用户名: 密码: 验证码:
大肠埃希氏菌蛋白质复合物组的鉴定分析及重要复合物的功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
细胞中的蛋白质通常与其他蛋白质相互作用来共同完成生命活动,而蛋白质相互作用几乎参与了所有的生物进程,因此只有对细胞内所有蛋白质的相互作用组或蛋白质复合物组进行全面、深入的研究,并进而建立蛋白质间相互作用关系网络,才能真正阐明一个蛋白质的功能,才有可能研究细胞中某一生理活动中所有相关蛋白质的变化及作用机制,同时还有助于探索生命进程、了解疑难病症的产生机制和开发有效药物等各个方面的研究。因此对蛋白质复合物组的构成及功能的研究具有深远的理论和现实意义。
     论文采用基于2-D native/SDS-PAGE的蛋白质组学方法首次对接近生理条件的E coli K-12胞浆蛋白和膜蛋白复合物组进行了较为系统的分析,分别成功地鉴定到24和18个由不同蛋白质组成的异聚体复合物和一些同聚体复合物,其中多数复合物为首次发现。利用多种蛋白质相互作用的研究技术对部分蛋白质复合物进行了证实,为构建蛋白质相互作用网络提供了可靠的相互作用信息。
     对新发现的由外膜蛋白、内膜蛋白和胞浆蛋白组成的OmpW复合物进行了较为深入研究。初步确定了该复合物中各蛋白质成分间的连接方式,证明了复合物受铁离子限制调节,利用体外实验证实该复合物在抵抗人血浆补体杀菌过程中起关键作用,从而首次发现并初步阐明了游离铁介导的细菌感染性疾病的产生机制。该机制的发现,可为设计、开发治疗全身性细菌感染的药物提供全新线索。
     鉴于铁离子在细菌毒力等方面具有重要作用,分析了E coli K-12胞浆蛋白在铁限制下的情况。成功的鉴定了16个差异蛋白,除EntF和GltA已知分别为两种铁转运系统中的关键蛋白外,其余蛋白均为首次发现在维持铁平衡中起重要作用,这些蛋白涉及氨基酸、蛋白质合成代谢,能量代谢和核酸代谢等多种代谢途径。细菌不仅通过提高表达铁转运蛋白来加强对铁的摄取,而且还抑制并非生长所必须的含铁蛋白的表达,最大程度的适应铁限制环境。
     论文还对E coli K-12胞浆蛋白在头孢曲松和巴洛沙星两种新一代抗生素的耐药性中的作用进行了详细分析,分别获得8个和10个耐药相关蛋白。头孢曲松耐药相关蛋白主要与能量代谢相关,从而阐明了细菌对抑制细胞壁合成的抗生素的耐药新机制:细菌可通过调整能量代谢途径来而达到耐药的目的。而巴洛沙星耐药相关蛋白除AtpD与头孢曲松耐药蛋白相同且变化一致外,其他蛋白均不相同,这不仅表明细菌对不同种类抗生素耐药性的产生机制不同,而且也提示这2种抗生素可能交叉耐药较少。细菌对巴洛沙星耐药性的获得可能更主要的是与蛋白质的生物合成的改变有关。这些发现不仅有助于理解细菌对抗生素产生耐药性的机制,而且在抗生素分子的设计和筛选方面具有重要参考价值。
Life activities of a cell are performed by protein-protein interactions, and the interactions are involved in almost all of biological processes. Therefore, only when we understand exactly the networks of protein interactions which based on the systematic analysis of protein interactome or complexome of a cell, can we clarify clearly a protein's function or mechanism of a physiological activity. It can also help us to explore biological processes, uncover mechanisms of diseases occurring both in human and animals and develop efficacious drugs. Thus, the study on protein complexome on a large-scale wide is very important and it's become increasingly urgent.
     Proteomics approach based on 2-D native/SDS-PAGE is firstly used for systematic analysis the complexome of cytoplasm and membrane proteins of E. coli K-12 under physiological conditions. Twenty-four and eighteen heteromeric protein complexes, as well as some hemomeric proteins, are characterized successfully. Parts of complexes are further confirmed by Far-western blotting, co-immunoprecipitation or His-pull down analysis. These results provide reliable interaction information for construction the network of protein interactions.
     Moreover, the new identified OmpW complex which consists of outer membrane protein, inner membrane protein and cytoplasm protein is made an intensive investigated. The protein-protein interactions of the components of the complex are preliminary determined. The integrity of the complex, which is found regulated by iron-deprivation, is required for counteract the anti-bacterial activity of complement system of human plasma. Therefore, the mechanism of iron-mediated infection disease is revealed for the fist time in the thesis, and it may be a distinct clue for development novel drugs to cure bacterial disease.
     In view of free iron functioned in virulence of pathogenic bacteria, the cytoplasmic proteins mediated by iron-starvation are investigated on proteome wide. Sixteen proteins are found responsible for iron homeostasis. Besides EntF and GltA are known key proteins relate to iron transporter, others are new identified in the study which involved in several metabolic pathway such as biosynthesis of amino acids and proteins, metabolism of energy and nuclear acids. Bacteria survive in iron-limitation conditions not only by up-regulated expression of proteins to enhance iron uptake, but also inhibited expression of iron-containing proteins which are not necessary for growth.
     The cytoplasmic proteins of E. coli K-12 respond to Ceftriaxone- and Balofloxacin-resistance is also analyzed using the approach. Eight altered proteins are identified in Ceftriaxone-resistant strains and six of those proteins are involved in energy metabolism. Thus, the modification the energy metabolism pathway is uncovered as a novel mechanism of bacteria resistance to antibiotics which aim at inhibition of biosynthesis of cell wall. In Balofloxacin-resistant strains, ten altered proteins are identified and only AtpD is the same to Ceftriaxone-resistant. It shows bacteria exhibit different mechanisms to resistance to these two antibiotics and they share no cross-resistance. The acquired resistance to Balofloxacin may mainly relate to the shift of biosynthesis of amino acids and proteins. These novel identified mechanisms provide new insight for us to understanding bacteria resistance and it can also help us to develop novel antibiotics to antibacteria efficaciously.
引文
[1]Li M,Wang B,Zhang M,Rantalainen M,Wang S,Zhou H,Zhang Y,Shen J,Pang X,Zhang M,Wei H,Chen Y,Lu H,Zuo J,Su M,Qiu Y,Jia W,Xiao C,Smith LM,Yang S,Holmes E,Tang H,Zhao G,Nicholson JK,Li L,Zhao L.Symbiotic gut microbes modulate human metabolic phenotypes.[J]Proc Natl Acad Sci USA.2008,105(6):2117-2122.
    [2]贾文祥,陈锦英,江丽芳.医学微生物学.[M]北京:人民卫生出版社,2005.
    [3]Jungblut PR.Proteome analysis of bacterial pathogens.[J]Microbes Infect,2001,3:831-840.
    [4]赵蔚.病原微生物蛋白质组研究.[J]微生物学免疫学进展,2004,32:30-34.
    [5]Krishnamurthy T,Ross PL,Rajamani U.Detection of pathogenic and non-pathogenic bacteria by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.[J]Rapid Commun Mass Spectrom.1996,10(8):883-888.
    [6]Ziebandt AK,Weber H,Rudolph J,Schmid R,H(o|¨)per D,Engelmann S,Hecker M.Extracellular proteins of Staphylococcus aureus and the role of SarA and sigma B.[J]Proteomics.2001,1(4):480-493.
    [7]Chaussee MS,Watson RO,Smot JC,et al.Identification of Rgg-regulated exoproteins of streptococcus pyogones.[J]Infect Immune,2001,69:822-831.
    [8]Biarc J,Ngeyen IS,Pi A,et al.Carcinogenic properties of proteins with pro-inflammatory activity from streptococcus bovis.[J]Carcinogenesis,2004,25(8):1477-1484.
    [9]Li BQ,Zhang JZ,Zou QH,et al.Primary analysis on protein maps of helicobacter pylori strains associated with gastric carcinoma.[J]Zhong hua Liu Xing Bing Xue Za Zhi,2003,24(6):439-442.
    [10]Deiwick J,Rappl C,Stender S,et al.Proteomic approaches to salmonella pathogenicity island 2 encoded proteins and the SsrAB regulon.[J]Proteomics,2002,2:792-799.
    [11]Piechaczek K,Dobrindt U,Schierhorn A,et al.Influence of pathogenicity islands and the minor leuX2encoded tRNA5Leu on the proteome pattern of the uropathogenic Escherichia coli strain 536.[J]International Joumal of Medical Microbiology.2000,290(1):75-84.
    [12]Thulasiraman V,Mccutchen2Maloney S L,Motin V L,et al.Detection and identification of virulence factors in Yersinia pestis using SELDI proteinchip system.[J]Biotechniques.2001,30(2):428-432.
    [13]Monahan IM,Betts J,Banerjee DK,et al.Differential expression of mycobacterial proteins following phagocytosis by macrophages.[J]Microbiology.2001,147:459-471.
