用户名: 密码: 验证码:
人载脂蛋白(a)羧基末端kringles对血管生长和肿瘤生长的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
血管生长在肿瘤的发生发展过程中起着不可替代的作用,因此抑制肿瘤的血管生长已经成为肿瘤治疗的一个重要研究方向。血管抑素(Angiostatin)是目前已知的研究最为明确的一种天然且有效的肿瘤血管生长抑制剂。Angiostatin是人纤维蛋白溶解酶原(plasminogen,PLG)在体内的一种降解产物,包含了PLG的kringle 1至kringle 4这四个kringles。对PLG中kringles结构的进一步研究证实其中的kringle 5也具有明显的抑制血管生长的作用。
     人载脂蛋白(a)(Apolipoprotein(a),Apo(a))是脂蛋白(a)(Lipoprotein(a),Lp(a))中的特殊的载脂蛋白。序列和结构研究发现,Apo(a)内含有多个分别与PLG中kringle4和kringle 5高度同源的kringles。我们选择了Apo(a)中与PLG同源性最高的kringleⅣ10型与kringleⅤ作为主要研究对象。首先利用毕赤酵母重组表达RHAKA、RHAKB和RHAKC这三种重组蛋白质,它们包含了人Apo(a)中kringleⅣ9型至kringleⅤ之间的不同kringles组合的。通过对重组蛋白质的结构、性质及其对血管生长的抑制情况,借以明确不同kringles在抑制血管生长中的作用;进而利用人结肠癌细胞重组表达kringleⅣ10型-kringleⅤ组合的RHAKB,通过研究RHAKB的表达对肿瘤细胞在体外和体内增殖及成瘤性的影响,旨在最终证实其对依赖血管生长的肿瘤生长的抑制效应,并探讨其在抑制肿瘤血管生长基因治疗方面的应用前景。
     鉴于Apo(a)中kringles的高重复性和高同源性,我们从人肝组织总RNA中逆转录得到人Apo(a)cDNA,首先克隆并构建了分别包含人Apo(a)cDNA中69L(10688-12355)与PL(12301-13880)这两个长片段的pMD18-T重组质粒。在此基础上,进一步克隆并构建了分别包含人Apo(a)中kringleⅤ(RHAKA)、kringleⅣ10型-kringleⅤ(RHAKB)与kringleⅣ9型-10型-kringleⅤ(RHAKC)的pPICA毕赤酵母分泌型重组表达质粒。将三种重组质粒转化毕赤酵母X-33菌株,通过Mut表型鉴定和SDS-PAGE,成功筛选到了每个RHAK分泌型重组表达的最佳酵母菌株。筛选到的酵母菌株经过大量培养以及甲醇诱导以表达RHAKs,酵母培养基中的RHAKs在饱和硫酸铵的作用下以沉淀的形式被收集与复溶。透析去除RHAKs浓缩溶液中残余的硫酸铵后,我们利用His·Bind~(?)树脂镍离子螯合柱亲和层析与反相高效液相层析纯化目的蛋白质。RHAKBN末端6个氨基酸残基的序列分析结果证实其为重组的目的蛋白质,并证实毕赤酵母分泌型信号肽α-factor在分泌表达过程中被成功剪切。
     糖基化位点预测分析结果显示,在RHAKs中存在数个N-糖基化位点和O-糖基化位点,过碘酸-Schiff试剂染色证实RHAKA与RHAKB分别得到了不同程度的糖基化。蛋白质游离巯基定量分析结果显示RHAKA与RHAKB中均无游离巯基存在,非还原型SDS-PAGE分析提示无分子间二硫键的形成。糖基化与二硫键形成是kringles主要的性质与结构特点,利用毕赤酵母分泌型重组表达保持了这些性质与结构特点。在此基础上,我们进一步研究了RHAKs对内皮细胞的增殖能力、内皮细胞的伤口迁移能力以及对鸡胚绒毛尿囊膜(CAM)新生血管的影响。结果显示,RHAKs均能不同程度地抑制体外培养的人脐静脉内皮细胞(HUVEC)的增殖,并能抑制CAM上的新生血管,但是RHAKA、RHAKB和RHAKC三者之间的抑制能力没有明显的差异。此外,RHAKB还可以明显地抑制由bFGF诱导的HUVEC迁移。肿瘤细胞增殖抑制实验则提示RHAKA与RHAKB对体外培养的人结肠癌细胞(HCT 116细胞)的增殖无影响。
     为了实现在HCT 116细胞中利用pcDNA~(TM)3.1/myc-His(-)A载体分泌型重组表达RHAKB,我们利用两步法PCR将人Apo(a)的信号肽序列添加在RHAKB序列的5'端,成功构建了重组表达质粒pcDNA3.1(-)A-RHAKB。信号肽预测分析显示在添加的人Apo(a)信号肽序列与RHAKB序列之间存在多个剪切位点;蛋白质细胞定位预测分析结果显示成熟的RHAKB将被分泌到细胞外。利用细胞免疫荧光检测瞬时转染pcDNA3.1(-)A-RHAKB的HCT 116细胞,发现RHAKB在人Apo(a)信号肽的引导下的确是以分泌形式被表达。肿瘤细胞增殖抑制实验提示,瞬时转染pcDNA3.1(-)A-RHAKB后48小时和72小时对体外培养的HCT 116细胞的增殖能力无影响。通过G 418抗性筛选,我们得到了稳定转染pcDNA3.1(-)A和pcDNA3.1(-)A-RHAKB的HCT 116细胞株,并进一步利用半定量RT-PCR和Western Blots分别从mRNA和蛋白质水平检测RHAKB在稳定转染细胞株中的转录和表达情况。通过筛选,我们选择了未转染的HCT 116细胞、稳定转染pcDNA3.1(-)A的HCT 116细胞与三株稳定表达RHAKB的HCT 116细胞接种各组裸鼠皮下,以建立肿瘤体内生长的动物模型。对各组裸鼠皮下肿瘤结节的连续测量显示:稳定表达RHAKB的HCT 116细胞在体内的肿瘤形成及生长速度明显慢于未转染和稳定转染pcDNA3.1(-)A的HCT 116细胞。肿瘤细胞接种后30日,未转染的HCT 116细胞体内成瘤体积为稳定表达RHAKB的HCT 116细胞的11倍,而稳定转染pcDNA3.1(-)A的HCT 116细胞体内成瘤体积为稳定表达RHAKB的HCT 116细胞的5倍。病理学诊断证实裸鼠皮下肿瘤组织中的肿瘤细胞与接种的肿瘤细胞一致。应用免疫组织化学检测肿瘤组织中增殖细胞核抗原(PCNA)后,发现不同肿瘤组织中处于增殖状态的肿瘤细胞数量没有明显差异。
     综上所述,通过对人Apo(a)的kringleⅣ9型、kringleⅣ10型与kringleⅤ研究结果的分析发现:
     1、毕赤酵母作为一种重组蛋白质表达宿主,可以较好的保持重组kringles蛋白质一些重要的性质和结构特点。
     2、三种重组人载脂蛋白(a)kringles蛋白质(RHAKs)均能抑制血管生长,但三者对血管生长的抑制能力没有明显差别。这些结果间接地说明了kringleⅤ可能在人Apo(a)所有kringles中,对血管生长的抑制能力是最强的。
     3、稳定分泌表达RHAKB的肿瘤细胞接种至裸鼠皮下,其肿瘤结节的形成和生长受到不同程度地抑制,而对肿瘤细胞本身没有直接的杀伤和抑制作用。
     所有这些结果均表明人Apo(a)的kringleⅣ10型与kringleⅤ可以通过抑制肿瘤的血管生长而最终抑制肿瘤生长。我们的研究结果为开发天然抑制肿瘤药物以及探索相关的基因治疗手段提供了理论依据。
Angiogenesis plays an important role in tumor growth and progression,so inhibition of tumor angiogenesis has been a major methods in tumor treatment.It is well studied that angiostatin is an effective tumor angiogenesis inhibitor,which is naturally derived from plasminogen(PLG).Angiostatin contains the former four kringles,from kringle 1 to kringle 4,of PLG.Further study about PLG's kringles revealed that kringle 5 did inhibit angiogenesis well.
     Human apolipoprotein(a)[Apo(a)]is the characteristic apolipoprotein of lipoprotein(a) [Lp(a)].Apo(a) is composed of several kringles that share high homology with kringle 4 and 5 respectively.We studied kringleⅣtype 10 to kringleⅤof Apo(a),the most homologous kringles between Apo(a) and PLG,in detail as our major.RHAKs(RHAKA, RHAKB and RHAKC) composed of different kringles from kringleⅣtype 9 to kringleⅤwere expressed by Pichia pastoris firstly.And individual anti-angiogenic ability was illustrated through the structure and feature characterization and several angiogenesis protocols.Further more,RHAKB,composed of kringleⅣtype 10- kringleⅤ,was expressed by human colorectal carcinoma cells(HCT 116 cells).The influence of RHAKB's expression on both tumor cell proliferation in vitro or in vivo and tumor growth were examined in order to clarify its inhibitory effect on angiogenesis-dependant tumor growth,and its future in tumor angiogenesis gene therapy.
     Human Apo(a) cDNA was reversely transcripted from human liver tissue.Upon the high repetition and homology ofApo(a) kringles,69L and PL,containing 10688 to 12355 and 12301 to 13880 of Apo(a) cDNA respectively,were cloned into pMD18-T vector.
     Moreover,three RHAKs,with RHAKA for kringleⅤ,RHAKB for kringleⅣtype 10-kringleⅤand RHAKC for kringleⅣtype 9-10-kringleⅤ,were cloned into pPICA.
     After the successful transformation of three recombinant vectors into Pichia pastoris X-33, we screened each best strain in recombinant expression through Mut phenotype determination and SDS-PAGE.RttAKs were expressed in large Scale under the induction of methanol.RHAKs were recovered through the precipitation in saturated ammonium sulfate.The precipitates were re-dissolved and dialyzed before the purification through His·Bind(?) chromatography.After the primary purification,RHAKs were further analyzed in reverse-phase high performance liquid chromatography.The N-terminal six amino acid residues of RHAKB were sequenced,as suggested that the secretory signal peptideα-factor was cleaved during the secretory expression.
     Glycosylation prediction showed that there were several glycosylated sites,both N-linked and O-linked,distributed in RHAKs.The carbohydrates of RHAKA and RHAKB were stained and validated through periodic acid - Schiff(PAS) reagent.Thiol and sulfide quantitation indicated no free thiols existed in RHAKs.Moreover,no polymers but monomers were found in reduced SDS-PAGE.Both glycosylation and disulfide bonds formation were major points of kringle structure,as could be maintained well when being secreted by Pichia pastoris.Furthermore,RHAKs anti-angiogenic abilities were examined through endothelial proliferation inhibitory assay,wound migration assay and chick chorioallantoic membrane(CAM) assay.All the RHAKs inhibited the proliferation of human umbilical vein endothelial cells(HUVEC) and neo-angiogenesis on CAM as well. What's more,RHAKB inhibited HUVEC migration induced by bFGF.However,neither RHAKA nor RHAKB could affect the proliferation of HCT 116 cells.
