用户名: 密码: 验证码:
复杂山地自定位无缆地震仪的研究与实现
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文在分析了数字地震勘探仪器的发展概况和复杂山地地震采集实践的基础上,提出了复杂山地无缆地震仪的设计思想。采用数字存储式独立地震仪结构构建无缆地震勘探仪器野外采集站,通过采集站内置海量Flash存储器和GPS定位高精度同步授时技术,实现野外地震数据的同步采集和长时间存储,从而摆脱传统地震仪中沉重的电缆线,实现无缆化设计。同时,通过GPS静态相对定位技术实现了所有野外采集站的空间三维位置测量,取代了繁琐的地质测量工作。
     本文以32位RISC型ARM处理器为核心构建了嵌入式Linux硬件平台,结合24位A/D、FPGA以及CF卡海量存储技术完成了单站4通道采集能力的无缆地震采集站的设计。在此基础上,深入研究了地震采集站的低噪声设计方法,获得了1.5μV的噪声水平;采用GPS同步授时技术与高精度实时时钟相结合的技术实现了无缆地震采集站的同步数据采集,达到了±3.2μs的同步精度;深入探讨了GPS静态相对定位原理,完成了无缆地震采集站GPS卫星观测数据的记录和处理,获得了厘米级精度的采集站空间三维位置测量信息,实现了地震勘探中地质测量工作的自动化。最后,组装了24道无缆地震仪样机并进行了实验,取得了令人满意的结果。
The demand for metal mineral increases dayly as human society leading ahead, however, the depletion of known shallow deposits and declining rates of discovery for new deposits cause the declines in base metal reserves. To meet the need of society, the exploring for deep metal mineral is underscored. Nonseismic methods—such as electromagnetic,induced-polarization, and potential-field surveying techniques—have been the geophysical backbone of mineral exploration for decades. However, the underlying physical principles of these methods impose inescapable limitations on their sensitivity and resolving power at depth. So these methods can’t detect the metal minerals below 500 metres. The seismic method from oil industry that can explore objects in depth of several kilometres with high vertical resolution can detect the minerals under 500 metres. So the seismic method is the most promising one to persue for deep exploration.
     Metal mineral always forms in terrain of complex geological conditions in China. In such terrain, the surface conditions is poor, elevation varies dramatically, vegetation develops and trafficking condition is bad. As a reslut, seismic data acquisition in such areas meet much difficulty. The explaration for oil and gas meets the same problem, as the major oil fields of China change from large-scale exploration in early years to development and management, the areas of complex topography in west and south of China become the focus for future exploration. Therefore, to carry out the seismic exploration in areas with complex topography of mountain regions is the trend of oil and gas seismic exploration for future.
     Characteristics of mountain terrain is mainly reflected in two aspects:①the terrain is complex and vicious with high mountains and deep valley. surface elevation changes dramatically, the relative elevation varies from 200 meters to 1000 meters.②the surface structure of mountains is complex and ever-changing, surface conditions is poor, such as large area of the exposed surface of high-speed formation, cave, and fracture. Valley areas are filled with gravel and sand, sediments formed by the accumulation lay in dense forest areas of gentle slope. Situations like this evoke requirment on seismic exploration instrument as following:①As for metal mineral area, the geological structure is complicated and often after a strong tectonic and magmatic activity, the mineral ore body doesn’t form into a layer as idealy, the methods and principles of seismic reflection based on the layered media can not apply to these area directly.②The terrain conditions is complex, metal ore is always formed in the output of the belt with complex terrain conditions where the field work for data acquisition is very difficult to carry out.③The targets of detection is small and the metal mineral ore is smaller than the oil deposit.④As the mine area is filled with all kinds of interferences, the ratio of signal to noise is poor and reflection recordes with good qulity can’t be attained. In spite of these conditions, the study for metal mineral deposit with 2D, 3D, and vertical seismic profile methods is conducted by researchers all over the world and obvious progress has been made.