    [14]Chiosis G,Boneca IG.Selective cleavage of D-Ala-D-Lac by small molecules;re-sensitizing resistant bacteria to vancomycin.[J]Science.2001,293:1484-1487.
    [15]Cash P,Argo E,Ford L,et al.A proteomic analysis of erythromycin resistance in streptococcus pneumoniae. Electrophoresis. 1999, 20; 2259-2268.
    
    [16]McAtce CP, Hofman loS, Berg DE. Identification of diferentially regulated proteins in metrenidozole resistant helicobacter pylori by proteome techniques.[J] Proteomics. 2001, 1: 516-521.
    [17] 潘建义,彭宣宪.免疫蛋白质组学及疫苗靶位筛选.[J]生命的化学,2007,27(2):100-104.
    
    [18]Jungblut PR, Grabher G, Stoffler G., Comprehensive detection of immunorelevant Borrelia garinii antigens by two-dimensional electrophoresis.[J] Electrophoresis. 1999, 20(18): 3611-3622.
    [19] Shin YS, Lee EG, Shin GW, Kim YR, et al. Identification of antigenic proteins from Neospora caninum recognized by bovine immunoglobulins M, E, A and G using immunoproteomics.[J] Proteomics. 2004, 4, 3600-3609.
    [20]Lin YF, Wu MS, Chang CC, Lin SW, Lin JT, Sun YJ, Chen DS, Chow LP. Comparative Immunoproteomics of Identification and Characterization of Virulence Factors from Helicobacter pylori Related to Gastric Cancer.[J] Molecular & Cellular Proteomics. 2006, 5: 1484-1496.
    [21]Shin GW, Palaksha KJ, Kim YR, Nho SW, Cho JH, Heo NE, Heo GJ, Park SC, Jung TS. Immunoproteomic analysis of capsulate and non-capsulate strains of Lactococcus garvieae.[J] Vet Microbiol. 2007,119: 205-212.
    [22]Peng XX. Immunoproteomics and vaccines.[J] Bioforum Europe, 2005,1,2-3.
    [23]Chen Z, Peng B, Wang S, Peng X. Rapid screening of highly efficient vaccine candidates by immunoproteomics.[J] Proteomics 2004,4: 3203-3213.
    [24]Peng XX, Ye XT, Wang SY. Identification of novel immunogenic proteins of Shigella flexneri 2a by proteomic methodologies.[J] Vaccine. 2004,2:2750-2756.
    [25]Daniell SJ, Delahay RM, Shwa RK, et al. Coiled-coil domain of enteropathogenic Escherichia coli type iii secreted protein EspD is involved in EspA filament-mediated cell attachment and homolysis.[J] Infect Immun. 2001,69(6): 405-464.
    [26]Hantland EL, Batchelor M, Delahay RM, et al. Binding or intimin from enteropathogenic Escherichia coli to Tir and host cells.[J] Mol Microbiol. 1999, 32(1): 151-158.
    [27]Yow K, Pearce H, Payne D. A conserved residue at the extreme C-terminus of FosZ is critical for the FtsA-FtsA in teraction in Straphylococcus aureas.[J] Biochem Biophys Res Common, 2000,4:387-392.
    [28]Mizuta R , Lasalle JM , Cheng HL , et al. RAB22 and RAB163/ mouse BRCA2: protein that specifically interact with RAD51 protein.[J] Proc Natl Acad Sic USA, 1997, 24(13): 6927-6932.
    [29]Hu TC , Kornacker MG, Hochschild A, et al. Escherichia coli One-and two-hybrid system for the analysis and identification of protein-protein interactions.[J]Methods.2000,20(1):80-94.
    [30]吴谋胜,彭宣宪.微生物蛋白质组学研究进展.[J]微生物学报,2002,42(2):251-254.
    [31]陈主初,梁宋平.肿瘤蛋白质组学.[M]湖南科技出版社.2002,25.
    [32]Sch(a|¨)gger H,von Jagow G.Blue native electrophoresis for isolation of membrane protein complexes in enzymatically active form.[J]Anal Biochem.1991,199(2):223-231.
    [33]Erica AG.Protein-Protein Interactions:A Molecular Cloning Manual.[M]Cold Spring Harbor Laboratory Press,New York,2002.
    [34]Werts C.Leptospiral lipopolysaccharide activates cells through a TLR2-dependent mechanism.[J]Nat Immunol,2001,2:346-352.
    [35]Hirschfeld M,Kirschning CJ,Schwandner R,Wesche H,Weis JH,Wooten RM,Weis JJ.Cutting edge:inflammatory signaling by Borrelia burgdorferi lipoproteins is mediated by toll-like receptor 2.[J]J Immunol,1999,163:2382-2386.
    [36]黄翠芬,叶棋浓.蛋白质间相互作用技术的研究近况.[M]中国生物化学与分子生物学报,1998,14:1-7.
    [37]周献锋,曹建平,彭佶松等.免疫共沉淀探讨septin蛋白家族间的相互作用.[J]第四军医大学学报,2004,25(10):898-900.
    [38]McMahon SB,Van Buskirk HA,Dugan KA,et al.The novel ATM-related protein TRRAP is an essential cofactor for the c-Myc and E2F oncoproteins.[J]Cell,1998,94:363-374.
    [39]Ishida Y,Abe Y,Yanai M,Harabuchi Y.Epitope analysis of the P6 outer membrane protein of non-typeable Haemophilus influenzae.[J]International Congress Series,2003,2157:177-179.
    [40]Ewen ME,Faha B,Harlow E,Livingston DM.Interaction of p107 with cyclin A independent of complex formation with viral oncoproteins.[J]Science,1992,255:85..
    [41]Faha B,Ewen ME,Tsai L-H,Livingston DM,Harlow E.Interaction between human cyclin A and adenovirus ElA-associated p107 protein[J].Science,1992,255:87.
    [42]Rigaut G.,Shevchenko A.,Rutz B.,et al.A generic protein purification method for protein complex characterization and proteome exploration.[J]Nat.Biotechnol.,1999,17:1030-1032.
    [43]Kaelin W.G.,Pallas D.C.,DeCaprio J.A.,et al.Identification of Cellular Proteins that interact apecifically with the T/ElA binding region of the retinoblastoma gene product.[J]Cell,1991,64:521-532.
    [44]Cho S,Park SG,Lee DH,Park BC.Protein-protein interaction networks:from interactions to networks.[J]J Biochem Mol Biol.2004,37(1):45-52.
    [45]Seeger,M.,Kraft,R.,Ferrel,K.,et al.A novel protein complex involved in signal transduction possessing similarities to 26S proteasome subunits.[J]FASEb J.1998,12:469-478.
    [46]Blackwood E.M.,Eisenman R.N.Max:A helix-loop-helix zipper protein that forms a sequence-specific DNA-binding complex with Myc.[J]Science,1991,251:1211-1217.
    [47]Grasser FA,Sauder C,Haiss P,Hille A,Konig S,Gottel S,Kremmer E,Leinenbach HP,Zeppezauer M,Mueller-Lantzsch N.Immunological detection of proteins associated with the Epstein-Barr virus nuclear antigen 2A.[J]Virology,1993,195(2):550-60.
    [48]Goede B,Naji S,von Kampen O,Ilg K,Thomm M.Protein-protein interactions in the archaeal transcriptional machinery:binding studies of isolated RNA polymerase subunits and transcription factors.[J]J Biol Chem,2006,281(41):30581-92.
    [49]Strom A,Diecke S,Hunsmann G,Stuke AW.Identification of prion protein binding proteins by combined use of far-Western immunoblotting,two dimensional gel electrophoresis and mass spectrometry.[J]Proteomics.2006,6(1):26-34.
    [50]Alley,S.C.,Ishmael F.T.,Jones A.D.,et al.Mapping protein-protein interactions in the bacteriophage T4 DNA polymerase holoenzyme using a novel trifunctional photo-cross-linking and affinity reagent.[J]J.Am.Chem.Soc.,2000,122:6126-6127.
    [51]Smith G P.Filamentous fusion phage:novel expression vectors that display cloned antigens on t he virion surface.[J]Science,1985,228:1315-1317.
    [52]吕海,郑燕芳,金大地.应用激光显微技术在骨肉瘤组织原位筛选噬菌体肽库.[J]第一军医大学学报,2002,22(12):10792-1080.
    [53]Hong Y H,Blank L.W.An expression-packaging-vector which selects and maintains 7-kb DNA inserts in the blue T4 phage genome.[J]Gene,1993,136:193-198.
    [54]Mullaney J M,Black LW,Capsid targeting sequence targets foreign proteins into bacteriophage T4 and permits proteolytic processing.[J]J.Mol.Biol.,1996,261(3):372-385.
    [55]袁改玲,郭媛华,张俊英等.噬菌体表面展示技术的发展及应用.[J]动物医学进展,2005,26(3):1-4.
    [56]Fields S,Song O.A novel genetic system to detect protein-protein interactions.[J]Nature.1989,340(6230):245-246.