     To accomplish the expression of RHAKB in HCT 116 cells with the help of pcDNA~(TM) 3.1/myc-His(-) A,we designed to append the Apo(a) signal peptide sequence to the 5' end of RHAKB after two step PCR.Signal peptide prediction showed that there were several cleavage sites located between the Apo(a) signal peptide and RHAKB.Targetting of RHAKB was predicted to be secreted outside the cell.The examination of transiently transcripted HCT 116 cells through immunofluorescence microscopy revealed that RHAKB was expressed in a secretory way.The transient transcription of pcDNA3.1(-) A-RHAKB into HCT 116 cells didn't inhibit the proliferation of themselves.Stably transfected HCT 116 cell strains were screened out through G 418 resistance.Both RHAKB mRNA and secreted protein of all screened strains were tested through RT-PCR and Western Blots.To establish some animal tumor models,the normal HCT 116 cells and the cells stably transfected with pcDNA3.1(-) A or pcDNA3.1(-) A-RHAKB were inoculated into BALB/c nude mice subcutaneously.After dynamic measurement of subcutaneous tumor nodules,we found that RHAKB stable expression HCT 116 cells held slower growth rates than the others.Thirty days after inoculation,both normal HCT 116 cells(eleven times) and those stably transfected with pcDNA3.1(-) A(five times) formed larger tumor nodules than the rest ones.Pathological diagnosis approved that each nodule was composed of the inoculated adenocarcinoma cells.Immunohistochemistry of human proliferative cell nuclear antigens(PCNA) indicated that no difference existed among the proliferative tumor cells of all tumor nodules.
     Through the detail study of kringleⅣtype 10 to kringleⅤof Apo(a) and some other related kringles,we drew out the following conclusions.
     1.Pichia pastoris,as a widely used expression host,could be used for recombinant kringles,since it can maintain some important kringle features.
     2.All three RHAKs inhibit angiogenesis well,but almost no difference existed among them,as may indicate a key status of kringleⅤof Apo(a) in anti-angiogenesis.
     3.Stable expression of RHAKB inhibit the formation and progression of tumor nodules, as was achieved without affecting the proliferation of tumor cells.
     All above results indicated that kringleⅣtype 10 to kringleⅤof Apo(a) inhibit tumor growth mainly through anti-angiogenesis,as provided future study in natural tumor antagonist and related gene therapy with meaningful evidences.
引文
[1]Berg K,Mohr J.Genetics of Lp system.Acta Genet.Statist.Med.1963;13:349-360.
    [2]Utermann G.Menzel HJ.Kraft HG.Duba HC.Kemmler HG.Seitz C.Lp(a) glycoprotein phenotypes.Inheritance and relation to Lp(a)-lipoprotein concentrations in plasma.J Clin Invest.1987;80:458-65.
    [3]Utermann G.The mysteries of lipoprotein(a).Science.1989:246:904-10.
    [4]Koschinsky ML,Marcovina SM.Structure-function relationships in apolipoprotein(a):insights into lipoprotein(a)assembly and pathogenicity.Curr Opin Lipidol.2004:15:167-74.
    [5]McLean JW,Tomlinson JE,Kuang WJ,Eaton DL,Chen EY.Fless GM,Scanu AM,Lawn RM.cDNA sequence of human apolipoprotein(a) is homologous to plasminogen.Nature.1987;330:132-7.
    [6]Weitkamp LR,Guttormsen SA,Schultz JS.Linkage between the loci for the Lp(a) lipoprotein(LP) and plasminogen(PLG).Hum Genet.1988:79:80-2.
    [7]Frank SL,Klisak 1,Sparkes RS.Mohandas T,Tomlinson JE,McLean JW,Lawn RM,Lusis AJ.The apolipoprotein(a) gene resides on human chromosome 6q26-27,in close proximity to the homologous gene for plasminogen.Hum Genet.1988;79:352-6.
    [8]Hobbs HH,White AL.Lipoprotein(a):intrigues and insights.Curr Opin Lipidol.1999;10:225-36.
    [9]Miyata T,Iwanaga S,Sakata Y,Aoki N.Plasminogen Tochigi:inactive plasmin resulting from replacement of alanine-600 by threonine in the active site.Proc Natl Acad Sci U S A.1982:79:6132-6.
    [10]Rejante MR.Llinas M.Solution structure of the epsilon-aminohexanoic acid complex of human plasminogen kringle 1.Eur J Biochem.1994:221:939-49.
    [11]O'Reilly MS,Holmgren L.Shing Y,Chen C,Rosenthal RA,Moses M,Lane WS,Cao Y,Sage EH,Folkman J.Angiostatin:a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma.Cell.1994;79:315-28.
    [12]Dong Z,Kumar R,Yang X,Fidler IJ.Macrophage-derived metalloelastase is responsible for the generation of angiostatin in Lewis lung carcinoma.Cell.1997;88:801-10.
    [13]Gately S,Twardowski P,Stack MS,Cundiff DL,Grella D,Castellino FJ,Enghild J,Kwaan HC.Lee F,Kramer RA,Volpert O,Bouck N,Soft GA.The mechanism of cancer-mediated conversion of plasminogen to the angiogenesis inhibitor angiostatin.Proc Natl Acad Sci USA.1997;94:10868-72.
    [14]Patterson BC,Sang QA.Angiostatin-converting enzyme activities of human matrilysin(MMP-7) and gelatinase B/type Ⅳ collagenase(MMP-9).J Biol Chem.1997;272:28823-5.
    [15]Stathakis P,Fitzgerald M,Matthias LJ,Chesterman CN,Hogg PJ.Generation of angiostatin by reduction and proteolysis of plasmin.Catalysis by a plasmin reductase secreted by cultured cells.J Biol Chem.1997;272:20641-5.
    [16]Lijnen HR,Ugwu F,Bini A,Collen D.Generation of an angiostatin-like fragment from plasminogen by stromelysin-1(MMP-3).Biochemistry.1998;37:4699-702.
    [17]Lucas R,Holmgren L,Garcia I,Jimenez B,Mandriota SJ,Borlat F,Sim BK,Wu Z,Grau GE,Shing Y,Soff GA,Bouck N,Pepper MS.Multiple forms of angiostatin induce apoptosis in endothelial cells.Blood.1998;92:4730-41.
    [18]Sim BK,O'Reilly MS.Liang H,Fortier AH.He W,Madsen JW,Lapcevich R,Nacy CA.A recombinant human angiostatin protein inhibits experimental primary and metastatic cancer.Cancer Res.1997:57:1329-34.
    [19]Claesson-Welsh L,Welsh M,Ito N,Anand-Apte B,Soker S,Zetter B,O'Reilly M,Folkman J.Angiostatin induces endothelial cell apoptosis and activation of focal adhesion kinase independently of the integrin-binding motif RGD.Proc Natl Acad Sci USA.1998:95:5579-83.
    [20]Hanford HA.Wong CA.Kassan H.Cundiff DL.Chandel N,Underwood S,Mitchell CA.Soff GA.Angiostatin(4.5)-mediated apoptosis of vascular endothelial cells.Cancer Res.2003:63:4275-80.
    [21]Chen YH.Wu HL.Chen CK,Huang YH.Yang BC.Wu LW.Angiostatin antagonizes the action of VEGF-A in human endothelial cells via two distinct pathways. Biochem Biophys Res Commun. 2003;310:804-10.
    