     As for the requirements on technology above, relying on the national high technology plan (863 plan) project "Key Technology and Equipment for Metal Mineral Exploration", this paper advances the design idea of non-cable telemetry seismic instrument for complex mountain region, research on key technologies for which are carried out as followings:
     (1). The construction of ARM-Linux platform
     Based on the processor of 32-bit RISC ARM9, the non-cable telemetry seismic data collecting station is designed combining the technologies of 24-bit A/D, DA, large scale field programmable gate array and embeded ethernet. The CPU board is designed based on AT91RM9200 and has a SDRAM of 64M bytes, a flash chip of 16M bytes and a 100Mbps ethernet interface. The Linux kernel of version 2.6.12 is transplanted to the CPU board, a ramdisk file system is constructed based on BusyBox, and the driver programm for CF card in IDE mode, ethernet interace and the logic circuits designed in FPGA is finished. In addition, U-Boot is transplanted to the CPU board to implement the self-loader. Data acquisiton board is designed with 24-bit A/D and DA, and the related interface circuits are implemented with FPGA which is programmed in VHDL language.
     (2). Low-noise seismic data acquisition technology
     The seismic wave information of metal ore is very complex, multi-wave field mixed together, and the useful signal is very weak, requiring that seismic instruments for metal mining exploration have the ability of anti-interference, high sensitivity, low noise and wide dynamic range. The low noise design, wide dynamic range and high sensitivity mean the same performance: the low noise design of the circuit system. The inherent noise of electronic system is caused by the irregular movement of charged particles in resistors and semiconductor devices(thermal noise). In addition, interferences from the space environment and power supply systems will also increase the noise of the measurement system. In this paper, the Noise Coefficient is taken as the criteria to evaluate noise performance of circuit based on the En-In model for equivalent input noise. According to the principle of best noise match, amplifier with low noise level in the bandwidth of signal should be selected and the DC working point is set in order to meet: snnRE= I( Rs is the source resistance, En and In are the equivalent voltage and current of the selected amplifier ). According to the convention of seimic instrument design, as the geophone’s resistance is middle high and its output signal varies from V level toμV level, no special coupling strategy is required and the system employ the direct coupling mode.
     An analog circuit composed of a low-pass filter, programmed-gain amplifier and a differential signal conversion modules is designed based on the principle of best noise match, following which a 24-bit A/D converter is employed to constitutes a seismic data acquisition channel. According to the calculation theory of En-In noise model and the quantization noise of 24-bit A/D, the theoritical noise of data acquisition is obtained: 5.080×10 ?7V. In order to eliminate the electronic interference from space, on the one hand the long line which connect the geophone and analog circuit is shielded, and on the other hand, the analog circuit is shielded by metal shell. In addition, a two order low-pass filter is used to filter the system power ripple. At the same time, the grounding system is improved by the following methods: using the ground plane instead of grounding lines and employing multi-point grounding strategy for analog component, and as a result the interference between ground lines is brought down.
     (3). synchronous data acquisition technology among seismic acquisition stations
     For the non-cable telemetry seismograph system, the destination is to construct a 600 channels data acquisition system. Each seismic data collecting station is designed to recorde 4 channels analog signal and 150 data collecting stations in total are demanded to construct the whole system. The synchronization between these stations is a key problem. The seismic data collecting stations employ GPS receivers to achieve synchronization, when the GPS receiver captures 4 or above satellites, it uses the solution of GPS pseudo-range equations and the navigation messages to calculate the coordinated univeral time, and output a pulse per second with the precise of 50 ns. Each collecting station take this pulse as time referrence and trigger the data acquisition simultaneously at some full second to achieve the synchronization among all stations.
     However, metal mine is always formed in complex geological environment with undulating topography and much vegetation. As a result, the GPS signal is susceptible to be blocked losing the synchronous timing. So each seismic data collecting station employs a high precise RTC as the backup time base. Conventional RTC employs a low-frequency crystal oscillator to count, but because of the restriction of cutting technolgy, the quartz crystal has center frequency error and temperature drift which lead to a poor accuracy. While the counting clock of seismic data collecting station’s RTC is derived from a oven-controlled crystal osillator with the precise of 0.1ppb in order to improve the counting accuracy. When the GPS receiver lost signals from satellites, the RTC replaces the GPS receiver and serves as the backup time base for collecting stations. The error analysis and calculation obtains that the precise of synchronization is±3.2μs. Test results show that the combination of GPS time and high-precision RTC can fully realize the synchronization among collecting stations.
