Mac Arthur River field, Alaska,using CORRELATOR[R]:Technical Report prepared for Marathon Oil Company.Kansas Geological Survey, Lawrence, Kansas, 1989a.
    [18]Olea R.A.,1989b,Lithostratigraphic correlation of wireline logs from the Seminole field,West Texas,using CORRELATOR computer system[R]:Technical Report prepared for Marathon Oil Company.Kansas Geological Survey, Lawrence, Kansas, 1990.
    [19]Olea R.A.,1991, Lithostratigraphic correlation in the Lawrence Field,Illinois,using the CORRELATOR computer system[R]:Technical Report prepared for Marathon Oil Company. Kansas Geological Survey, Lawrence, Kansas, 1991.
    [20]Olea R.A.Computer-assisted fault modeling with an application to the Dolly Sector of the MacArthur River field,Alaska[R]:Technical Report prepared for Marathon Oil Company.Kansas Geological Survey, Lawrence, Kansas, 1990.
    [21]Olea R.A.CORRELATOR—an Interactive Computer System for Lithostratigraphic Correlation of Wireline Logs[R]:Kansas Geological Survey.Petrophysical Series 4, Lawrence, Kansas, 1988.
    [22]Olea R.A.Expert systems for automatic correlation and interpretation of wireline logs[J].Mathematical Geology, 1994, 26(8): 879-897.
    [23]Olea R. A .Lithostratigraphic correlation of geophysical well logs from the North Sea using the CORRELATOR program[R]:Study prepared for Unocal Corporation.Kansas Geological Survey, Lawrence,Kansas, 1988c.
    [24]Olea R.A.Lithostratigraphy of the Loreto Formation in the area Cruceros-Punta del Cerro, Chile,using CORRELATOR(in Spanish)[R]:Technical report prepared for Empresa Nacional del Petroleo, Chile.Kansas Geological Survey, Lawrence, Kansas, 1988b.
    [25]Petrou M,Stassopoulou A. Advanced techniques for fusion of information in remote sensing:an overview[A]. Proc.SPIE[C], Florence, Italy, 1999, 3871:264-275.
    [26]Piotr Mirowski,Nikita Seleznev,David S.McCormick et al. New Software For Well-To-Well Correlation Of Spectroscopy Logs[R]. AAPG Computer Applications in Geology, 2005.
    [27]Rudman A.J.,Lankston R.W..Stratigraphy correlation of well logs bycomputer techniques[J]. AAPG Bulletin, 1973, 57:577-588.
    [28]Sackin M J,Sneath P H A,Merriam D F. ALGOL program for cross-association of numeric sequences using a medium size computer[R]. Kansas Geological Survey, 1965: 23-37.
    [29]Santoso S , Powers E J , Hofmana P. Power quality assessment via wavelet transform analysis [J]. IEEE Trans on Power De21ivery, 1996, 11(2): 924-930.
    
    [30]Startyman R.A.,Kuo T.B.. An rule-based system for well log correlation[J]. SPE15295,1987:66-78.
    [31]Stefan M.L.,Ian D.B.. Well-log correlation using a back-propagation neuralnetwork[J]. Mathematical Geology, 1997, 29(3): 413-424.
    [32]Vail PR, et al. The stratigraphic signatures or tectonics,eustasy and sedimentology an overview[M]. In:Cycles and Events In Stratigraphy, New York:Springer Verlag, 1991:611-659.
    [33] Vail P.R.,Mitch R.P.Thomposon S.. Seismic stratigraphy and global changes of sea level[J]. AAPG Bulletin, 1977, 26:63-82.
    [34]Vail P.R., et al. Seismic stratigraphy and global changes of sea level[M]. In:Seismic stratigraphy applications to hydrocarbon exploration,Am.Assoc Petrol.Geol.Mem. 1997, 26: 49-212.
    [35]Vincent, Gartner, Attali.An approach to detailed dip determination using correlation by pattern recognition[J].Journal of Petroleum Technology, 1979(2): 232-240.
    [36]Zeev Berman, John S. Properties of the multiscale maxima and zero-crossings representations[J]. IEEE Trans on Signal Processing, 1993, 41(12): 3216-3231.
    [37] Zhu Hailong, Kwok J T. Improving de-noising by coefficient de-noising and dyadic wavelet transform pattern recognition[C]. New York: Proceedings of Internation-al Conference on Pattern Recognition,2002,2:273-276.
    [38]毕为民,唐炬,姚陈果.基于熵阈值的小波包变换抑制局部放电窄带干扰的研究[J].中国电机工程学报,2003,23(5):128-131.
    [39]操应长,姜在兴,夏斌等.利用测井资料识别层序界面的几种方法[J].石油大学学报(自然科学版),2003,27(2):23-26.
    [40]陈茂山.测井资料的两种深度域频谱分析方法及在层序地层学研究中的应用[J].石油地球物理勘探,1999,34(1):57-64.