    [22] Griscelli F, Li H, Bennaceur-Griscelli A, Soria J, Opolon P, Soria C, Perricaudet M, Yeh P, Lu H. Angiostatin gene transfer: inhibition of tumor growth in vivo by blockage of endothelial cell proliferation associated with a mitosis arrest.Proc Natl Acad Sci U S A. 1998;95:6367-72.
    
    [23] Moser TL, Stack MS, Asplin I, Enghild JJ, Hojrup P, Everitt L, Hubchak S, Schnaper HW, Pizzo SV. Angiostatin binds ATP synthase on the surface of human endothelial cells. Proc Natl Acad Sci U S A. 1999:96:2811-6.
    
    [24] Dell'Eva R, Pfeffer U, Indraccolo S, Albini A, Noonan D. Inhibition of tumor angiogenesis by angiostatin: from recombinant protein to gene therapy. Endothelium. 2002:9:3-10.
    
    [25] Ma HI, Guo P, Li J, Lin SZ, Chiang YH, Xiao X, Cheng SY. Suppression of intracranial human glioma growth after intramuscular administration of an adeno-associated viral vector expressing angiostatin. Cancer Res.2002:62:756-63.
    
    [26] Ishikawa H, Nakao K, Matsumoto K, Ichikawa T. Hamasaki K, Nakata K, Eguchi K. Antiangiogenic gene therapy for hepatocellular carcinoma using angiostatin gene. Hepatology. 2003:37:696-704.
    
    [27] Sharma MR, Tuszynski GP. Sharma MC. Angiostatin-induced inhibition of endothelial cell proliferation/apoptosis is associated with the down-regulation of cell cycle regulatory protein cdk5. J Cell Biochem. 2004;91:398-409.
    
    [28] Ji WR, Castellino FJ, Chang Y. Deford ME, Gray H, Villarreal X, Kondri ME, Marti DN, Llinas M, Schaller J,Kramer RA, Trail PA. Characterization of kringle domains of angiostatin as antagonists of endothelial cell migration, an important process in angiogenesis. FASEB J. 1998; 12:1731 -8.
    
    [29] Cao Y, Ji RW, Davidson D, Schaller J, Marti D, Sohndel S, McCance SG, O'Reilly MS, Llinas M, Folkman J.Kringle domains of human angiostatin. Characterization of the anti-proliferative activity on endothelial cells. J Biol Chem. 1996:271:29461-7.
    
    [30] Cao Y, Chen A, An SS, Ji RW, Davidson D, Llinas M. Kringle 5 of plasminogen is a novel inhibitor of endothelial cell growth. J Biol Chem. 1997:272:22924-8.
    
    [31] Ji WR, Barrientos LG Llinas M, Gray H, Villarreal X, DeFord ME, Castellino FJ, Kramer RA, Trail PA. Selective inhibition by kringle 5 of human plasminogen on endothelial cell migration, an important process in angiogenesis.Biochem Biophys Res Commun. 1998;247:414-9.
    
    [32] Lu H, Dhanabal M, Volk R, Waterman MJ, Ramchandran R, Knebelmann B, Segal M, Sukhatme VP. Kringle 5 causes cell cycle arrest and apoptosis of endothelial cells. Biochem Biophys Res Commun. 1999;258:668-73.
    
    [33] Gao G, Li Y, Gee S, Dudley A, Fant J, Crosson C, Ma JX. Down-regulation of vascular endothelial growth factor and up-regulation of pigment epithelium-derived factor: a possible mechanism for the anti-angiogenic activity of plasminogen kringle 5. J Biol Chem. 2002;277:9492-7.
    
    [34] Davidson DJ, Haskell C, Majest S, Kherzai A, Egan DA, Walter KA, Schneider A, Gubbins EF, Solomon L, Chen Z, Lesniewski R, Henkin J. Kringle 5 of human plasminogen induces apoptosis of endothelial and tumor cells through surface-expressed glucose-regulated protein 78. Cancer Res. 2005;65:4663-72.
    
    [35] Perri SR, Nalbantoglu J, Annabi B, Koty Z, Lejeune L, Francois M, Di Falco MR, Beliveau R, Galipeau J.Plasminogen kringle 5-engineered glioma cells block migration of tumor-associated macrophages and suppress tumor vascularization and progression. Cancer Res. 2005;65:8359-65.
    
    [36] Yang X, Cheng R, Li C, Cai W, Ma JX, Liu Q, Yang Z, Song Z, Liu Z, Gao G Kringle 5 of Human Plasminogen Suppresses Hepatocellular Carcinoma Growth Both in Grafted and Xenografted Mice by Anti-Angiogenic Activity.Cancer Biol Ther. 2006;5[Epub ahead of print]
    
    [37] Kim HK. Lee SY. Oh HK, Kang BH. Ku HJ. Lee Y, Shin JY, Hong YK. Joe YA. Inhibition of endothelial cell proliferation by the recombinant kringle domain of tissue-type plasminogen activator. Biochem Biophys Res Commun.2003:304:740-6.
    
    [38] Shim BS. Kang BH. Hong YK. Kim HK. Lee IH. Lee SY, Lee YJ. Lee SK. Joe YA. The kringie domain of tissue-type plasminogen activator inhibits in vivo tumor growth. Biochem Biophys Res Commun. 2005:327:1155-62.
    
    [39] Carroll VA. Nikitenko LL. Bicknell R. Harris AL. Antiangiogenic activity of a domain deletion mutant of tissue plasminogen activator containing kringle 2. Arterioscler Thromb Vasc Biol. 2005;25:736-41.
    
    [40] Kang BH, Shim BS, Lee SY, Lee SK, Hong YK, Joe YA. Potent anti-tumor and prolonged survival effects of E.coli-derived non-glycosylated kringle domain of tissue-type plasminogen activator. Int J OncoL 2006;28:361-7.
    
    [41] Kim KS, Hong YK, Joe YA, Lee Y, Shin JY, Park HE, Lee IH, Lee SY, Kang DK, Chang SI, Chung SI.Anti-angiogenic activity of the recombinant kringle domain of urokinase and its specific entry into endothelial cells. J Biol Chem. 2003:278:11449-56.
    
    [42] Kim KS, Hong YK, Lee Y. Shin JY, Chang SI, Chung SI, Joe YA. Differential inhibition of endothelial cell proliferation and migration by urokinase subdomains: amino-terminal fragment and kringle domain. Exp Mol Med.2003;35:578-85.
    