     (4). high-precision GPS positioning technology for seismic data collecting stations
     In order to replace the conventional geological measurement task with GPS positioning technology, accurate position information is needed. Static absolute GPS positioning has less accuracy due to the satellite orbit error, GPS receiver clock error, signal propagation error and et al. 2 or 3 channels of C/A code pseudo-range absolute positioning can attain an accuracy of±20m, which can’t meet geodesy requirement. While the technology of static relative positioning takes the carrier phase measurement as observation parameter and makes line combination of the carrier phase measurement, as a result, the errors mentioned above are significantly reduced and the static relative positioning technology is the most accurate method.
     System uses the GPS static relative positioning technology to replace conventional task of G、geological survey. GPS static relative positioning makes carrier phase measurement, the relative positions of the base line endpoints is determined through the adjacent receivers’synchronous observation of four or more same satellites, many receivers can constitute a baseline vector net. While many observation stations track the same satellites, the impact on relative observation value of satellite’s clock, receiver clock’s error and the refraction error of ionospheric and tropospheric is same or similar. Because of such relativity, making difference of carrier phase observation equations between observation stations, satellites or epoch can improve the mesurement precise of the base lines. There are three types of difference models: single difference, double difference and three difference. Finally, three-dimensional non-binding net adjustment is made to assess the measurement error and attain the three-dimensional rectangular coordinates under WGS-84 coordinate system providing precise position information for data processing. This article implement the GPS D-level network measurement based on the software of Caravel Net fulfilling the accuracy requirement of national GPS measurement norm for D-level net.
     (5). Instrument assembly and experiment.
     The prototype of non-cable telemetry seimograph with 24 channels is assembled, the system test in room and experiment combined with hammer seismic source are conducted. The result appers to be satisfactory.
     To sum up, this article advance the idea of metal mineral non-cable telemetry seismograph aiming at the metal mineral seismic exploration for the demand of metal ores of human society. The system controlling platform is constructed by employing 32-bit ARM processor combined with Linux operating system. And the 24-bit A/D combined with FPGA technology is used to design the digital interface and data acquisition system, based on which the technology of low noise analog data acquisition, the synchronization through the whole seismic data collecting stations and high precise static relative GPS positioning are studied significantly. At last, the prototype of non-cable telemetry seimograph with 24 channels is assembled and tested in room, and the experiment in field is also conducted. The promising performance parameters are fulfilled.
引文
[1] Eaton D W, Milkereit B, Salisbury M. Seismic methods for deep mineral exploration: Mature technologies adapted to new targets[J]. The Leading Edge, 2003, 22(6): 580-585.
    [2] Eaton D W. Weak elastic-wave scattering from massive sulfide orebodies[J]. Geophysics, 1999, 64(1): 289-299.
    [3] Stuart G W, Jolley S J, Polome L G. Application of 3-D seismic attributes analysis to mine planning: Target gold deposit, South Africa[J]. The Leading Edge 2000,19(7): 736-742.
    [4] Pretorius C C, Trewick W F, Fourie A, et al. Application of 3-D seismics to mine planning at Vaal Reefs gold mine, number 10 shaft, Republic of South Africa[J]. Geophysics, 2000, 65(6): 1862-1870.
    [5] Li T L, Eaton D W. Delineating the Tuwu porphyry copper deposit at Xinjiang, China, with seismic-reflection profiling[J]. Geophysics, 2005, 70(6): B53-B60.
    [6]孙明,林君.轻便可控震源与夯击震源在金属矿地震勘探中的对比实验研究[J].现代地质,2002,16(4):111-114.
    [7]林君.电磁驱动的可控震源地震勘探系统及应用[M].北京:科学出版社,2004.