    [41]陈锡民,徐文立.基于地层一致性检验的测井信号地层自动对比算法[J].石油地球物理勘探,1998,33(6):775-781.
    [42]陈宵雅,金心宇.结合 MATLAB 的虚拟仪器技术在谐波测量系统中的应用[J].电测与仪表,2006,42(4):23-26.
    [43]陈一鸣,王向公,刘子云.利用有序元素最佳匹配法进行地层对比[J].江汉石油学院学报,1990,12(1):33-39.
    [44]陈正星.小波分析算法与应用[M].西安:西安交通大学出版社,1998:15-36.
    [45]房文静,范宜仁,邓少贵,等.测井多尺度分析方法用于准层序自动划分研究[J].地球物理学进展.2007,22(6):1809-1814.
    [46]付正文,邹长春,尉中良等.利用小波变换检测超声成象测井图象边缘的研究[J].现代地质,2002,16(3):322-32.
    [47]葛哲学,陈仲生.MATLAB时频分析技术及其应用[M].北京:人民邮电出版社,2006.
    [48]耿耀辉,许少华.模式识别在测井曲线地层对比中的应用[J].大庆石油学院学报,1995,19(4):34-37.
    [49]郭计云,王福明.基于小波变换的信号去噪方法研究[J].科技情报开发与经济.2007,17(6):202-203.
    [50]胡昌华,李国华,刘涛,等.MALAB 6.X的系统分析与设计—小波分析[M].西安:西安电子科技大学出版社,2004.
    [51]胡昌华.基于MATLAB的系统分析与设计——小波分析[M].西安:西安电子科技大学出版社,1999,6-12.
    [52]黄捍东,胡光岷,贺振华,等.测井约束多尺度储层厚度反演[J].成都理工学院学报,1999,26(4):343-347.
    [53]黄捍东,魏修成,叶连池,等.利用多尺度边缘检测研究碳酸盐岩裂缝分布[J].物探化探计算技术,2002,22(1):21-25.
    [54]姜在兴,李华启,王留奇等.层序地层学原理及应用[M].北京:石油工业出版社,1996:22-53.
    [55]姜在兴.沉积学[M].北京:石油工业出版社,2003:257-258.
    [56]焦翠华,李冰.零通小波用于测井曲线多尺度分层[J].测井技术,1999,23(3):173-175.
    [57]李凤杰,王多云,郑希民,等.测井曲线频谱分析在含煤地层沉积旋回研究中的应用[J].煤田地质与勘探,2003,31(6):14-18.
    [58]李江涛,余继峰,李增学.基于测井数据小波变换的层序划分[J].煤田地质与勘探,2004,32(2):48-50.
    [59]李庆谋,刘少华.地球物理测井序列的小波波谱方法[J].地球物理学进展,2002,17(1):78-82.
    [60]李卫斌,张顺利,解争龙等.基于小波分析与方向模板的SAR图像融合技术研究[J].计算机应用研究,2007,24(3):280-282.
    [61]李文厚.陇东地区长6-8油层组沉积、储层特征及压裂地质研究[D].西北大学,2004.
    [62]李霞.测井多尺度分析方法在层序地层分析中的应用[D].东营:中国石油大学,2005.
    [63]李霞,范宣仁,邓少贵等.利用测井资料研究层序的方法述评[J].测井技术.2006,30(5):411-415.
    [64]李霞,周灿灿,范宜仁,等.基于零通小波变换的测井层序地层自动划分研究[J].石油天然气学报(江汉石油学院学报),2008,30(6):87-90.
    [65]李新虎,祁云望.测井曲线形态的自动识别方法研究[J].大庆石油地质与开发,2006,25(5):116-118.
    [66]林卉,杜培军,张莲蓬.基于小波变换的遥感影像融合与评价[J].煤炭学报,2005,30(3):332-336.
    [67]林渊,肖峰,郑宾,等.小波变换阈值降噪方法及在武器自动机数据处理中的应用[J].电子测量技术,2009,32(1):128-130.
    [68]刘爱锋.测井资料归一化方法探讨[J].中国石油大学胜利学院学报.2008,22(2):14-16.
    [69]刘文涛,宋文爱.信号消噪的小波处理方法研究[J].弹箭与制导学报,2008,28(2):212-214.
    [70]刘招君,董清水,王嗣敏等.陆相层序地层学导论应用[M].北京:石油工业出版社,2002:4-7.
    [71]陆基孟.地震勘探原理[M].东营:中国石油大学出版社,2006.
    [72]罗光坤.Morlet小波变换理论与应用研究及软件实现[D].南京航空航天大学,2008.
    [73]马正.油气测井地质学[M].武汉:中国地质大学出版社,1994:71-73.
    [74]潘保芝,薛林福,李舟波,等.地层的自动分级对比技术[J].长春科技大学学报,2001,31(4):391-394.
    [75]秦世茂,夏小裕,阴焕荣.非线性小波变换阈值法去噪在工程中的应用[J].山西建筑,2008,34(18):120-122.