    [43] Li H, Soria C. Griscelli F, Opolon P, Soria J. Yeh P, Legrand C, Vannier JP, Belin D, Perricaudet M, Lu H.Amino-terminal fragment of urokinase inhibits tumor cell invasion in vitro and in vivo: respective contribution of the urokinase plasminogen activator receptor-dependent or -independent pathway. Hum Gene Ther. 2005; 16:1157-67.
    
    [44] Xin L. Xu R. Zhang Q. Li TP, Gan RB. Kringle 1 of human hepatocyte growth factor inhibits bovine aortic endothelial cell proliferation stimulated by basic fibroblast growth factor and causes cell apoptosis. Biochem Biophys Res Commun. 2000:277:186-90.
    
    [45] Kuba K. Matsumoto K, Date K, Shimura H. Tanaka M, Nakamura T. HGF/NK4, a four-kringle antagonist of hepatocyte growth factor, is an angiogenesis inhibitor that suppresses tumor growth and metastasis in mice. Cancer Res.2000;60:6737-43.
    
    [46] Kuba K, Matsumoto K, Ohnishi K, Shiratsuchi T, Tanaka M, Nakamura T. Kringle 1-4 of hepatocyte growth factor inhibits proliferation and migration of human microvascular endothelial cells. Biochem Biophys Res Commun.2000:279:846-52.
    
    [47] Maemondo M. Narumi K, Saijo Y, Usui K, Tahara M, Tazawa R. Hagiwara K. Matsumoto K, Nakamura T.Nukiwa T. Targeting angiogenesis and HGF function using an adenoviral vector expressing the HGF antagonist NK4 for cancer therapy. Mol Ther. 2002;5:177-85.
    
    [48] Saimura M, Nagai E, Mizumoto K, Maehara N, Okino H, Katano M, Matsumoto K, Nakamura T, Narumi K,Nukiwa T, Tanaka M. Intraperitoneal injection of adenovirus-mediated NK4 gene suppresses peritoneal dissemination of pancreatic cancer cell line AsPC-1 in nude mice. Cancer Gene Ther. 2002;9:799-806.
    
    [49] Nakabayashi M, Morishita R, Nakagami H, Kuba K, Matsumoto K, Nakamura T, Tano Y, Kaneda Y. HGF/NK4 inhibited VEGF-induced angiogenesis in in vitro cultured endothelial cells and in vivo rabbit model. Diabetologia.2003;46:115-23.
    
    [50] Merkulova-Rainon T, England P, Ding S, Demerens C, Tobelem G. The N-terminal domain of hepatocyte growth factor inhibits the angiogenic behavior of endothelial cells independently from binding to the c-met receptor. J Biol Chem. 2003:278:37400-8.
    
    [51] Wen J, Matsumoto K, Taniura N, Tomioka D, Nakamura T. Hepatic gene expression of NK4, an HGF-antagonist/angiogenesis inhibitor, suppresses liver metastasis and invasive growth of colon cancer in mice. Cancer Gene Ther. 2004; 11:419-30.
    
    [52] Murakami M, Nagai E, Mizumoto K, Saimura M, Ohuchida K, Inadome N, Matsumoto K, Nakamura T,Maemondo M, Nukiwa T, Tanaka M. Suppression of metastasis of human pancreatic cancer to the liver by transportal injection of recombinant adenoviral NK4 in nude mice. Int J Cancer. 2005; 117:160-5.
    
    [53] Hosseinkhani H, Kushibiki T, Matsumoto K, Nakamura T, Tabata Y. Enhanced suppression of tumor growth using a combination of NK4 plasmid DNA-PEG engrafted cationized dextran complex and ultrasound irradiation. Cancer Gene Ther. 2006:13:479-89.
    
    [54] Carmeliet P. Mechanisms of angiogenesis and arteriogenesis. Nat Med. 2000:6:389-95.
    
    [551 Folkman J. Shing Y. Angiogenesis. J Biol Chem. 1992:267:10931-4.
    
    [56] Carmeliet P. Angiogenesis in life, disease and medicine. Nature. 2005:438:932-6.
    
    [57] Carmeliet P. Collen D. Molecular basis of angiogenesis. Role of VEGF and VE-cadherin. Ann N Y Acad Sci. 2000;902:249-62.
    [58]Carmeliet P.Manipulating angiogenesis in medicine.J Intern Med.2004;255:538-61.
    [59]Carmeliet P.VEGF as a key mediator of angiogenesis in cancer.Oncology.2005;69 Suppl 3:4-10.
    [60]Papetti M,Herman IM.Mechanisms of normal and tumor-derived angiogenesis.Am J Physiol Cell Physiol.2002;282:C947-70.
    [61]Pandya NM.Dhalla NS.Santani DD.Angiogenesis-a new target for future therapy.Vascul Pharmacol.2006:[Epub ahead of print]
    [62]Strieter RM.Masters of angiogenesis.Nat Med.2005:11:925-7.
    [63]Carmeliet R Angiogenesis in health and disease.Nat Med.2003;9:653-60.
    [64]Carmeliet P.Jain RK.Angiogenesis in cancer and other diseases.Nature.2000:407:249-57.
    [65]Ferrara N,Kerbel RS.Angiogenesis as a therapeutic target.Nature.2005:438:967-74.
    [66]Maxwell PH,Dachs GU,Gleadle JM,Nicholls LG,Harris AL,Stratford IJ,Hankinson O,Pugh CW,Ratcliffe PJ.Hypoxia-inducible factor-1 modulates gene expression in solid tumors and influences both angiogenesis and tumor growth.Proc Natl Acad Sci U S A.1997:94:8104-9.
    [67]Rofstad EK,Danielsen T.Hypoxia-induced angiogenesis and vascular endothelial growth factor secretion in human melanoma.Br J Cancer.1998:77:897-902.
    [68]Richard DE,Berra E,Pouyssegur J.Angiogenesis:how a tumor adapts to hypoxia.Biochem Biophys Res Commun.1999;266:718-22.
    [69]Kim KR,Moon HE,Kim KW.Hypoxia-induced angiogenesis in human hepatocellular carcinoma.J Mol Med.2002:80:703-14.
    [70]Choi KS.Bae MK.Jeong JW.Moon HE,Kim KW.Hypoxia-induced angiogenesis during carcinogenesis.J Biochera Mol Biol.2003;36:120-7.
    [71]Pugh CW.Ratcliffe PJ.Regulation of angiogenesis by hypoxia:role of the HIF system.Nat Med.2003;9:677-84.
    [72]Acker T,Plate KH.Role of hypoxia in tumor angiogenesis-molecular and cellular angiogenic crosstalk.Cell Tissue Res.2003:314:145-55,
    [73]Moeller BJ.Cao Y,Vujaskovic Z.Li CY,Haroon ZA,Dewhirst MW.The relationship between hypoxia and angiogenesis.Semin Radiat Oncol.2004;14:215-21.
    [74]Van den Eynden GG,Van der Auwera I,Van Laere SJ,Colpaert CG,Turley H,Harris AL,van Dam P,Dirix LY,Vermeulen PB,Van Marck EA.Angiogenesis and hypoxia in lymph node metastases is predicted by the angiogenesis and hypoxia in the primary tumour in patients with breast cancer.Br J Cancer.2005;93:1128-36.
    [75]Gruber M,Simon MC.Hypoxia-inducible factors,hypoxia,and tumor angiogenesis.Curr Opin Hematol.2006;13:169-74.
    [76]Blouw B,Song H.Tihan T,Bosze J,Ferrara N,Gerber HP,Johnson RS,Bergers G.The hypoxic response of tumors is dependent on their microenvironment.Cancer Cell.2003;4:133-46.
    [77]Acker T,Plate KH.Hypoxia and hypoxia inducible factors(HIF) as important regulators of tumor physiology.Cancer Treat Res.2004;117:219-48.
    [78]Mahadevan V,Hart IR.Metastasis and angiogenesis.Acta Oncol.1990:29:97-103.
    [79]Paku S.Current concepts of tumor-induced angiogenesis.Pathol Oncol Res.1998:4:62-75.
    [80]Portera CA Jr.Berman RS.Ellis LM.Molecular determinants of colon cancer metastasis.Surg Oncol.1998:7:183-95.
    [81]Cavallaro U.Christofori G.Molecular mechanisms of tumor angiogencsis and tumor progression.J Neurooncol.2000:50:63-70.
    [82]Takeda A,Stoeltzing O.Ahmad SA.Reinmuth N,Liu W.Parikh A.Fan F.Akagi M.Ellis LM.Role of angiogenesis in the development and growth of liver metastasis.Ann Surg Oncol.2002:9:610-6.
    [83]Raghunand N.Gatenby RA.Gillies RJ.Microenvironmental and cellular consequences of altered blood flow in tumouts.Br J Radiol.2003:76:S11-22.
    [84] Kato T, Kameoka S, Kimura T, Nishikawa T, Kobayashi M. The combination of angiogenesis and blood vessel invasion as a prognostic indicator in primary breast cancer. Br J Cancer. 2003;88:1900-8.
    