    [8]孙明,林君.τ-p变换在金属矿地震数据处理中的应用[J].物探与化探,2001,25(6):35-39.
    [9]孙明,林君,陈祖斌.轻便可控震源在金属矿反射地震勘探的实验研究[J].长春科技大学学报,2001,31(4):93-96.
    [10]孙明,林君.金属矿地震散射波场的数值模拟研究[J].地质与勘探,2001,37(4):68-70.
    [11]孙明,林君,高游,张秉仁.新疆土屋斑岩铜矿区地震反射法可行性研究[J].物探与化探,2003,27(5):15-18.
    [12]梁光河,蔡新平.地震勘探在山东蓬家夼金矿深部预测中的应用[J].矿产与地质,2001,15(6):743-748.
    [13] Andrew J C, Li Y X. Case Story Seismic reflection imaging over a massive sulfide depoisit at the Matagami mining camp, Quebec[J]. Geophysics, 1999, 64(1): 24-32.
    [14] Bernd M, Eberhard B, Alan K, et al. Development of 3-D seismic exploration technology for deep nickel-copper deposits—A case history from the Sudbury basin, Canada[J]. Geophysics, 2000, 65(6):1890-1899.
    [15] Matthew H S, et.al. Physical properties and seimic imaging of massive sulfides[J]. Geophysics, 2000, 65(6):1882-1889.
    [16] Nabighian M N, Asten M W. Metalliferous mining geophysics—State of the art in the last decade of the 20th century and the beginning of the new millennium[J], Geophysics, 2002, 964(67):964-978.
    [17] Joe W. Crosshole seismic imaging for sulfide orebody delineation near Sudbury, Ontario, Canada[J]. Geophysics, 2000, 65(6):1900-1907.
    [18] Bellefleur G, Müller C, Snyder D, et al. Downhole seismic imaging of a massive sulfide orebody with mode-converted waves, Halfmile lake, New Brunswick, Canada[J]. Geophysics, 2004, 69(2): 318-329.
    [19]徐明才,高景华,柴铭涛,等.金属矿地震勘查的方法技术[J].岩土工程界,1997,6(4):41-46.
    [20]徐明才,高景华,柴铭涛,等.寻找隐伏金属矿的地震方法技术研究[J].物探与化探,1997,21(6),69-75.
    [21]徐明才,高景华.从金属矿地震方法的试验效果探讨其应用前景[J].中国地质,2004,31(1):110-114.
    [22]徐明才,高景华,荣立新,等.散射波地震方法在蔡家营多金属矿区的试验研究[J].物探与化探,2003,27(1):52-57.
    [23]高景华,徐明才,荣立新,等.小热泉子铜矿区地震方法试验研究[J].地质与勘探,2004, 40(6):49-54.
    [24]吕庆田,侯增谦,史大年.铜陵狮子山金属矿地震反射结果及对区域找矿的意义[J].矿床地质,2004,23(3):390-398.
    [25] Nelson R G. Seismic reflection and mineral prospecting[J]. ExplorationGeophysics, 1984, 15: 229-250.
    [26]吕庆田,史大年.深部矿产勘查的地震学方法:问题与前景——铜陵矿集区的应用实例[J].地质通报,2005,24(3):211-218.
    [27]勾丽敏,刘学伟,雷鹏,等.金属矿地震勘探技术方法研究综述——散射波地震勘探方法[J].勘探地球物理进展,2007,30(2):65-90.
    [28]徐明才,高景华,荣立新,等.地面地震层析技术在金属矿勘查中的试验研究[J].物探与化探, 2005,29(4):299-303.
    [29]史大年,吕庆田,徐明才.铜陵矿集区地壳浅表结构的地震层析研究[J].矿床地质,2004, 23(3):383-389.
    [30]贺冬生.复杂地形地区金属矿地震勘探资料处理的探讨[J].物探与化探,1996,16(5):391-393.
    [31]孙传友,潘正良.地震勘探仪器原理[M].东营:石油大学出版社,1996.
    [32]孙传友.遥测地震仪原理[M].东营:石油工业出版社,1992.