    [57]James P,Halladay J,Craig EA.Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast.[J]Genetics.1996,144(4):1425-1436.
    [58]Watson MA,Buckholz R,Weiner MP.Vectors encoding alternative antibiotic resistance for use in the yeast two-hybrid system.[J]Biotechniques.1996,21(2):255-259.
    [59]Wong C,Naumovski L.Method to screen for relevant yeast two-hybrid-derived clones by coimmunoprecipitation and colocalization of epitope-tagged fragments-application to Bcl-xL.[J]Anal.Biochem.,1997,252(1):33-39.
    [60]Finley RL Jr,Brent R.Interaction mating reveals binary and ternary connections between Drosophila cell cycle regulators.[J]Proc.Natl.Acad.Sci.,1994,91(26):12980-12984.
    [61]Dove SL,Hochschild A.Conversion of the omega subunit of Escherichia coil RNA polymerase into a transcriptional activator or an activation target.[J]Genes Dev.,1998,12:745-754.
    [62]Merchant M,Weinbergen SR.Recent advancements in surface-en-hanced laser dsorption/ionization-time of flight-mass spectrometry.[J]Electrophoresis,2000,21(6):1164-1177.
    [63]Dongre AR,Optieck G,Cosand WL,et al.Preoteomics in the post-geneome age.[J]Biopolymers,2001,60:206-211.
    [64]Clegg R.M.Fluorescence resonance energy transfer.In fluorescence imaging spectroscopy and microscopy.[M]John Wiley,New York,1996,179-252.
    [65]Wouters FS,Verveer PJ,Bastiaens PIH.Imaging biochemistry inside cells.[J]Trends cell biol.2001,11:203-211.
    [66]Erica Golemis.Protein-protein interactions,a molecular cloning manual.[M]2002,147.
    [67]Wang JJ,Chen XC,Xing D.Fluorescence resonance energy transfer assay:applications in the study of protein-protein interaction.[J]2003,30(6):980-984.
    [68]Mahajan N,Linder K,Berry G,et al.Bcl2and Bax interactions in mitochondira probed with green fluorescent protein and fruorescence resonance energy transfer.[J]Nat.Biootechnol.,1998,16:547-552.
    [69]Day RN.Visualization of Pit-1 transcription factor interactions in the living cell nucleus by fluorescence microscopy.[J]Mol.Endocrinol.,1998,12:1410-1419.
    [70]张益珍.荧光共振能量转移技术及其在医药学中的应用.[J]华西药学杂志,2004,19(6):491-492.
    [71]De Angelis DA,Miesenbock G.,Zemelman BV,et al.PRIM:Proximity imaging of green fluorescent protein-tagged polypeptides.[J]Proc.Natl.Acad.Sci.,1998,95:12025-12032.
    [72]Siemering K.R.,Golbik R.,Sever R.,et al.Mutations that suppress the thermosensitivity of green fluorescent protein.Gurr.Biol.,1996,6:1653-1663.
    [73]王海明,钱凯先.表面等离子共振技术在生物分子互作研究中的应用.[J]浙江大学学报(工学版),2003,37(3):354-361.
    [74]Wioson W.Analyzing biomolecular interactions.[J]Science,2002,295:2103-2105.
    [75]Saenko E,Sarafanov A,Greco N,et al.Use of surface plasmon resonance for studies of protein-protein and protein-phospholipid membrane interactions.Application to the binding of factor Ⅷ to von Willebrand factor and to phosphatidylserine-containing membranes.[J]J.Chromatogy.A.,1999,852:59-71.
    [76]孙颖,张阳德.表面等离子共振技术在蛋白质组学中的应用.[J]Medicine and Philosophy,2002,23(10):30-32.
    [77]Nelsom RW,Krone JR.Advances in surface plasmon resonance bimolecular interaction analysis mass spectrometry(BIA/MS).[J]J.Mol.Recognit.,1999,12(2):77-93.
    [78]Nedelkov D,Rasooly A,Nelson RW.Multitoxin biosensor-mass spectrometry analysis:a new approach for rapid,real-time,sensitive analysis of staphylococcal toxins in food.[J]Int J Food Microbiol,2000,60(1):1-13.
    [79]Willemsen OH,Snel MM,Cambi A,Greve J,De Grooth BG,Figdor CG.Biomolecular interactions measured by atomic force microscopy.[J]Biophys.J.,2000,79:3267-281.
    [80]Stark M,M(o|¨)ller C,Müller D J,Guckenberger R.From images to interactions:high-resolution phase imaging in tapping-mode atomic force microscopy.[J]Biophys.J.,2001,80:3009-3018.
    [81]Benoit M,Gabriel D,Gerish G,et al,Discrete interactions in cell adhesion measured by single-molecule force spectroscopy.[J]Nat.Cell Biol.,2000,2:313-317.
    [82]Oesterhelt F,Oesterhelt D,Pfeiffer M,et al,Unfolding pathways of individual bacteriorhodopsins.[J]Science,2000,288:143-146.
    [83]Loo JA.Observation of large subunit protein complexes by electrospray mass spectrometry.[J]Mass Spectrom.Rev.1995,16:1-23.
    [84]Rostom AA,Robinson CV.Disassembly of intact mutiprotein complexes in the gas phase.[J]Curt.Opin.Struct.Biol.,1999,9:135-141.
    [85]Vis H,Heinemann U,Dobson CM,et al.Dectection of a monomeric intermediate associated with dimerization of protein HU by mass spectrometry.[J]J.Am.Chem.Soc.1998,120:6427-6428.
    [86]Rostom AA,Fucini P,Benjamin DR,et al.Selective dissociation of intact ribosomes in a mass spectrometer.[J]Proc.Natl.Acad.Sci.,2000,97:5185-5190.
    [87]Wilm M.,Mann M.,Electrospray and Taylor-cone theory,Dole's beam of macromolecules at last? Int.J.Mass Spectrom.Ion Proc.,1994,136:167-180.
    [88]Verentchikov A,Ens W,Standing K.A reflecting time of flight mass spectrometer with an electrospray ion source and orthogonal extraction.[J]Anal.Chem.,1994,66:126-133.
    [89]Rostom AA,Sunde M,Richardson SJ,et al.Dissection of multi-protein complexes using mass spectrometry:Subunit interactions in transthyretin and retinol-binding protein complexes.[J]Protein Struct.Func.Genet.1998,(suppl.)2:3-11.[90]田云,卢向阳.蛋白质间相互作用研究技术进展.[J]生物学通报,2003,38(3):1-3.
    [91]张丽萍,霍克克.蛋白质相互作用研究技术进展.[J]高技术通讯,2003,(11):99-106.
    [92]谢攀,甄一松,张利等.蛋白与蛋白相互作用研究的生物信息学进展.[J]中国分子心脏病学杂志,2002,2(5):53-58.
    [93]Xenarios I,Salwinski L,Duan XJ,et al.DIP,the Database of Interacting Proteins:a research tool for studying cellular networks of protein interactions.[J]Nucleic Acids Res.2002,30(1):303-305.
    [94]Lappe M,Park J,Niggemann O,et al.Generating protein interaction maps from incomplete data:application to fold assignment.[J]Bioinformatics,2001,17:149-156.
    [95]Moreira LD,Andrade AFB,Vale MD,Souza SMS,Hirata R,Asad UMOB,Asad NR,Monteiro-Leal LH,Previato JO,Mattos-Guaraldi AL.Effects of iron limitation on adherence and cell surface carbohydrates of Corynebacterium diphtheriae strains.[J]Appl Environ Microbiol,2003,69:5907-5913.
    [96]NCCLS.Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts (M27-A).[M]Wayne,Pennsylvania,2002.
    [97]Loughlin MF,Jones MV,Lambert PA.Pseudomonas aeruginosa cells adapted to benzalkonium chloride show resistance to other membrane-active agents but not to clinically relevant antibiotics.[J]J Antimicrob Chemother,2002,49:631-639.
    [98]Lai EM,Nair U,Phadke ND,Maddock JR.Proteomic screening and identification of differentially distributed membrane proteins in Escherichia coli.[J]Mol Microbiol,2004,52:1029-1044.
    [99]Kusuda M,Hatano T,Yoshida T.Water-soluble complexes formed by natural polyphenols and bovine serum albumin:Evidence from gel electrophoresis.[J]Biosci Biotech Biochem,2006,70:152-160.
    [100]Gillespie AS,Elliott E.Comparative advantages of imidazole-sodium dodecyl sulfate-zinc reverse staining in polyacrylamide gels.[J]Anal Biochem.2005,345(1):158-160.
    [101]Castellanos-Serra L,Hardy E.Detection of biomolecules in electrophoresis gels with salts of imidazole and zinc II:a decade of research.[J]Electrophoresis.2001,22(5):864-873.