    [85] Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med. 1971;285:1182-6.
    
    [86] Pluda JM. Tumor-associated angiogenesis: mechanisms, clinical implications, and therapeutic strategies. Semin Oncol. 1997;24:203-18.
    
    [87] Harris SR. Thorgeirsson UP. Tumor angiogenesis: biology and therapeutic prospects. In Vivo. 1998:12:563-70.
    
    [88] Kong HL, Crystal RG Gene therapy strategies for tumor antiangiogenesis. J Natl Cancer Inst. 1998;90:273-86.
    
    [89] Brower V. Tumor angiogenesis—new drugs on the block. Nat Biotechnol. 1999; 17:963-8.
    
    [90] Matter A. Tumor angiogenesis as a therapeutic target. Drug Discov Today. 2001 ;6:1005-1024.
    
    [91] Fox SB, Gasparini G, Harris AL. Angiogenesis: pathological, prognostic, and growth-factor pathways and their link to trial design and anticancer drugs. Lancet Oncol. 2001;2:278-89.
    
    [92] Tosetti F, Ferrari N, De Flora S, Albini A. Angioprevention: angiogenesis is a common and key target for cancer chemopreventive agents. FASEB J. 2002; 16:2-14.
    
    [93] Bamias A. Dimopoulos MA. Angiogenesis in human cancer: implications in cancer therapy. Eur J Intern Med.2003:14:459-469.
    
    [94] Blagosklonny MV. Antiangiogenic therapy and tumor progression. Cancer Cell. 2004;5:13-7.
    
    [95] Akslen LA, Jacobsen GK, Vainio O. Angiogenesis - recent developments in molecular pathogenesis,morphological markers, and therapeutic applications. APMIS. 2004; 112:399-401.
    
    [96] Tandle A, Blazer DG 3rd, Libutti SK. Antiangiogenic gene therapy of cancer: recent developments. J Transl Med.2004:2:22.
    
    [97] Milkiewicz M, Ispanovic E, Doyle JL. Haas TL. Regulators of angiogenesis and strategies for their therapeutic manipulation. Int J Biochem Cell Biol. 2006;38:333-57.
    
    [98] Garber K. Angiogenesis inhibitors suffer new setback. Nat Biotechnol. 2002;20:1067-8.
    
    [99] Eskens FA. Angiogenesis inhibitors in clinical development; where are we now and where are we going? Br J Cancer. 2004;90:1-7.
    
    [100]Zakarija A, Soff G. Update on angiogenesis inhibitors. Curr Opin Oncol. 2005;17:578-83.
    
    [101]Cao Y. Endogenous angiogenesis inhibitors and their therapeutic implications. Int J Biochem Cell Biol. 2001:33:357-69.
    
    [102]Mazitschek R, Giannis A. Inhibitors of angiogenesis and cancer-related receptor tyrosine kinases. Curr Opin Chem Biol. 2004:8:432-41.
    
    [103]Lu PY, Xie FY, Woodle MC. Modulation of angiogenesis with siRNA inhibitors for novel therapeutics. Trends Mol Med.2005;11:104-13.
    
    [104]Kerr DJ. Targeting angiogenesis in cancer: clinical development of bevacizumab. Nat Clin Pract Oncol.2004;1:39-43.
    
    [105] Diaz-Rubio E, Schmoll HJ. The future development of bevacizumab in colorectal cancer. Oncology. 2005;69 Suppl 3:34-45.
    
    [106] Culy C. Bevacizumab: antiangiogenic cancer therapy. Drugs Today (Barc). 2005;41:23-36.
    
    [107] Ellis LM. Bevacizumab.Nat Rev Drug Discov. 2005;Suppl:S8-9.
    
    [108]Ferrara N, Hillan KJ, Novotny W. Bevacizumab (Avastin), a humanized anti-VEGF monoclonal antibody for cancer therapy. Biochem Biophys Res Commun. 2005;333:328-35.
    
    [109] Marshall J. The role of bevacizumab as first-line therapy for colon cancer. Semin Oncol. 2005:32:S43-7.
    
    [110] Kim JS. Chang JH. Yu HK. Ahn JH. Yum JS. Lee SK. Jung KH. Park DH. Yoon Y, Byun SM, Chung SI. Inhibition of angiogenesis and angiogenesis-dependent tumor growth by the cryptic kringle fragments of human apolipoprotein(a).J Biol Chem. 2003:278:29000-8.
    