    [33]王文良.地震勘探仪器的发展、时代划分及其技术特征[J].石油仪器,2004,18(1):1-9.
    [34]张军,代伟民,李文清.地震勘探仪器的现状及趋势分析[J].小型油气藏,2005,10(2):64-68.
    [35]韩晓泉,穆群英,易碧金.地震勘探仪器的现状及发展趋势[J].物探装备,2008,18(1):1-6.
    [36]张万选.中国油气藏及油气资源探讨[J].断块油气田,1997,4(4):5-8.
    [37]阎世信.山地地球物理勘探技术[M].北京:石油工业出版社,2000.
    [38]李忠平.渝鄂湘山地地震勘探资料采集中的几个关键问题[J].石油物探,2000,39(4):39-48.
    [39]徐建斌,李学义,青銮文,等.四川碳酸盐岩山地地震勘探综述[J].石油地球物理勘探,2000,35(3):386-394.
    [40]丁伟.镇巴复杂山地地震采集质量影响因素分析[J].石油物探,2006,45(4):418-423.
    [41]姬小兵,尚应军,张帆.山地地震勘探数据采集技术研究[J].油气地质与采收率,2004,11(6):31-34.
    [42]孙新,刘益成.无线遥测地震仪的传输方式[J].石油仪器,1996,10(4):3-7.
    [43]易碧金.地震仪器中应用的数据传输技术[J].物探装备,2008,18(6):354-360.
    [44] ION Corporation. RSR Remote Seismic Recorder Datasheet[DB/OL]. [2009-04-12]. http://www.iongeo.com.
    [45] ION Corporation. VectorSeis System Four Datasheet[DB/OL]. [2009-04-12]. http://www.iongeo.com.
    [46] PAT R. Seismic Without Cables[J]. New Technology Magazine, 2007,April/May:1-6.
    [47] ION Corporation. FireFly Cableless Land Acquisition System Datasheet[DB/OL]. [2009-04-12]. http://www.iongeo.com.
    [48] Refracture Technology Corporation. Third Generation Broadband Seismic Recorder Model 130-01 Datasheet[DB/OL]. [2009-04-12]. http://www.reftek.com.
    [49] JGI Corporation. MS-2000D Datasheet[DB/OL]. [2009-04-12]. http://www.jgi-inc.com
    [50] Kim, N S. Leakage Current: Moore's Law Meets Static Power[J], Computer, 2003, 36(12): 68-75
    [51] Benini L, Bogliolo A, Micheli G D. A survey of design techniques for system level dynamic power management[J]. IEEE Transactions on Very Large Scale Integration Systems , 2000 ,8 (3) : 299-316.
    [52] Vasanth V, Michael F. Power Reduction Techniques For Microprocessor Systems[J]. ACM Computing Surveys, 2005, 37(3): 195-237.
    [53] SanDisk Corporation. SanDisk CompactFlash Memory Card OEM Product Manual (Version 12.0) [DB/OL]. [2009-04-12]. http://www.sandisk.com
    [54] Daniel P B, Marco C. Understanding the Linux Kernel [M]. 2nd ed. Sebastopol,CA: O'Reilly Media Inc,2003.
    [55] Gorman M. Understanding the Linux virtual memory manager[M]. Upper Saddle River,NJ: Prentice Hall PTR, 2004.
    [56] Bovet D P, Marco C.深入理解Linux内核[M].陈莉君,等译.中国电力出版社,2001.
    [57] Robert L. Linux Kernel Development[M]. Indianapolis: Sams Publishing, 2004.
    [58] Greg K H. Linux Kernel in a Nutshell[M]. Sebastopol,CA: O'Reilly Media Inc, 2006.
    [59] Labrosse J J.嵌入式系统构件[M].北京:机械工业出版社, 2002
    [60] Richard S. Unix Network Programming[M]. Upper Saddle River,NJ: Prentice Hall PTR, 1990.
    [61] Karim Y. Building Embedded Linux Systems[M]. Sebastopol: O’Reilly Media Inc,2003
    [62] Stevens R. Advanced Programming in the UNIX environment[M]. Boston: Addison-Wesley, 1992..