    [102]Candiano G,Bruschi M,Musante L,Santucci L,Ghiggeri GM,Camemolla B,Orecchia P,Zardi L,Righetti PG.Blue silver:a very sensitive colloidal Coomassie G-250 staining for proteome analysis.[J]Electrophoresis 2004,25,1327-1333.
    [103]Kussmann M,Nordhoff E,Bahbek-Neilsen H,Haebel S,Bossel-Larsen M,Jakobsen L,Gobim J,Mirgorodskaya E,Krolla-Kristensen A,Palm L,Roepstorff P.Matrix-assisted laser desorption/ionization mass spectrometry sample preparation techniques designed for various peptide and protein analytes.[J]J Mass Spectrom,1997,32:593-601.
    [104]Zhang GL,Wang GZ,Wang SY,Peng XX.Applying proteomic methodologies to analyze the effect of hexamethylene bisacetamide(HMBA) on proliferation and differentiation of human gastric carcinoma BGC-823 cells.[J]Int J Biochem Cell Biol,2004,36:1613-1623]
    [105]萨姆步鲁克,弗里奇,曼尼阿蒂斯著.分子克隆实验指南.[M]北京:科学出版社,1999.
    [106]Peng XX,Zhang JY,Wang SY,Lin ZL,Zhang WY.Immuno-capture PCR for detection of Aeromonas hydrophila.[J]J Microbiol Methods,2002,49:335-338.
    [107]Peng XX,Wu Y J,Wang SY.Acute phase response(APR)-related proteome of loach skin to injury.[J]Proteomics,2004:4:3989-3997.
    [108]Nakatomi A,Yazawa M.Identification and characterization of a novel ealcineurin-binding protein in scallop testis.[J]J Biochem,2003,133:159-164.
    [109]邓瑞春.两种不同方法纯化抗血清IgG的效果比较.[J]免疫学杂志.1999,68-70.
    [110]Arifuzzaman M,Maeda M,Itoh A,Nishikata K,Takita C,Saito R,Ara T,Nakahigashi K,Huang HC,Hirai A,Tsuzuki K,Nakamura S,Altaf-Ul-Amin M,Oshima T,Baba T,Yamamoto N,Kawamura T,Ioka-Nakamichi T,Kitagawa M,Tomita M,Kanaya S,Wada C,Mori H.Large-scale identification of protein-protein interaction of Escherichia coli K-12.[J]Genome Res,2006,16:686-691.
    [111]Wu T,McCandlish AC,Gronenberg LS,Chng SS,Silhavy TJ,Kahne D.Identification of a protein complex that assembles lipopolysaccharide in the outer membrane of Escherichia coli.[J]Proc Natl Acad Sci USA.2006,103:11754-11759.
    [112]Li H,Lin XM,Wang SY,Peng XX.Identification and antibody-therapeutic targeting of chloramphenicol-resistant outer membrane proteins in Escherichia coli.[J]J Proteome Res.2007,6(9):3628-3636.
    [113]Nakajima H,Kobayashi K,Kobayashi M,Asako H,Aono R.Overexpression of the robA gene increases organic solvent tolerance and multiple antibiotic and heavy metal ion resistance in Escherichia coli.[J]Appl.Envir.Microbiol.1995,61:2302-2307.
    [115]BauerA,KusterB.Affinity purification-mass spectrometry,Powerful tools for the characterization of protein complexes.[J]Eur J Biochem,2003,270(4):570-578.
    [116]Alberts B.The Cell as a Collection of Protein Machines:Preparing the Next Generation of Molecular Biologists.[J]Cell,1998,92:291-294.
    [117]Rigaut G,Shevchenko A,Rutz B,et al.A generic protein purification methodforprotein complex characterization and proteome exploration.[J]Nat Biotechnol,1999,17(10):1030-1032.
    [118]Ducruix A,Hounwanou N,Reinbolt J,Boulanger Y,Blanquet S.Purification and reversible subunit dissociation of overproduced Escherichia coli phenylalanyl-tRNA synthetase.[J]Biochim Biophys Acta,1983,741:244-250.
    [119]Wolodko WT,Brownie ER,Bridger WA.Subunits of succinyl-coenzyme A synthetase:Coordination of production in Escherichia coli and discovery of a factor that precludes refolding.[J]J.Bacteriol,1980,143:231-237.
    [120] Reizer J, Ramseier T, Reizer A, Charbit A, Saier M. Novel phosphotransferase genes revealed by bacterial genome sequencing: a gene cluster encoding a putative N-acetylgalactosamine metabolic pathway in E. coli.[J] Microbiology, 1996,142: 231-250.
    [121] Menzel R, Gellert M. Fusions of the Escherichia coli gyrA and gyrB control regions to the galactokinase gene are inducible by coumermycin treatment.[J] J. Bacteriol. 1987, 169: 1272-1278.
    [122] Campanini B, Speroni F, Salsi E, Cook PF, Roderick SL, Huang B, Bettati S, Mozzarelli A. Interaction of serine acetyltransferase with O-acetylserine sulfhydrylase active site: evidence from fluorescence spectroscopy.[J] Protein Sci. 2005,14(8): 2115-2124.
    [123] Zhao C, Moriga Y, Feng B, Kumada Y, Imanaka H, Imamura K, Nakanishi K. On the interaction site of serine acetyltransferase in the cysteine synthase complex from Escherichia coli.[J] Biochem Biophys Res Commun. 2006, 341(4): 911-916.
    [124] Droux M, Ruffet ML, Douce R, Job D. Interactions between serine acetyltransferase and O-acetylserine (thiol) lyase in higher plants-structural and kinetic properties of the free and bound enzymes.[J] Eur J Biochem. 1998,255(1): 235-245.
    [125] Lasserre JP, Beyne E, Pyndiah S, Lapaillerie D, Claverol S, Bonneu M. A complexomic study of Escherichia coli using two-dimensional blue native/SDS polyacrylamide gel electrophoresis.[J] Electrophoresis, 2006,27: 3306-3321.
    [126] Zwaig N., Kistler W.S., Lin E.C. (1970) Glycerol kinase, the pacemaker for the dissimilation of glycerol in Escherichia coli. J Bacteriol 102,753-759.
    [127] Tesmer JJ, Stemmler TL, Penner-Hahn JE, Davisson VJ, Smith JL. Preliminary X-ray analysis of Escherichia coli GMP synthetase: determination of anomalous scattering factors for a cysteinyl mercury derivative.[J] Proteins, 1994,18:394-403.
    [128] Skorski P, Leroy P, Fayet O, Dreyfus M, Hermann-Le Denmat S. The highly efficient translation initiation region from the Escherichia coli rpsA gene lacks a shine-dalgarno element.[J] J Bacteriol. 2006,188,6277-6285.
    [129] Milligan RA, Unwin PNT. Location of exit channel for nascent protein in 80S ribosome.[J] Nature, 1986,319:693-695.
    [130] Yonath A, Leonard KR, Wittmann HG. A tunnel in the large ribosomal subunit revealed by three-dimensional image sereconstruction.[J] Science, 1987,236: 813-816.
    [131] Maier R, Eckert B, Scholz C, Lilie H. and Schmid FX. Interaction of Trigger Factor with the Ribosome.[J] J Mol Biol, 2003, 326: 585-592.
    [132] Ferbitz M, Maier T, Patzelt H, Bukau B, Deuerling E, Ban N. Trigger factor in complex with the ribosome forms a molecular cradle for nascent proteins.[J] Nature, 2004, 431: 590-596.
    [133] Blaha G, Wilson DN, Stoller G, Fischer G, Willumeit R, Nierhaus KH. Localization of the Trigger Factor Binding Site on the Ribosomal 50 S Subunit.[J] J. Mol. Biol. 2003, 326: 887-897.
    [134] Choi KM, Brimacombe R. The path of the growing peptide chain through the 23S rRNA in the 50S ribosomal sub-unit; a comparative cross-linking study with three different pepribosomaltide families. [J] Nucleic Acids Res. 1998,26, 887-895.
    [135] John Ellis R. Chaperomics: In Vivo GroEL Function Defined.[J] Current Biology, 2005, 15: 661-663]
    [136] Choi KM, Atkins JF, Gesteland RF, and Brimacombe R. Flexibility of the nascent polypeptide chain within the ribosome Contacts from the peptide N-terminus to a specific region of the 30S subunit.[J] Eur. J. Biochem. 1998, 255: 409-413.
    [137] Kimura M, Ishihama A. Subunit assembly in vivo of Escherichia coli RNA polymerase: role of the amino-terminal assembly domain of alpha subunit.[J] Genes Cells. 1996, 1(6): 517-528.
    [138] Deuerling E, Schulze-Specking A, Tomoyasu T, Mogk A, Bukau B. Trigger factor and DnaK cooperate in folding of newly synthesized proteins.[J] Nature. 1999, 400(6745):693-696.
    [139] Lee SW, Cho BH, Park SG, Kim S. Aminoacyl-tRNA synthetase complexes: beyond translation.[J] J Cell Sci. 2004, 117:3725-3734.