    [111] Kim JS. Yu HK. Ahn JH. Lee HJ. Hong SW. Jung KH. Chang SI. Hong YK. Joe YA. Byun SM. Lee SK. Chung SI.Yoon Y. Human apolipoprotein(a) kringle V inhibits angiogenesis in vitro and in vivo by interfering with the activation of focal adhesion kinases.Biochem Biophys Res Commun.2004;313:534-40.
    [112]Ahn JH,Kim JS,Yu HK,Lee HJ,Yoon Y.A truncated kringle domain of human apolipoprotein(a) inhibits the activation of extracellular signal-regulated kinase 1 and 2 through a tyrosine phosphatase-dependent pathway.J Biol Chem.2004;279:21808-14.
    [113]Yu HK,Kim JS,Lee HJ,Ahn JH,Lee SK,Hong SW,Yoon Y.Suppression of colorectal cancer liver metastasis and extension of survival by expression of apolipoprotein(a) kringles.Cancer Res.2004:64:7092-8.
    [114]Yu HK,Ahn JH,Lee HJ,Lee SK,Hong SW,Yoon Y,Kim JS.Expression of human apolipoprotein(a) kringles in colon cancer cells suppresses angiogenesis-dependent tumor growth and peritoneal dissemination.J Gene Med.2005;7:39-49.
    [115]Sambrook J,Fritsch EF,Maniatis T.Molecular Cloning:A Laboratory Manual Second Edition.1989.New York.Cold Spring Harbor Laboratory Press.
    [116]Schleif RF,Wensink PC.Practical methods in molecular biology.1981.New York.Springer-Verlag.
    [117]Scopes RK.Protein purification:principles and practice.1982.New York.Springer-Verlag.
    [118]Ausubel FM,Brent R,Kingston RE.et al.Short protocols in molecular biology.Third edition.1995.John Wiley and Sons.
    [119]Kimura Y.Stadtman TC.Glycine reductase selenoprotein A is not a glycoprotein:the positive periodic acid-Schiff reagent test is the result of peptide bond cleavage and carbonyl group generation.Proc Natl Acad Sci U S A.1995;92:2189-93.
    [120]Tang S,Morgan KG,Parker C,Ware JA.Requirement for protein kinase C theta for cell cycle progression and formation of actin stress fibers and filopodia in vascular endothelial cells.J Biol Chem.1997;272:28704-11.
    [121]Pussinen PJ,Olkkonen VM,Jauhiainen M,Ehnholm C.Molecular cloning and functional expression of cDNA encoding the pig plasma phospholipid transfer protein.J Lipid Res.1997;38:1473-81.
    [122]Ba DN,et al.Contemporary immunological technology and application.
    [123]Murray JC.Angiogenesis assays using chick chorioallantoic membrane.Methods in molecular medicine:Angiogenesis Protocols.2001.107-129.Humana Press.
    [124]Bendtsen JD,Nielsen H,von Heijne G,Brunak S.Improved prediction of signal peptides:SignalP 3.0.J Mol Biol.2004;340:783-95.
    [125]Bravo R.Synthesis of the nuclear protein cyclin(PCNA) and its relationship with DNA replication.Exp Cell Res.1986;163:287-93.
    [126]Suzuka I,Daidoji H,Matsuoka M,Kadowaki K,Takasaki Y,Nakane PK,Moriuchi T.Gene for proliferating-cell nuclear antigen(DNA polymerase delta auxiliary protein) is present in both mammalian and higher plant genomes.Proc Natl Acad Sci USA.1989;86:3189-93.
    [127]Hockney RC.Recent developments in heterologous protein production in Escherichia coli.Trends Biotechnol.1994;12:456-63.
    [128]Baneyx F.Recombinant protein expression in Escherichia coli.Curr Opin Biotechnol.1999;10:411-21.
    [129]Baneyx F,Mujacic M.Recombinant protein folding and misfolding in Escherichia coli.Nat Biotechnol.2004;22:1399-408.
    [130]Li Z,Gambino R,Fless GM,Copeland RA,Halfpenny AJ,Scanu AM.Expression and purification of kringle 4-type 2 of human apolipoprotein(a) in Escherichia coli.Protein Expr Purif 1992;3:212-22.
    [131]Hrzenjak A,Frank S,Maderegger B,Sterk H,Kostner GM.Apo(a)-kringle Ⅳ-type 6:expression in Escherichia coli,purification and in vitro refolding.Protein Eng,2000:13:661-6.
    [132]Maderegger B.Bermel W.Hrzenjak A,Kostner GM,Sterk H.Solution structure of human apolipoprotein(a)kringle Ⅳ type 6.Biochemistry.2002:41:660-8.
    [133]Ye Q.Rahman MN.Koschinsky ML.Jia Z.High-resolution crystal structure of apolipoprotein(a) kringle Ⅳ type 7:insights into ligand binding.Protein Sci.2001;10:1124-9.
    [134]Rahman MN.Becker L,Petrounevitch V,Hill BC,Jia Z.Koschinsky ML.Comparative analyses of the lysine binding site properties of apolipoprotein(a) kringle Ⅳ types 7 and 10.Biochemistry.2002;41:1149-55.
    [135]Chung FZ,Wu LH,Lee HT,Mueller WT,Spahr MA,Eaton SR,Tian Y,Settimi PD,Oxender DL,Ramharack R.Bacterial expression and characterization of human recombinant apolipoprotein(a) kringle Ⅳ type 9.Protein Expr Purif.1998;13:222-8.
    [136]Rahman M,Jia Z,Gabel BR,Marcovina SM,Koschinsky ML.Expression of apolipoprotein(a) kringle Ⅳ type 9in Escherichia coil:demonstration of a specific interaction between kringle Ⅳ type 9 and apolipoproteinB-100.Protein Eng.1998:11:1249-56.
    [137]LoGrasso PV,Cornell-Kennon S.Boettcher BR.Cloning.expression,and characterization of human apolipoprotein(a) kringle Ⅳ37.J Biol Chem.1994;269:21820-7.
    [138]Klezovitch O,Scanu AM.Lys and fibrinogen binding of wild-type(Trp72) and mutant(Arg72) human apo(a)kringle Ⅳ-10 expressed in E coli and CHO cells.Arterioscler Thromb Vasc Biol.1996;16:392-8.
    [139]Chenivesse X,Huby T,Chapman J,Franco D,Thillet J.Expression of a recombinant kringle V of human apolipoprotein(a):antibody characterization and species specificity.Protein Expr Purif 1996;8:145-50.
    [140]Seo YK,You KH.Kwak JW.Production and characterization of monoclonal antibodies directed to the kringle V and protease domains of human apolipoprotein(a).Hybridoma.2000;19:435-44.
    [141]Kim JS.Chang JH,Yu HK,Ahn JH,Yum JS,Lee SK,Jung KH,Park DH,Yoon Y,Byun SM,Chung SI.Inhibition of angiogenesis and angiogenesis-dependent tumor growth by the cryptic kringle fragments of human apolipoprotein(a).J Biol Chem.2003;278:29000-8.
    [142]Lim HK,Kim SG,Jung KH,Seo JH.Production of the kringle fragments of human apolipoprotein(a) by continuous lactose induction strategy.J Biotechnol.2004;108:271-8.
    [143]Kang KY,Kim SG,Kim WK.You HK,Kim YJ,Lee JH.Jung KH,Kim CW.Purification and characterization of a recombinant anti-angiogenic kringle fragment expressed in Escherichia coli:Purification and characterization of a tri-kringle fragment from human apolipoprotein(a)(kringle Ⅳ(9)-kringle Ⅳ(10)-kringle Ⅴ).Protein Expr Purif.2006;45:216-25.
    [144]Makrides SC.Strategies for achieving high-level expression of genes in Escherichia coli.Microbiol Rev.1996;60:512-38.
    [145]Marston FA.The purification of eukaryotic polypeptides synthesized in Escherichia coli.Biochem J.1986;240:1-12.
    [146]Tschopp JF,Cregg JM.Heterologous gene expression in methylotrophic yeast.Biotechnology.1991;18:305-22.
    [147]Cregg JM,Vedvick TS,Raschke WC.Recent advances in the expression of foreign genes in Pichia pastoris.Biotechnology(N Y).1993;11:905-10.
    [148]Cereghino JL,Cregg JM.Heterologous protein expression in the methylotrophic yeast Pichia pastoris.FEMS Microbiol Rev.2000;24:45-66.
    [149]Cregg JM,Cereghino JL,Shi J,Higgins DR.Recombinant protein expression in Pichia pastoris.Mol Biotechnol.2000:16:23-52.
    [150]Lin Cereghino GP,Sunga AJ,Lin Cereghino J,Cregg JM.Expression of foreign genes in the yeast Pichia pastoris.Genet Eng(N Y).2001;23:157-69.
    [151]Lueking A,Holz C,Gotthold C,Lehrach H,Cahill D.A system for dual protein expression in Pichia pastoris and Escherichia coli.Protein Expr Purif.2000;20:372-8.
    [152]Nilsen SL,DeFord ME,Prorok M,Chibber BA,Bretthauer RK,Castellino FJ.High-level secretion in Pichia pastoris and biochemical characterization of the recombinant kringle 2 domain of tissue-type plasminogen activator.Biotechnol Appl Biochem.1997:25:63-74.
    [153]Miele RG,Nilsen SL.Brito T.Bretthauer RK,Castellino FJ.Glycosylation properties of the Pichia pastoris-cxpressed recombinant kringle 2 domain of tissue-type plasminogen activator.Biotechnol Appl Biochem.1997:25:151-7.
    [154]Miele RG.Castellino FJ.Bretthauer RK.Characterization of the acidic oligoSaccharides assembled on the Pichia pastoris-expressed recombinant kringle 2 domain of human tissue-type plasminogen activator.Biotechnol Appl Biochem.1997;26:79-83.
    [155]Yokoyama Y,Dhanabal M,Griffioen AW,Sukhatme VP,Ramakrishnan S,Synergy between angiostatin and endostatin:inhibition of ovarian cancer growth.Cancer Res.2000;60:2190-6.
    [156]Zhang TY,Luo JX,Lu XY.[Cloning and expression of kringle 1-3 gene of human plasminogen and the purification and bioactivity,of its expressed product][Article in Chinese]Sheng Wu Gong Cheng Xue Bao.2002;18:593-6.
    [157]Zhou QW.Xie JL,Xin L.Xu R,Ye Q,Li ZP,Gan RB.[Expression and characterization of Kringle 1-4.5 domains of human plasminogen][Article in Chinese]Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao(Shanghai),2003;35:138-42.
    [158]Guan XQ.Wang YX,Wu LC,Song HY.[Molecular cloning and expression of the cDNA encoding angiogenesis inhibitor K4K5 with Pichia pastoris][Article in Chinese]Sheng Wu Gong Cheng Xue Bao.2001;17:126-30.
    [159]Zhou QW.Xie JL,Xin L,Ye Q,Li ZP,Gan RB.[Expression and characterization of Kringle 1-5 domains of human plasminogen][Article in Chinese]Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao(Shanghai).2003;35:761-7.
    [160]Zhu M,Cheng J,Hua ZC.Expression of kringle 5 domain of human plasminogen in Pichia pastoris.Prep Biochem Biotechnol.2003;33:269-81.
    [161]Zhou Y,Zheng Q,Gao J,Gu J.High level expression of kringle 5 fragment of plasminogen in Pichia pastoris.Biotechnol Lett,2005 Feb;27(3):167-71.
    [162]Brattain MG,Fine WD,Khaled FM,Thompson J,Brattain DE.Heterogeneity of malignant cells from a human colonic carcinoma.Cancer Res.1981:41:1751-6.
    [163]Bhattacharyya NP,Skandalis A,Ganesh A,Groden J,Meuth M.Mutator phenotypes in human colorectal carcinoma cell lines.Proc Natl Acad Sci U S A.1994;91:6319-23.
    [164]Watkins LF,Levine AE.Differential role of transforming growth factor-alpha in two human colon-carcinoma cell lines,Int J Cancer.1991;47:455-60.
    [165]Chakrabarty S,Regulation of human colon-carcinoma cell adhesion to extracellular matrix by transforming growth factor beta 1.Int J Cancer.1992;50:968-73.
    [166]Cohen RL,Xi XP,Crowley CW,Lucas BK,Levinson AD,Shuman MA.Effects of urokinase receptor occupancy on plasmin generation and proteolysis of basement membrane by human tumor cells.Blood.1991;78:479-87.
    [167]Grem JL,Allegra CJ.Sequence-dependent interaction of 5-fluorouracil and arabinosyl-5-azacytosine or l-beta-D-arabinofuranosylcytosine.Biochem Pharmacol.1991;42:409-18.
    [168]Emanuelsson O,Nielsen H,Brunak S,von Heijne G.Predicting subcellular localization of proteins based on their N-terminal amino acid sequence.J Mol Biol.2000;300:1005-16.
    [169]Bill RM,Revers L,Wilson IBH.Protein glycosylation.1998.Kluwer Academic Publishers.
    [170]Varki A.Biological roles of oligoSaccharides:all of the theories are correct.Glycobiology.1993;3:97-130.
    [171]Freedman RB,Hirst TR,Tuite MF.Protein disulphide isomerase:building bridges in protein folding.Trends Biochem Sci.1994;19:331-6.
    [172]Creighton TE.Disulfide bond formation in proteins.Methods Enzyraol.1984;107:305-29.
    [173]Esser S,Lampugnani MG,Corada M,Dejana E,Risau W.Vascular endothelial growth factor induces VE-cadherin tyrosine phosphorylation in endothelial cells.J Cell Sci.1998;111:1853-65.
    [174]Kevil CG.Payne DK,Mire E.Alexander JS.Vascular permeability factor/vascular endothelial cell growth factor-mediated permeability occurs through disorganization of endothelial junctional proteins.J Biol Chem,1998:273:15099-103.
    [175]Connolly DT,Heuvelman DM,Nelson R.Olander JV.Eppley BL.Delfino JJ,Siegel NR.Leimgruber RM,Feder J.Tumor vascular permeability factor stimulates endothelial cell growth and angiogenesis.J Clin Invest.1989:84:1470-8.
    [176]Ferrara N.Henzel WJ.Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells. Biochem Biophys Res Commun. 1989; 161:851-8.
    