    [63] Maurice B. The Design of Unix Operating System[M]. Upper Saddle River,NJ: Prentice Hall PTR, 1987.
    [64]赵克佳,沈志宇,赵慧.UNIX程序设计教程[M].清华大学出版社.2001.
    [65]宋宝华. Linux设备驱动开发详解[M].北京:人民邮电出版社,2008.
    [66]李俊.嵌入式Linux设备驱动开发详解[M].北京:人民邮电出版社,2003.
    [67] Jonathan C, Alessandro R, Greg K H. Linux Device Drivers [M]. 3rd ed. Sebastopol: O’Reilly Media Inc, 2005.
    [68] [韩]俞永昌. Linux设备驱动开发技术及应用[M].李红姬,译.北京:人民邮电出版社,2008.
    [69]刘淼.嵌入式系统接口设计与Linux驱动程序开发[M].北京航空航天大学出版社.2006.
    [70]孙天泽,袁文菊,张海峰.嵌入式设计及Linux驱动开发指南—基于ARM9处理器[M].北京:电子工业出版社,2007.
    [71]毛德操,胡希明. Linux内核源代码情景分析.杭州:浙江大学出版社,2001.
    [72] Raghavan P, Amol L, Sriram N. Embedded Linux system design and development[M]. Boca Raton: AUERBACH, 2005.
    [73] Doug A. Linux for Embedded and real-time application[M]. Boston: Newnes, 2002..
    [74] Neil M, Richard S, Alan C. Beginning Linux programming [M]. 3rd ed. Eric Holmgren: Wrox Press,2004.
    [75] [美]Moshe B. Linux文件系统[M].北京:清华大学出版社,2003.
    [76]王庆海,崔占荣.试论金属矿地震勘探技术[J].物探与化探,1993,17(5): 354-361.
    [77]周平,施俊法.金属矿地震勘查方法评述[J].地球科学进展,2008,23(2):120-128.
    [78]刘士毅,张明华.中国金属矿地球物理勘查[J].地学前缘,1998,5(1):102-108.
    [79]勾丽敏,刘学伟,雷鹏,刘士军.金属矿地震勘探技术方法研究综述——金属矿地震勘探技术及其现状[J],勘探地球物理进展, 2007, 30(1):16-26.
    [80] Clayton R P. Introduction to Electromagnetic Compatibility[M]. 2nd ed. New Jersey: Wiley-Interscience, 2006.
    [81]戴逸松.电子系统噪声及低噪声设计方法[M].长春:吉林人民出版社, 1984.
    [82] Motchenbacher C D, Conneelly J A. Low-noise electronic design[M]. New York:Wiley-Interscience,1993.
    [83]戴逸松.微弱信号检测方法及仪器[M].北京:国防工业出版社,1994.
    [84]吕郊.地震勘探仪器原理[M].东营:石油大学出版社,1997.
    [85]黄先律.地震勘探仪器[M].北京:地质出版社,1987.
    [86]孙传友,潘正良.地震勘探仪器原理[M].东营:石油大学出版社,1996.
    [87] Yin G M, Willy S S. A high-frequency and high-resolution fourth-orderΣΔA/D converter in BiCMOS technology[J]. IEEE J Solid State Circuits,1994, 29(8): 857-863.
    [88] Baird R T, Feiz T S. A low oversampling ratio 14-b 500-kHzΔΠADC with a self-calibrated multibit DAC[J]. IEEE J Solid State Circuits, 1996, 31(3): 312-319.
    [89]张占松,蔡宣三.开关电源的原理与设计[M].北京:电子工业出版社,1998.
    [90] Connor F R. Noise[M]. 2nd ed. London: Edward Arnolrd, 1982.
    [91]吴永忠,韩江洪,谢华,孙秀柱.低噪声放大器设计中的屏蔽和接地技术研究[J].电测与仪表,2001,38(427):8-11.
    [92] Henry O. Noise Reduction Techniques in Electronic Systems[M]. 2nd ed. New Jersey: Wiley-Interscience, 1988.