    [140] Fisher MT. GroE chaperonin-assisted folding and assembly of dodecameric glutamine synthetase.[J] Biochemistry (Mosc). 1998, 63(4):382-398.
    [141] Almassy RJ, Janson CA, Hamlin R, Xuong NH, Eisenberg D. Novel subunit-subunit interactions in the structure of glutamine synthetase.[J] Nature. 1986, 323(6086): 304-309.
    [142] Sawa Y, Ochiai H, Yoshida K, Tanizawa K, Tanaka H, Soda K. Glutamine synthetase from a cyanobacterium, Phormidium lapideum: purification, characterization, and comparison with other cyanobacterial enzymes.[J] J Biochem. 1988, 104(6): 917-923.
    [143] Patzelt H, Kramer G, Rauch T, Schonfeld HJ, Bukau B, Deuerling E. Three-state equilibrium of Escherichia coli trigger factor.[J] Biol Chem. 2002, 383(10): 1611-1619.
    [144] Kawabuchi M, Satomi Y, Takao T, Shimonishi Y, Okada M. Transmembrane phosphoprotein Cbp regulates the activities of Scr-family tyrosine kinases.[J] Nature. 2000, 404: 999-1003.
    [145] Seeger M, Kraft R, Ferrel K, Naumann M, Dubiel W. A novel protein complex involved in signal transduction possessing similarities to 26S proteasome subunits.[J] FASEb J. 1998, 12: 469-478.
    [146] Lasserre JP, Beyne E, Pyndiah S, Lapaillerie D, Claverol S, Bonneu M. A complexomic study of Escherichia coli using two-dimensional blue native/SDS polyacrylamide gel electrophoresis.[J] Electrophoresis. 2006,16: 3306-2221.
    [147] Scarsdale JN, Radaev S, Kazanina G, Schirch V, Wright HT. Crystal structure at 2.4 A resolution of E. coli serine hydroxymethyltransferase in complex with glycine substrate and 5-formyl tetrahydrofolate.[J] J Mol Biol. 2000,296(1): 155-168.
    [148] Sun H, Pan YC. Using native gel in two-dimensional PAGE for the detection of protein interactions in protein extract.[J] J Biochem Biophys Methods. 1999,39(3):143-151.
    [149] Gonzalez L, Bustamante JJ, Barea-Rodriguez EJ, Martinez AO, Haro LS. 2-D native-PAGE/SDS-PAGE visualization of an oligomer's subunits: application to the analysis of IgG.[J] Electrophoresis. 2006,27(10): 2016-2023.
    [150] Wheeler D, Chrambach A, Ashburn P, Jovin TM. Discontinuous buffer systems operative at pH 2.5-11.0, 0 degrees C and 25 degrees C, available on the Internet.[J] Electrophoresis 2004, 25: 973-974.
    [151] Thomas JM, Hodes ME. A new discontinuous buffer system for the electrophoresis of cationic proteins at near-neutral pH.[J] Anal Biochem 1981,118:194-196.
    [152] Su C, Wang F, Pan Y-CE. Electrophoresis of proteins and protein-protein complexes in native polyacrylamide gels using a horizontal gel apparatus. [J] Anal Biochem 1994, 223: 93-98.
    [153] Wittig I, Braun HP, Schagger H. Blue native PAGE.[J] Nat Protoc. 2006,1: 418-428.
    [154] Hames BD. An introduction to polyacrylamide gel electrophoresis. In: Rickwood D, Hames BD, editors, Gel Electrophoresis of Proteins: a Practical Approach.[M] IRL Press, Washington DC, 1981.
    [155] Tamames J, Moya A, Valencia A. Modular organization in the reductive evolution of protein-protein interaction networks.[J] Genome Biol. 2007, 8, R94:l-8.
    [156] Butland G, Peregrin-Alvarez JM, Li J, Yang W, Yang X, Canadien V, Starostine A, Richards D, Beattie B, Krogan N, Davey M, Parkinson J, Greenblatt J, Emili A. Interaction network containing conserved and essential protein complexes in Escherichia coli.[J] Nature. 2005,433(7025): 531-537.
    [157] Altaf-Ul-Amin M, Shinbo Y, Mihara K, Kurokawa K, Kanaya S. Development and implementation of an algorithm for detection of protein complexes in large interaction networks.[J] BMC Bioinformatics. 2006,7:207-214.
    [158] Koronakis V. TolC-the bacterial exit duct for proteins and drugs.[J] FEBS Letters, 2003,555: 66-71.
    [159] Cai SJ, Inouye M. EnvZ-OmpR interaction and osmoregulation in Escherichia coli.[J] J Biol. Chem, 2002,277: 24155-24161.
    [160] Molloy MP, Herbert BR, Slade MB, Rabilloud T, Nouwens AS, Williams KL, Gooley AA. Proteomic analysis of the Escherichia coli outer membrane.[J] Eur J Biochem, 2000, 267: 2871-2881.
    [161]Berven FS,Karlsen OA,Straume AH,Flikka K,Murrell JC,Fjellbirkeland A,Liilehaug JR,Eidhammer I,Jensen HB.Analysing the outer membrane subproteome of Methylococcus capsulatus(Bath) using proteomics and novel biocomputing tools.[J]Arch Microbiol,2006,184:362-377.
    [162]Rhiel E,Flükiger K,Wehrli C,Erni B.The mannose transporter of Escherichia coil K12:oligomeric structure,and function of two conserved cysteines.[J]Biol Chem Hoppe Seyler.1994,375(8):551-559.
    [163]Huber F,Erni B.Membrane topology of the mannose transporter of Escherichia coli K12.[J]Eur.J.Biochem.1996,239:810-817.
    164]Benoit S,Abaibou H,Mandrand-Berthelot MA.Topological analysis of the aerobic membrane-bound formate dehydrogenase of Escherichia coli.[J]J Bacteriol.1998,180(24):6625-6634.
    [165]Plunkett G,Burland V,Daiels DL,Blattner FR.Analysis of the Escherichia coli genome.Ⅲ.DNA sequence of the region from 87.2 to 89.2 minutes.[J]Nucleic Acids Res.21:3391-3398.
    [166]Berg BL,Li J,Heider J,Stewart V.Nitrate-inducible Formate Dehydrogenase in Escherichia coil K- 12.[J]J.biol.Chem.1991,266:22380-22385.
    [167]Pommier J,Mandrand-Berthelot MA,Holt SE,Boxer DH,Giordano G.A second phenazine methosulphate-linked formate dehydrogenase isoenzyme in Escherichia coli.Biochim.[J]Biophys.Acta,1992,1107:305-313.
    [168]Jones RW.Proton translocation by the membrane-bound formate dehydrogenase of Escherichia coil.[J]FEBS Microbiol.Lett.1980,8:167-171.
    [169]Jormakka M,T(o|¨)rnroth S,Byme B,Iwata S.Molecular Basis of Proton Motive Force Generation:Structure of Formate Dehydrogenase-N.[J]Science,2002,295:1863-1868.
    [170]Jormakka M,Byrne B,Iwata S.Protonmotive force generation by a redox loop mechanism.[J]FEBS Lett.2003,545(1):25-30.
    [171.Richardson DJ,Berks BC,Russell DA,Spiro S,Taylor CJ.Functional,biochemical and genetic diversity of prokaryotic nitrate reductases.[J]Cell Mol Life Sci.2001,58:165-178.
    [172]Jormakka M,Byrne B,Iwata S.Protonmotive force generation by a redox loop mechanism.[J]FEBS Lett.2003,545(1):25-30.
    [173]Jormakka M,T(o|¨)rnroth S,Byrne B,Iwata S.Molecular Basis of Proton Motive Force Generation:Structure of Formate Dehydrogenase-N.[J]Science,2002,295:1863-1868.
    [174]黄传钟.大肠埃希氏菌膜蛋白的亚蛋白质组学分析及其膜蛋白相关复合物研究[D].厦门大学硕士学位论文。2007.
    [175]Schr(o|¨)der I,Johansson P,Rutberg L,Hederstedt L.The hemX gene of the Bacillus subtilis hemAXCDBL operon encodes a membrane protein,negatively affecting the steady-state cellular concentration of HemA (glutamyl-tRNA reductase).[J] Microbiology, 1994, 140: 731-740.
    [176] Werner J, Misra R. YaeT (Omp85) affects the assembly of lipid-dependent and lipid-independent outer membrane proteins of Escherichia coli.[J] Mol. Microbiol. 2005, 57: 1450-1459.
    [177] Jain S, Goldberg MB. Requirement for YaeT in the Outer Membrane Assembly of Autotransporter Proteins.[J] J Bacteriol. 2007,189(14): 5393-5398.
    [178] Wu T, Malinverni J, Ruiz N, Kim S, Silhavy TJ, Kahne D. Identification of a multicomponent complex required for outer membrane biogenesis in Escherichia coli.[J] Cell. 2005,121:235-245.
    [179] Werner J, Misra R. YaeT (Omp85) affects the assembly of lipid-dependent and lipid-independent outer membrane proteins of Escherichia coli.[J] Mol. Microbiol. 2005,57: 1450-1459.