    [76]邵才瑞,李洪奇.人工智能地层对比专家系统原理[J].石油物探,2000,39(1):77-84.
    [77]石万忠,李举子,李万溪.时一频分析在高分辨率层序地层学中的应用[J].石油与天然气地质,2001,22(3):234-237.
    [78]苏维均,周莺.小波变换阈值降噪方法及在工程中的应用[J].软件天地,2008:281-283.
    [79]孙延奎.小波分析及其应用[M].北京:机械工业出版社,2005:3-17,31-80,220-233.
    [80]汪炳柱,王硕儒.神经网络法在测井曲线对比中的应用[J].石油地球物理勘探,1994,29(增刊):80-85.
    [81]王贵文,邓清平,唐为清.测井曲线谱分析方法及在沉积旋回研究中的应用[J].石油勘探与开发,2002,29(1):93-95.
    [82]王红罡,吕炳全,孙小刚.长庆气田储层的高频层序地层学分析[J].同济大学学报,2000,28(5):542-546.
    [83]王鸿祯,史晓颖,王训练,等中国层序地层研究[M].广州:广东科技出版社,2000.
    [84]王茜.小波变换及其在信号去噪中的应片j[J].苏州科技学院学报(工程技术版).2005,18(4):88-90.
    [85]王香文,杜明亮,于文芹.灰色关联法在地层对比中的应用及其改进[J]测井技术.2006,30(2):126-128
    [86]魏文畅,杨俊杰,蔡建立.基于小波变换的半软阈值参数算法研究[J].计算机工程与应用,2009,45(1):73-76.
    [87]文政,雍世和,王中文.应用测井资料定量识别沉积微相[J].沉积学报,1996,14(1):40-46.
    [88]文政,朱筱敏,金明玉,等.基于测井数据Hilbert-Huang变换的地层层序划分[J].测井技 术,2007,31(6):533-536.
    [89]吴效明,韩超,岑人经.颈动脉搏特征提取的小波变换分析方法[J].医用生物力学.1996,11(2):87-91.
    [90]谢仕民,王子静,钟钧宇,等.小波降噪技术在地磁数据库预处理中的应用研究[J].战术导弹控制技术,2008,30(2):15-18.
    [91]许少华,蔺景龙,杨景强.小波分析在测井资料高分辨率处理中的应用[J].大庆石油地质与开发,1997;16(4):66-69
    [92]薛蕙,杨仁刚.利用Morlet连续小波变换实现非整次谐波的检测[J].电网技术,2002,26(12):41-44.
    [93]阎辉,李鲲鹏,张学工,等.测井曲线的小波变换特性在自动分层中的应用[J].地球物理学报,2000,43(4):568-573.
    [94]阎辉,张学工,张贤达.基于小波变换的自适应多井对比技术[J].石油物探,2001,40(1):49-55.
    [95]杨郭悌,陈斌.动态规划简介[M].沈阳:辽宁教育出版社,1985:1-14.
    [96]易鸿.基于小波分析对信号噪声的处理[J].四川文理学院学报(自然科学),2008,18(2):33-36.
    [97]余厚全,刘益成,黄载禄.小波变换用于地震测井信号的多分辨率分析[J].石油地球物理勘探,1994,29(4):441-448.
    [98]余继峰,李增学.测井数据小波变换及其地质意义[J].中国矿业大学学报,2003,32(3):336-338.
    [99]袁晓,虞厥邦.基于Bubble函数的子波构造[J].信号处理,1999,15(1):37-41.
    [100]张学庆,肖慈珣,刘争平.小波神经网络在测井油水解释中的应用[J].物探化探计算技术,2002,24(2):116-118.
    [101]张占松,张超谟.一种交互式等序倾角测井相关对比方法[J].测井技术,1997,21(3):173-178.
    [102]张占松.测井资料识别层序的方法及问题探讨[J].石油勘探与开发,2000,27(5):119-121.
    [103]郑楠,张德强小波分析及Matlab仿真在信号检测方面的应用研究[J].辽宁工业大学学报(自然科学版),2008,28(5):316-318.
    [104]朱剑兵,纪友亮,赵培坤,等.小波变换在层序地层单元自动划分中的应用[J].石油勘探与开发,2005,32(1):84-85.
    [105]朱剑兵,纪友亮.红柳地区垦东6井声波测井资料识别层序地层单元界面的数学方法[J].成都理工大学学报(自然科学版),2005,32(6):644-648.
    [106]朱剑兵,赵培坤.利用测井曲线活度划分准层序[J].新疆石油地质,2005,26(4):426-427.
    [107]朱来东,廉小亲,江远志,等.小波变换在信号降噪中的应用及MATLAB实现[J].北京工商大学学报(自然科学版),2009,27(2):46-49.
    [108]宗孔德,胡广书.数字信号处理[M].北京:清华大学出版社,1986:37-143.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700