    [93]王军,戴逸松.集成运算放大器同相和反相形式En-In噪声分析和比较[J].电子科学学刊,1998,20 (2):199-205.
    [94] Ramón P A; John G W. Analog signal processing[M]. New York: Wiley; 1999.
    [95] Karki J. Calculating noise figure in op amp[J/OL]. Analog Applications Journal, 2003, 4: 31-38. http://www.ti.com/sc/analogapps.
    [96]袁子龙,李婷婷.Σ-ΔA/D转换技术及在地震勘探中的应用[J].地球物理学进展,2004,19 (2):300-303.
    [97] Cirrus Logic Corporation. Low-power Multi-channel Decimation Filter—CS5376 Datasheet[DB/OL]. [2009-04-12]. http://www.cirrus.com.
    [98] [美]查理. A.弗格斯.电噪声手册[M].张伦,译.北京:计量出版社,1982.
    [99] CompactFlash Association. CF+ and CompactFlash Specification (Revision 4.1) [DB/OL]. [2009-04-12]. http://www.compactflash.org.
    [100]阳富民,罗飞,涂刚,等.嵌入式Linux中CF卡的驱动和管理技术研究[J].计算机工程与设计,2004,25(9):1495-1497.
    [101]吴中汉,孙志锋.嵌入式Linux下CF卡驱动程序的设计[J].计算机工程与应用,2005,18:115-116.
    [102] [美]Elliott D K, Christopher J H. Understanding GPS: Principles and Applications[M]. Norwood: Artech House,2006.
    [103]王惠南. GPS导航原理与应用[M].北京:科学出版社,2003.
    [104]李征航,黄劲松. GPS测量与数据处理[M].武汉:武汉大学出版社,2005.
    [105]聂桂根. GPS测时与共视时间传递应用及进展[J].战术导弹控制技术,2005, 49(2):28-34.
    [106] Lewandowski W, Azoubib J, Klepczynski W J. GPS: Primary tool for time transfer[J]. Proceedings of the IEEE, 1999, 87(1): 163-172.
    [107] Parkinson B W, Spilker J J. Global Positioning System: Theory and Applications (Volumes I & II)[M]. Washington DC: American Institute ofAeronautics and Astronautics,1995.
    [108]张勤,李家政,等. GPS测量原理与应用[M].北京:科学出版社,2005.
    [109]李天文. GPS原理及应用[M].北京:科学出版社,2003.
    [110]聂桂根.高精度GPS测时与时间传递的误差分析与应用研究[D].武汉:武汉大学博士学位论文,2002.
    [111]易雄书.基于GPS的OMB—TH单频网时间同步系统研究[D].西安交通大学硕士学位论文,2005.
    [112]雷振山,常贵宁.大规模测试网络的同步采样技术研究与应用[J].仪器仪表学报,2007,28(4):748-751
    [113]李建文,祖兵.高准确度宽温石英晶振热敏网络温度补偿[J].传感器技术,2004,23(5):68-71.
    [114]王喆垚,朱惠忠,董永贵,等.实现AT切石英晶体振荡器微处理器温度补偿的新方法[J].电子学报,2001,29(2):215-217.
    [115]陆基孟.地震勘探原理[M].东营:石油大学出版社, 1993.
    [116] [美]谢里夫R E,[加]吉尔达特L P.勘探地震学[M].初英,李承楚,等译.北京:石油工业出版社,1999.
    [117]何樵登.地震勘探原理与方法[M].北京:地质出版社, 1986.
    [118]孔祥元.测绘工程监理学[M].武汉:武汉大学出版社,2005.
    [119]胡晓东.三维地震勘探中的测量监理工作[J].中国煤田地质, 2007, 19(sup2): 151-153.
    [120]马云飞. GPS快速静态及RTK技术在物探中的应用研究[D].长春:吉林大学硕士学位论文,2007.
    [121]雷迎春,李素荣. GPS实时动态测量(RTK)技术在山区石油地震勘探中的应用[J].测绘工程,1999,8(2):65-70.