    [177]Dimmeler S, Dernbach E, Zeiher AM. Phosphorylation of the endothelial nitric oxide synthase at ser-1177 is required for VEGF-induced endothelial cell migration. FEBS Lett. 2000;477:258-62.
    
    [178]Gospodarowicz D, Ferrara N, Schweigerer L, Neufeld G. Structural characterization and biological functions of fibroblast growth factor. Endocr Rev. 1987;8:95-114.
    
    [179]Terranova VP. DiFlorio R. Lyall RM. Hic S. Friesel R. Maciag T. Human endothelial cells are chemotactic to endothelial cell growth factor and heparin. J Cell Biol. 1985; 101:2330-4.
    
    [180]Montesano R. Vassalli JD, Baird A. Guillemin R. Orci L. Basic fibroblast growth factor induces angiogenesis in vitro. Proc Natl Acad Sci U S A. 1986:83:7297-301.
    
    [181] Thomas KA. Fibroblast growth factors. FASEB J. 1987;1:434-40.
    
    [182]Tufan AC, Satiroglu-Tufan NL. The chick embryo chorioallantoic membrane as a model system for the study of tumor angiogenesis, invasion and development of anti-angiogenic agents. Curr Cancer Drug Targets. 2005;5:249-66.
    
    [183]Schlatter P, Konig MF, Karlsson LM, Burri PH. Quantitative study of intussusceptive capillary growth in the chorioallantoic membrane (CAM) of the chicken embryo. Microvasc Res. 1997:54:65-73.
    
    [184]Serini G, Valdembri D, Bussolino F. Integrins and angiogenesis: a sticky business. Exp Cell Res. 2006:312:651-8.
    
    [185] Moser TL, Kenan DJ, Ashley TA, Roy JA, Goodman MD, Misra UK, Cheek DJ, Pizzo SV. Endothelial cell surface F1-F0 ATP synthase is active in ATP synthesis and is inhibited by angiostatin. Proc Natl Acad Sci U S A.2001;98:6656-61.
    
    [186] Burwick NR, Wahl ML, Fang J, Zhong Z, Moser TL, Li B, Capaldi RA, Kenan DJ, Pizzo SV. An Inhibitor of the F1 subunit of ATP synthase (IF1) modulates the activity of angiostatin on the endothelial cell surface. J Biol Chem.2005:280:1740-5.
    
    [187] Veitonmaki N, Cao R, Wu LH, Moser TL, Li B, Pizzo SV, Zhivotovsky B, Cao Y. Endothelial cell surface ATP synthase-triggered caspase-apoptotic pathway is essential for k1-5-induced antiangiogenesis. Cancer Res.2004:64:3679-86.
    
    [188] Moser TL, Stack MS, Wahl ML, Pizzo SV. The mechanism of action of angiostatin: can you teach an old dog new tricks? Thromb Haemost. 2002;87:394-401.
    
    [189] Wahl ML, Moser TL, Pizzo SV. Angiostatin and anti-angiogenic therapy in human disease. Recent Prog Horm Res. 2004:59:73-104.
    
    [190] Wahl ML, Kenan DJ, Gonzalez-Gronow M, Pizzo SV. Angiostatin's molecular mechanism: aspects of specificity and regulation elucidated. J Cell Biochem. 2005;96:242-61.
    
    [191] Gonzalez-Gronow M, Kalfa T, Johnson CE, Gawdi G, Pizzo SV. The voltage-dependent anion channel is a receptor for plasminogen kringle 5 on human endothelial cells. J Biol Chem. 2003;278:27312-8.
    