    [180] Charlson ES, Werner JN, Misra R. Differential effects of yfgL mutation on Escherichia coli outer membrane proteins and lipopolysaccharide.[J] J Bacteriol. 2006,88: 7186-7194.
    [181] Sklar JG, Wu T, Gronenberg LS, Malinverni JC, Kahne D, Silhavy TJ. Lipoprotein SmpA is a component of the YaeT complex that assembles outer membrane proteins in Escherichia coli.[J] Proc Natl Acad Sci U S A. 2007,104(15): 6400-6405.
    [182] Misra R. First glimpse of the crystal structure of YaeT's POTRA domains.[J] ACS Chem Biol. 2007, 2(10): 649-651.
    [183] Kim S, Malinverni JC, Sliz P, Silhavy TJ, Harrison SC, Kahne D. Structure and function of an essential component of the outer membrane protein assembly machine.[J]_Science. 2007, 317:961-964.
    [184] Malinverni JC, Werner J, Kim S, Sklar JG, Kahne D, Misra R, Silhavy TJ. YfiO stabilizes the YaeT complex and is essential for outer membrane protein assembly in Escherichia coli.[J] Mol Microbiol. 2006, 61:151-164.
    [185] Luirink J, von Heijne G, Houben E, de Gier JW. Biogenesis of inner membrane proteins in Escherichia coli.[J] Annu Rev Microbiol, 2005, 59: 329-355.
    [186] Nikaido H. Molecular basis of bacterial outer membrane permeability revisited.[J] Microbiol Mol Biol Rev, 2003,67: 593-656.
    [187] Ruiz N, Falcone B, Kahne D, Silhavy TJ. Chemical conditionally: a genetic strategy to probe organelle assembly.[J] Cell, 2005,121: 307-317.
    [188] Dippel R, Boos W. The maltodextrin system of Escherichia coli: metabolism and transport.[J] J Bacteriol. 2005,187(24): 8322-8331.
    [189] Boos W, Shuman H. Maltose/maltodextrin system of Escherichia coli: transport, metabolism, and regulation.[J] Microbiol Mol Biol Rev. 1998, 62(1):204-229.
    [190] Xavier KB, Peist R, Kossmann M, Boos W, Santos H. Maltose metabolism in the hyperthermophilic archaeon Thermococcus litoralis: purification and characterization of key enzymes.[J] J Bacteriol. 1999,181(11):3358-3367.
    [191] Joris B, Van Beeumen J, Casagrande F, Gerday C, Frere JM, Ghuysen JM. The complete amino acid sequence of the Zn~(2+)-containing D-alanyl-D-alanine-cleaving carboxypeptidase of streptomyces albus G.[J] Eur J Biochem. 1983,130(1): 53-69.
    [192] Dartigalongue C, Raina S. A new heat-shock gene, ppiD, encodes a peptidyl-prolyl isomerase required for folding of outer membrane proteins in Escherichia coli.[J] EMBO J. 1998 Jul 15;17(14):3968-3980.
    [193] Sukharev S. Purification of the small mechanosensitive channel of Escherichia coli (MscS): the subunit structure, conduction, and gating characteristics in liposomes.[J] Biophys. J. 2002, 83: 290-298.
    [194] Bass RB, Strop P, Barclay M, Rees DC. Crystal structure of Escherichia coli MscS, a voltage-modulated and mechanosensitive channel.[J] Science, 2002, 298:1582-1587.
    [195] Huang CZ, Lin XM, Wu LN, Zhang DF, Liu D, Wang SY, Peng XX. Systematic identification of the subproteome of Escherichia coli cell envelope reveals the interaction network of membrane proteins and membrane-associated peripheral proteins.[J] J Proteome Res. 2006, 5(12): 3268-3276.
    [196] Stroh A, Anderka O, Pfeiffer K, Yagi T, Finel M, Ludwig B, Schagger H. Assembly of respiratory complexes I, III, and IV into NADH oxidase supercomplex stabilizes complex I in Paracoccus denitrificans.[J] J. Biol. Chem. 2004, 279: 5000-5007.
    [197] Leif H, Sled VD, Ohnishi T, Weiss H, Friedrich T. Isolation and Characterization of the Proton-translocating NADH:ubiquinone Oxidoreductase from Escherichia coli Eur.[J] J. Biochem. 1995,230:538-548.
    [198] Futai M. Membrane D-lactate dehydrogenase from Escherichia coli. Purification and properties.[J] Biochemistry, 1973, 12:2468-2474.
    [199] Kohn LD, Kaback HR. Mechanisms of active transport in isolated bacterial membrane vesicles. XV. Purification and properties of the membrane-bound D-lactate dehydrogenase from Escherichia coli.[J] J. Biol. Chem. 1973, 248: 7012-7017.
    [200] Li QX, Dowhan W. Structural characterization of Escherichia coli phosphatidylserine decarboxylase.[J] J Biol Chem. 1988,263(23): 11516-11522.
    [201] Satre M, Kennedy EP. Identification of bound pyruvate essential for the activity of phosphatidylserine decarboxylase of Escherichia coli.[J] J Biol Chem. 1978, 253(2): 479-483.
    [202] Li QX, Dowhan W. Studies on the mechanism of formation of the pyruvate prosthetic group of phosphatidylserine decarboxylase from Escherichia coli.[J] J Biol Chem. 1990, 265(7): 4111-4115.
    [203] Rangarajan ES, Asinas A, Proteau A, Munger C, Baardsnes J, Iannuzzi P, Matte A, Cygler M. Structure of [NiFe] hydrogenase maturation protein HypE from Escherichia coli and its interaction with HypF.[J] J Bacteriol. 2008, 190(4): 1447-1458.
    [204] Kaufmann A, Stierhof YD, Henning U. New outer membrane-associated protease of Escherichia coli K-12.[J] J Bacteriol. 1994,176(2): 359-367.
    [205] Cooper SJ, Leonard GA, McSweeney SM, Thompson AW, Naismith JH, Qamar S, Plater A, Berry A, Hunter WN. The crystal structure of a class II fructose-1,6-bisphosphate aldolase shows a novel binuclear metal-binding active site embedded in a familiar fold.[J] Structure. 1996,4(11): 1303-1315.
    [206] Imanaka H, Fukui T, Atomi H, Imanaka T. Gene cloning and characterization of fructose-1,6-bisphosphate aldolase from the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1.[J] J Biosci Bioeng. 2002,94(3):237-243.
    [207] Berry A, Marshall KE. Identification of zinc-binding ligands in the class II fructose-1,6-bisphosphate aldolase of Escherichia coli.[J] FEBS Lett. 1993,318(1): 11-16.
    [208] Szebenyi DM, Liu X, Kriksunov IA, Stover PJ, Thiel DJ. Structure of a murine cytoplasmic serine hydroxymethyltransferase quinonoid ternary complex: evidence for asymmetric obligate dimers.[J] Biochemistry. 2000, 39(44): 13313-13323.
    [209] Nayar S, Bhattacharyya D. UDP-galactose 4-epimerase from Escherichia coli: equilibrium unfolding studies.[J] Indian J Biochem Biophys. 2001,38(6): 353-360.
    [210] Shi W, Dunbar J, Jayasekera MM, Viola RE, Farber GK. The structure of L-aspartate ammonia-lyase from Escherichia coli.[J] Biochemistry. 1997,36(30): 9136-9144.
    [211] Wiese A, Gutsmann T, Seydel U.Towards antibacterial strategies: studies on the mechanisms of interaction between antibacterial peptides and model membranes.[J] J Endotoxin Res. 2003,9(2): 67-84.
    [212] Morello JA, Bohnhoff M. Serovars and serum resistance of Neisseria gonorrhoeae from disseminated and uncomplicated infections[J]. J Infect Dis, 1989,160:1012-1017.
    [213] Wei B, Dalwadi H, Gordon LK, Landers C, Bruckner D, Targan SR, Braun J. Molecular cloning of a Bacteroides caccae TonB-linked outer membrane protein identified by an inflammatory bowel disease marker antibody.[J] Infect Immun. 2001,69(10): 6044-6054.
    [214] Iltanen S, Tervo L, Halttunen T, Wei B, Braun J, Rantala I, Honkanen T, Kronenberg M, Cheroutre H, Turovskaya O, Autio V, Ashorn M. Elevated serum anti-I2 and anti-OmpW antibody levels in children with IBD.[J] Inflamm Bowel Dis. 2006, 12(5): 389-394.
    [215] Sharma A, Chaturvedi AN. Prevalence of virulence genes (ctxA, stn, OmpW and tcpA) among non-O1 Vibrio cholerae isolated from fresh water environment. [J] Int J Hyg Environ Health. 2006, 209(6): 521-526.
    [216] Xu CX, Lin XM, Ren HX, Zhang YL, Wang SY, Peng XX. Analysis of outer membrane proteome related to resistance to ampicilin and tetracycline[J]. Proteomics, 2006, 6: 462-473.