    [122]丁翔宇.实时动态GPS测量技术在石油物探三维地震勘探测量中的应用[J].测绘技术装备,2003,5(4):20-23.
    [123]张月增.黄土塬区地震勘探测量方法研究[J].中国煤田地质,2005,17(5):114-116.
    [124]唐东磊,李振山,杨海申.复杂山地地震采集技术[J].勘探家,2000,5(2):25-30.
    [125] Hofmann W B, Lichtenegger H, Collins J. GPS: Theory and Practice [M]. 5th ed. Ottawa, Canada: Springer Netherlands, 2001.
    [126] Remondi B W. Performing centimeter-level surveys in seconds with GPS carrierphase: initial results[J]. Journal of the Institute of Navigation,1985,32(4): 38-46.
    [127] Zumberge J F, Heflin M B, Jerrerson D C, et al. Precise point positioning for the efficient and robust analysis of GPS data from large network[J]. Journal Geophysics Res,1997,102,B3: 5005-5018.
    [128] Tranquilla J M, Al-Rizzo H M. Investigation of GPS precise relative static positioning during periods of ice clouds and snowfall precipitation[J]. IEEE Transactions on Geoscience and Remote Sensing. 1993, 31(1): 295-299.
    [129] Wu J, Lin S, Yiu F. Ambiguity and position search algorithms of GPS carrier phase processing[J]. Journal of the Chinese Institute of Engineers. 1997, 20(6): 643-650.
    [130] Goad C. Proceedings of the Third International Symposium on Inertial Techology for Surveying and Geodesy [C]. Banff, Canada: Springer Netherlands, 1986.
    [131] Cannon E, Lachapelle G, Goad C. Recovery of A 1700km baseline using dual frequency GPS carrier phase measurements[J]. The Same as,1985,18:593-602.
    [132] Kleusberg A. Precise Differential positioning and surveying[J]. GPS World,1992,3(7):50-52.
    [133] Peter J G, Teunissen A K. GPS for geodesy[M]. Berlin: Springer Verlag, 1998.
    [134] National Marine Electronics Association. NMEA0183 Specification[DB/OL]. [2009-04-12]. http://www.nmea.org.
    [135] Langley R B. The GPS receiver: an introduction[J]. GPS World, 2(1): 50-53.
    [136] Mu D F, Ic B, et al. Positioning with a single-frequency GPS receiver on the basis of the signal C/A code for the needs of field archeo-geophysical surveying[J]. Elektrotehniski Vestnik/Electrotechnical Review. 2007, 74(5): 255-260.
    [137] Habrouk H E L, Khalil R. Assessment of single frequency receivers in relativepoint positioning[J]. Alexandria Engineering Journal. 2008, 47(1): 89-101.
    [138]郑作亚. GPS数据预处理和星载GPS运动学定轨研究及其软件实现[D].上海:中国科学院上海天文台博士学位论文,2004.
    [139]周扬眉. GPS精密定位的数学模型、数值方法及可靠性理论[D].武汉:武汉大学博士学位论文,2003.
    [140] Huang S, Zhang Y. Estimation of accuracy indicators for GPS relative positioning[J]. Wuhan Cehui Keji Daxue Xuebao/Journal of Wuhan Technical University of Surveying and Mapping. 1997, 22(1): 47-50.
    [141] Janes H W. Error budget for GPS relative positioning[J]. Surveying and Land Information Systems. 1991, 51(3): 133-137.
    [142] Lau L, Mok E. Improvement of GPS relative positioning accuracy by using SNR[J]. Journal of Surveying Engineering. 1999, 125(4): 185-202.
    [143] Nielsen R O. Relationship between dilution of precision for point positioning and for relative positioning with GPS[J]. IEEE Transactions on Aerospace and Electronic Systems. 1997, 33(1): 333-338.
    [144] Peter J G, Teunissen A K. GPS for geodesy[M]. Berlin: Springer Verlag,1998.
    [145]国家测绘局测绘标准化研究所. GB/T 18314—2001全球定位系统(GPS)测量规范[S].北京:中国标准出版社,1992.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700