    [192] Chi SL, Pizzo SV. Angiostatin is directly cytotoxic to tumor cells at low extracellular pH: a mechanism dependent on cell surface-associated ATP synthase. Cancer Res. 2006;66:875-82.
    [1]Cao Y,Xue L.Angiostatin.Semin Thromb Hemost.2004,30(1):83-93.
    [2]McLean JW,Tomlinson JE,Kuang WJ,et al.cDNA sequence of human apolipoprotein(a) is homologous to plasminogen.Nature.1987,330(6144):132-7.
    [3]Utermann G.The mysteries of lipoprotein(a).Science.1989,246(4932):904-10.
    [4]Utermann G,Menzel HJ,Kraft HG,et al.Lp(a) glycoprotein phenotypes.Inheritance and relation to Lp(a)-lipoprotein concentrations in plasma,J Clin Invest.1987,80(2):458-65.
    [5]Dieplinger H,Utermann G.The seventh myth of lipoprotein(a):where and how is it assembled? Curr Opin Lipidol.1999.10(3):275-83.
    [6]Koschinsky ML,Marcovina SM.Structure-function relationships in apolipoprotein(a):insights into lipoprotein(a)assembly and pathogenicity.Curr Opin Lipidol.2004,15(2):167-74.
    [7]Fless GM,ZumMallen ME,Scanu AM.Physicochemical properties of apolipoprotein(a) and lipoprotein(a-)derived from the dissociation of human plasma lipoprotein(a).J Biol Chem.1986,261(19):8712-8.
    [8]Garner B.Merry AH,Royle L,et al.Structural elucidation of the N- and O-glycans of human apolipoprotein(a):role of o-glycans in conferring protease resistance.J Biol Chem.2001,276(25):22200-8.
    [9]Brunner C,Kraft HG,Utermann G,et al.Cys4057 of apolipoprotein(a) is essential for lipoprotein(a) assembly.Proc Natl Acad Sci USA.1993,90(24):11643-7.
    [10]Koschinsky ML,Cote GP,Gabel B,et al.Identification of the cysteine residue in apolipoprotein(a) that mediates extracellular coupling with apolipoprotein B-100.J Biol Chem.1993,268(26):19819-25.
    [11]Guevara J Jr,Spurlino J,Jan AY,et al.Proposed mechanisms for binding of apo[a]kringle type 9 to apo B-100 in human lipoprotein[a].Biophys J.1993,64(3):686-700.
    [12]Guevara J Jr,Valentinova NV,Garcia O,et al.Interaction of apolipoprotein[a]with apolipoproteinB-100 Cys3734region in lipoprotein[a]is confirmed immunochemically.J Protein Chem.1996,15(1):17-25.
    [13]McCormick SP,Linton MF,Hobbs HH,et al.Expression of human apolipoprotein B90 in transgenic mice.Demonstration that apolipoprotein B90 lacks the structural requirements to form lipoprotein.J Biol Chem.1994,269(39):24284-9.
    [14]Gabel B,Yao Z,McLeod RS,et al.Carboxyl-terminal truncation of apolipoproteinB-100 inhibits lipoprotein(a)particle formation.FEBS Lett.1994,350(1):77-81.
    [15]Trieu VN,McConathy WJ.A two-step model for lipoprotein(a) formation.J Biol Chem.1995,270(26):15471-4.
    [16]Gabel BR,May LF,Marcovina SM,Koschinsky ML.Lipoprotein(a) assembly.Quantitative assessment of the role of apo(a) kringle Ⅳ types 2-10 in particle formation.Arterioscler Thromb Vase Biol.1996,16(12):1559-67.
    [17]Becker L,Cook PM,Wright TG,Koschinsky ML.Quantitative evaluation of the contribution of weak lysine-binding sites present within apolipoprotein(a) kringle Ⅳ types 6-8 to lipoprotein(a) assembly.J Biol Chem.2004,279(4):2679-88.
    [18]Puckey L,Knight B.Dietary and genetic interactions in the regulation of plasma lipoprotein(a).Curr Opin Lipidol.1999.10(1):35-40.
    [19]Gavish D,Azrolan N,Breslow JL.Plasma Lp(a) concentration is inversely correlated with the ratio of Kringle Ⅳ/Kringle Ⅴ encoding domains in the apo(a) gene.J Clin Invest.1989.84(6):2021-7.
    [20]Zenker G,Koltringer P.Bone G.Niederkorn K.Pfeiffer K,Jurgens G.Lipoprotein(a) as a strong indicator for cerebrovascular disease.Stroke.1986.17(5):942-5.
    [21]Kraft HG.Lingenhel A.Kochl S.Hoppichler F,Kronenberg F,Abe A,Muhlberger V.Schonitzer D,Utermann G. Apolipoprotein(a) kringle IV repeat number predicts risk for coronary heart disease. Arterioscler Thromb Vasc Biol.1996, 16(6): 713-9.
    
    [22] Kronenberg F, Lingenhel A, Lhotta K, Rantner B, Kronenberg MF, Konig P, Thiery J, Koch M, von Eckardstein A,Dieplinger H. The apolipoprotein(a) size polymorphism is associated with nephrotic syndrome. Kidney Int. 2004, 65(2):606-12.
    
    [23] Hobbs HH, White AL. Lipoprotein(a): intrigues and insights. Curr Opin Lipidol. 1999, 10(3): 225-36.
    
    [24] Snyder ML, Polacek D, Scanu AM. Fless GM. Comparative binding and degradation of lipoprotein(a) and low density lipoprotein by human monocyte-derived macrophages. J Biol Chem. 1992. 267( 1): 339-46.
    
    [25] Miles LA, Fless GM, Scanu AM, Baynham P, Sebald MT, Skocir P, Curtiss LK, Levin EG, Hoover-Plow JL, Plow EF. Interaction of Lp(a) with plasminogen binding sites on cells. Thromb Haemost. 1995. 73(3): 458-65.
    
    [26] Miles LA, Sebald MT, Fless GM, Scanu AM, Curtiss LK, Levin E, Plow EF, Hoover-Plow J. Interaction of lipoprotein(a) with the extracellular matrix. Fibrinolysis Proteolysis. 1998, 12: 79-87.
    
    [27] Rouy D. Koschinsky ML, Fleury V, Chapman J, Angles-Cano E. Apolipoprotein(a) and plasminogen interactions with fibrin: a study with recombinant apolipoprotein(a) and isolated plasminogen fragments. Biochemistry. 1992, 31(27):6333-9.
    
    [28] Scanu AM, Pfaffinger D, Lee JC, Hinman J. A single point mutation (Trp72-->Arg) in human apo(a) kringle 4-37 associated with a lysine binding defect in Lp(a). Biochim Biophys Acta. 1994. 1227(1-2): 41-5.
    
    [29] Simo JM. Joven J, Vilella E. Ribas M, Figuera L, Virgos C, Sundaram IM, Hoover-Plow J. Polymorphisms in human apolipoprotein(a) kringle IV-10 and coronary artery disease: relationship to allele size, plasma lipoprotein(a) concentration, and lysine binding site activity. J Mol Med. 2001, 79(5-6): 294-9.
    
    [30] Cohen JC, Chiesa G, Hobbs HH. Sequence polymorphisms in the apolipoprotein (a) gene. Evidence for dissociation between apolipoprotein(a) size and plasma lipoprotein(a) levels. J Clin Invest. 1993, 91(4): 1630-6.
    
    [31] Collen D. The plasminogen (fibrinolytic) system. Thromb Haemost. 1999, 82(2): 259-70.
    
    [32] LoGrasso PV, Cornell-Kennon S, Boettcher BR. Cloning, expression, and characterization of human apolipoprotein(a) kringle IV37.J Biol Chem. 1994, 269(34): 21820-7.
    
    [33] Ernst A. Helmhold M, Brunner C. Petho-Schramm A, Armstrong VW. Muller HJ. Identification of two functionally distinct lysine-binding sites in kringle 37 and in kringles 32-36 of human apolipoprotein(a). J Biol Chem.1995, 270(11): 6227-34.
    
    [34] Xue S, Madison EL, Miles LA. The Kringle V-protease domain is a fibrinogen binding region within Apo(a).Thromb Haemost. 2001, 86(5): 1229-37.
    
    [35] Hancock MA, Boffa MB, Marcovina SM, Nesheim ME, Koschinsky ML. Inhibition of plasminogen activation by lipoprotein(a): critical domains in apolipoprotein(a) and mechanism of inhibition on fibrin and degraded fibrin surfaces.J Biol Chem. 2003, 278(26): 23260-9.
    
    [36] Stathakis P, Lay AJ, Fitzgerald M, et al. Angiostatin formation involves disulfide bond reduction and proteolysis in kringle 5 of plasmin. J Biol Chem. 1999, 274(13): 8910-6.
    
    [37] Cao Y, Ji RW, Davidson D, et al. Kringle domains of human angiostatin. Characterization of the anti-proliferative activity on endothelial cells. J Biol Chem. 1996, 271(46): 29461-7.
    
    [38] Cao Y, Chen A, An SS, et al. Kringle 5 of plasminogen is a novel inhibitor of endothelial cell growth. J Biol Chem.1997, 272(36): 22924-8.
    
    [39] Cao R, Wu HL, Veitonmaki N, Linden P, Farnebo J, Shi GY, Cao Y. Suppression of angiogenesis and tumor growth by the inhibitor K1-5 generated by plasmin-mediated proteolysis. Proc Natl Acad Sci U S A. 1999, 96(10): 5728-33.
    
    [40] Kim JS, Chang JH, Yu HK, et al. Inhibition of angiogenesis and angiogenesis-dependent tumor growth by the cryptic kringle fragments of human apolipoprotein(a). J Biol Chem. 2003, 278(31): 29000-8.
    
    [41] Kim JS, Yu HK, Ahn JH, et al. Human apolipoprotein(a) kringle V inhibits angiogenesis in vitro and in vivo by interfering with the activation of focal adhesion kinases. Biochem Biophys Res Commun. 2004, 313(3): 534-40.
    
    [42] Yu HK, Kim JS, Lee HJ, et al. Suppression of colorectal cancer liver metastasis and extension of survival by expression of apolipoprotein(a) kringles. Cancer Res. 2004, 64(19): 7092-8.
    
    [43] Yu HK, Ahn JH, Lee HJ, Lee SK, Hong SW, Yoon Y, Kim JS. Expression of human apolipoprotein(a) kringles in colon cancer cells suppresses angiogenesis-dependent tumor growth and peritoneal dissemination. J Gene Med. 2005.7(1): 39-49.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700