    [217] Hu WS, Li PC, Cheng CY. Correlation between ceftriaxone resistance of Salmonella enterica serovar Typhimurium and expression of outer membrane proteins OmpW and Ail/OmpX-like protein, which are regulated by BaeR of a two-component system.[J] Antimicrob Agents Chemother. 2005,49(9): 3955-3958.
    [218] Gil F, Ipinza F, Fuentes J, Fumeron R, Villarreal JM, Aspeee A, Mora GC, Vasquez CC, Saavedra C. The ompW (porin) gene mediates methyl viologen (paraquat) efflux in Salmonella enterica serovar typhimurium.[J] Res Microbiol. 2007,158(6): 529-536.
    [219] Iverson TM, Luna-Chavez C, Cecchini G, Rees DC. Structure of the Escherichia coli fumarate reductase respiratory complex.[J] Science, 1999, 284: 1961-1966.
    [220] Xu CX, Wang SY, Ren HX, Lin XM, Wu LN, Peng XX. Proteomics analysis on the expression of the outer membrane proteins of Vibrio alginolyticus at different Na~+ concentrations.[J] Proteomics, 2005, 5: 3142-3152.
    [221] McHugh JP, Rodriguez-Quinones F, Abdul-Tehrani H, Svistunenko DA, Poole RK, Cooper CE, Andrews SC. Global iron-dependent gene regulation in Escherichia coli.[J] J Biol Chem, 2003,278: 29478-29486.
    [222] Lin XM, Wu LN, Li H, Wang SY, Peng XX. Downregulation of Tsx and OmpW and upregulation of OmpX are required for iron homeostasis in Escherichia coli.[J] J Proteome Res. 2008,7(3): 1235-1243.
    [223] Thompson DK, Beliaev AS, Giometti CS, Tollaksen SL, Khare T, Lies DP, Nealson KH, Lim H, Yates J 3rd, Brandt CC, Tiedje JM, Zhou J. Transcriptional and proteomic analysis of a ferric uptake regulator (fur) mutant of Shewanella oneidensis: possible involvement of fur in energy metabolism, transcriptional regulation, and oxidative stress.[J] Appl Environ Microbiol. 2002,68(2): 881-892.
    [224] Hong H, Patel DR, Tamm LK, van den Berg B. The outer membrane protein OmpW forms an eight-stranded beta-barrel with a hydrophobic channel.[J] J Biol Chem. 2006, 281(11): 7568-7577.
    [225]Alexander DM, St John AC. Characterization of the carbon starvation-inducible and stationary phase-inducible gene slp encoding an outer membrane lipoprotein in Escherichia coli.[J] Mol. Microbiol. 1994, 11: 1059-1071.
    [226] Wosten MM, Kox LF, Chamnongpol S, Soncini FC, Groisman EA. A signal transduction system that responds to extracellular iron.[J] Cell. 2000,103(1): 113-125.
    [227. Kolb E. Relation of iron supply and iron metabolism to infectious diseases and parasitoses and the competence of the immune system.[J] Z Gesamte Inn Med. 1988, 43(21): 597-601.
    [228] Bullen JJ. The significance of iron in infection.[J] Rev Infect Dis. 1981,3(6): 1127-1138.
    [229] Bullen JJ, Ward CG, Rogers HJ The critical role of iron in some clinical infections.[J] Eur J Clin Microbiol Infect Dis. 1991,10(8): 613-617.
    [230] Bullen JJ, Rogers HJ, Spalding PB, Ward CG. Iron and infection: the heart of the matter.[J] FEMS Immunol Med Microbiol. 2005,43(3): 325-330.
    [231] Ward CG, Bullen JJ, Rogers HJ. Iron and infection: new developments and their implications.[J] J Trauma. 1996,41(2): 356-364.
    [232] Westenberg DJ, Gunsalus RP, Ackrell BA, Cecchini G. Electron transfer from menaquinol to fumarate. Fumarate reductase anchor polypeptide mutants of Escherichia coli.[J] J Biol Chem. 1990,265(32):19560-19567.
    [233] Price GP, St John AC. Purification and analysis of expression of the stationary phase-inducible slp lipoprotein in Escherichia coli: role of the Mar system.[J] FEMS Microbiol Lett. 2000,193(1):51-56.
    [234] Andrews, N. C. Iron homeostasis: insights from genetics and animal models.[J] Nature Rev. Genet. 2000,1:208-217.
    [235] Flo TH, Smith KD, Sato S, Rodriguez DJ, Holmes MA, Strong RK, Akira S, Aderem A. Lipocalin 2 mediates an innate immune response to bacterial infection by sequestrating iron.[J] Nature. 2004,432(7019): 917-921.
    [236] 王革新,孙南翔,王者鹏,王葵.人血浆转铁蛋白的分离与纯制.[J]化学试剂,1991,13(4):244-247.
    
    [237] Bullen JJ, Rogers HJ, Spalding PB, Ward CG. Natural resistance, iron and infection: a challenge for clinical medicine.[J] J Med Microbiol. 2006, 55(Pt 3):251-258.
    [238] Carolyne L, Rosner F, Kozinn PJ. Elevated serum iron, low unbound transferrin and candidiasis in acute leukaemia.[J] Blood, 1969,34:441-451.
    [239] Karp JE, Metz WG Association of reduced total iron binding capacity and fungal infections in leukemic granulocytpoenic patients.[J] J. Clin. Oncol. 1986,4:216-220.
    [240] Hershko C, Peto TEA, Weatherall DJ. Iron and infection.[J] BMJ, 1988,296:660-664.
    [241] Weinberg ED. Iron withholding: a defense against infection and neoplasia.[J] Physiol. Rev., 1984, 64: 65-100.
    [242] Guerinot ML. Microbial iron transport.[J] Ann Rev Microbiol, 1994,48: 743-772.
    [243] Visca P, Leoni L, Wilson MJ, Lamont IL. Iron transport and regulation, cell signalling and genomics: lessons from Escherichia coli and Pseudomonas.[J] Mol. Microbiol. 2002, 45: 1177-1190.
    [244] Bullen JJ, Rogers HJ, Griffiths E. Role of iron in bacterial infections.[J] Curr. Top. Microbiol. Immunol. 1978, 80: 1-35.
    [245] Lin J, Huang S, Zhang Q. Outer membrane proteins: Key players for bacterial adaptation in host niches.[J] Microbes Infect. 2002, 4: 325-331.
    [246] Otto BR, Verweij-van Vught AM, MacLaren DM. Transferrins and heme-compounds as iron sources for pathogenic bacteria.[J] Crit. Rev. Microbiol. 1992,18: 217-233.
    [247] Andrews SC, Robinson AK, Rodriguez-Quinones F. Bacterial iron homeostasis.[J] FEMS Microbiol. Rev. 2003, 27: 215-237.
    [248] Matzanke BF, Muller GI, Raymond KN. Hydroxamate siderophore mediated iron uptake in E. coli: stereospecific recognition of ferric rhodotorulic acid.[J] Biochem Biophys Res Commun. 1984,121(3): 922-930.
    [249] Hussein S, Hantke K, Braun V. Citrate-dependent iron transport system in Escherichia coli K-12.[J] Eur J Biochem. 1981, 117(2): 431-437.
    [250] Crosa, J.H. (1997) Signal transduction and transcriptional and posttranscriptional control of iron-regulated genes in bacteria. Microbiol Mol Biol Rev 61: 319-336.
    [251] Molloy MP, Herbert BR, Slade MB, Rabilloud T, Nouwens AS, Williams KL, Gooley AA. Proteomic analysis of the Escherichia coli outer membrane.[J] Eur. J. Biochem. 2000, 267: 2871-2881.
    [252] McHugh JP, Rodriguez-Quinones F, Abdul-Tehrani H, Svistunenko DA, Poole RK, Cooper CE, Andrews SC. Global iron-dependent gene regulation in Escherichia coli. A new mechanism for iron homeostasis.[J] J. Biol. Chem. 2003,278: 29478-29486.
    [253] Hantke K. Iron and metal regulation in bacteria.[J] Curr. Opin. Microbiol. 2001,4: 172-177.
    [254] Hantke K, Nicholson G, Rabsch W, Winkelmann G. Salmochelins, siderophores of Salmonella enterica and uropathogenic Escherichia coli strains, are recognized by the outer membrane receptor IroN.[J] Proc. Natl. Acad. Sci. U.S.A. 2003,100: 3677-3682.
    [255] Hantash FM, Earhart CF. Membrane association of the Escherichia coli enterobactin synthase proteins EntB/G, EntE, and EntF.[J] J Bacteriol. 2002, 182: 1768-1773. Hantash FM, Ammerlaan MC, Earhart CF. Enterobactin synthase polypeptides of Escherichia coli are present in an osmotic-shocksensitive cytoplasmic locality. [J] Microbiology, 1997, 143: 147-156.
    [256] Touati D. Transcriptional and posttranscriptional regulation of manganese superoxide dismutase biosynthesis in Escherichia coli, studied with operon and protein fusions. J Bacteriol, 1988,170: 2511-2520.
    [257] 2005, 14: 75-77. Cedar H, Schwartz JH. Production of L-asparaginase II by Escherichia coli.[J] J Bacteriol. 1968, 96(6):2043-2048.
    [258] 吴华昌,刘红,潘红春.抗癌药物L—天冬酰胺酶摇瓶发酵研究.[J]四川轻化工学院学 报,1999,12(3):211-216.
    [259]Oettgen HF,Old L J,Boyse EA,Campbell HA,Philips FS,Clarkson BD,Tallal L,Leeper RD,Schwartz MK,Kim JH.Inhibition of leukemias in man by L-asparaginase.[J]Cancer Res.1967,27:2619-2631.
    [260]Hill JM,Roberts J,Loeb E,Khan A,MacLellan A,Hill RW.L-Asparaginase therapy for leukemia and other malignant neoplasms.[J]J.Am.Med.Assoc.1967,202:882-888.
    [261]李郑武,曲洪琴,朱绿松,李会成,王晴,伞德忠.肿瘤生物治疗药物研究进展.[J]中国药业,2005,14(3):75-76.
    [262]Fuentes DE,Fuentes EL,Castro ME,Pérez JM,Araya MA,Chasteen TG,Pichuantes SE,Vásquez CC.Cysteine metabolism-related genes and bacterial resistance to potassium tellurite.[J]J Bacteriol.2007,189(24):8953-8960.
    [263]Wiater A,Hulanicka D.Properties of cysK mutants of Escherichia coli K12.[J]Acta Biochim Pol.1979,26(1-2):21-28.
    [264]Fimmel AL,Loughlin RE.Isolation and characterization of cysK mutants of Escherichia coli K12.[J]J Gen Microbiol.1977,103(1):37-43.
    [265]Fuentes DE,Fuentes EL,Castro ME,Pérez JM,Araya MA,Chasteen TG,Pichuantes SE,Vásquez CC.Cysteine metabolism-related genes and bacterial resistance to potassium tellurite.[J]J Bacteriol.2007,189(24):8953-8960.
    [266]Lee SW,Cho BH,Park SG,Kim S.Aminoacyl-tRNA synthetase complexes:beyond translation.[J]J Cell Sci.2004,117:3725-3734.
    [267]Diao L,Zhang B,Fan J,Gao X,Sun S,Yang K,Xin D,Jin N,Geng Y,Wang C.Herpes virus proteins ICP0 and BICP0 can activate NF-kappaB by catalyzing IkappaBalpha ubiquitination.[J]Cell Signal.2005,17(2):217-229.
    [268]Ratledge C,Dover LG.Iron metabolism in pathogenic bacteria.[J]Ann Rev Microbiol,2000,54:881-941.
    [269]Tagkopoulos I,Liu YC,Tavazoie S.Anticipatory Behavior Within Microbial Genetic Networks.Science,DOI:10.1126/science.1154456.
    [270]Griffiths E.Iron in biological systems In:Iron and Infection.Molecular,Physiological and Clinical Aspects.[M]Wiley,Chichester,2005.
    [271]Wright AC,Simpson LM,Oliver JD.Role of iron in the pathogenesis of Vibrio vulnificus infections.[J]Infect.Immunol.1981,34:503-507.
    [272]Bullen J J,Leigh LC,Rogers HJ.The effect of iron compounds on the virulence of Escherichia coli for guinea-pigs.Immunology,1968,15:581-588.
    [273]戴自英.实用抗菌药物学.[M]上海:上海科学技术出版社,1992.
    [274] Normark BH, Normark S. Evolution and spread of antibiotic resistance.[J] J Intern Med. 200, 252(2): 91-106. Davies J. Inactivation of antibiotics and the dissemination of resistance genes.[J] Science. 1994, 264: 375-382.
    [275]A1-Haroni M, Skaug N, Bakken V, Cash P. Proteomic analysis of ampicillin-resistant oral Fusobacterium nucleatum.[J] Oral Microbiol Immunol. 2008,23: 36-42.
    [276] Levy SB. Antibiotic resistance: an ecological imbalance, Ciba Found.[J] Symp. 1997, 207: 1-9.
    [277] Cox RJ, Sutherland A, Vederas JC. Bacterial diaminopimelate metabolism as a target for antibiotic design.[J] Bioorg Med Chem. 2000, 8: 843-871.
    [278] Alekshun MN, Levy SB. Molecular mechanisms of antibacterial multidrug resistance.[J] Cell. 2007, 128: 1037-1050.
    [279] Zhang HZ, Hackbarth CJ, Chansky KM, Chambers HF. A proteolytic transmembrane signaling pathway and resistance to beta-lactams in staphylococci.[J] Science. 2001, 291: 1962-1965.
    [280] Savage PB. Multidrug-resistant bacteria: overcoming antibiotic permeability barriers of gram-negative bacteria.[J] Ann Med. 2001,33:167-171.
    [281] Cash P, Argo E, Ford L, Lawrie L, McKenzie H. A proteomic analysis of erythromycin resistance in Streptococcus pneumoniae.[J] Electrophoresis. 1999, 20: 2259-2268.
    [282] Peng X, Xu C, Ren H, Lin X, Wu L, Wang S. Proteomic analysis of the sarcosine-insoluble outer membrane fraction of Pseudomonas aeruginosa responding to ampicilin, kanamycin, and tetracycline resistance.[J] J Proteome Res. 2005, 4: 2257-2265.
    [283] McAtee CP, Hoffman PS, Berg DE. Identification of differentially regulated proteins in metronidozole resistant Helicobacter pylori by proteome techniques.[J] Proteomics. 2001, 1:516-521.
    [284] Xu C, Lin X, Ren H, Zhang Y, Wang S, Peng X. Analysis of outer membrane proteome of Escherichia coli related to resistance to ampicillin and tetracycline.[J] Proteomics. 2006, 6: 462-473.
    [285] Lin XM, Li H, Wang C, Peng XX. Proteomic Analysis of Nalidixic Acid Resistance in Escherichia coli: Identification and Functional Characterization of OM Proteins.[J] J Proteome Res. 2008, in press.
    [286] Coldham NG, Woodward MJ. Characterization of the Salmonella typhimurium proteome by semi-automated two dimensional HPLC-mass spectrometry: detection of proteins implicated in multiple antibiotic resistance.[J] J Proteome Res. 2004, 3: 595-603.
    [287. Yoo JS, Seong WK, Kim TS, Park YK, Oh HB, Yoo CK. Comparative proteome analysis of the outer membrane proteins of in vitro-induced multi-drug resistant Neisseria gonorrhoeae.[J] Microbiol Immunol. 2007, 51: 1171-1177.
    [288] Pieper R, Gatlin-Bunai CL, Mongodin EF, Parmar PP, Huang ST, Clark DJ, Fleischmann RD, Gill SR, Peterson SN. Comparative proteomic analysis of Staphylococcus aureus strains with differences in resistance to the cell wall-targeting antibiotic vancomycin.[J] Proteomics. 2006, 6, 4246-4258
    [289] Drummelsmith J, Winstall E, Bergeron MG, Poirier GG, Ouellette M. Comparative proteomics analyses reveal a potential biomarker for the detection of vancomycin-intermediate Staphylococcus aureus strains. [J] J Proteome Res. 2006, 6, 4690-4702.
    [290] Coldham NG, Randall LP, Piddock LJ, Woodward MJ. Effect of fluoroquinolone exposure on the proteome of Salmonella enterica serovar Typhimurium.[J] J Antimicrob Chemother. 2006,58, 1145-1153.
    [291] Park SH, Kim JW, Yun SH, Leem SH, Kahng HY, Kim SI. Characterization of beta-ketoadipate pathway from multi-drug resistance bacterium, Acinetobacter baumannii DU202 by proteomic approach.[J] J Microbiol. 2006, 44,632-640.
    [292] Downie JA, Gibson F, Cox GB. Membrane adenosine triphosphatases of prokaryotic cells.[J] Annu Rev Biochem. 1979,48:103-131.
    [293] Hoppe J, Schairer HU, Sebald W. Identification of amino-acid substitutions in the proteolipid subunit of the ATP synthase from dicyclohexylcarbodiimide- resistant mutants ofEscherichia coli.[J]Eur J Biochem. 1980,112(1): 17-24.
    [294] Humbert R, Altendorf K. Defective gamma subunit of ATP synthase (F1F0) from Escherichia coli leads to resistance to aminoglycoside antibiotics.[J] J Bacteriol. 1989, 171(3):1435-1444.
    [295] Shin YK, Yoo BC, Chang HJ, Jeon E, Hong SH, Jung MS, Lim SJ, Park JG. Down-regulation of mitochondrial F1F0-ATP synthase in human colon cancer cells with induced 5-fluorouracil resistance.[J] Cancer Res. 2005, 65(8): 3162-3170.
    [296] H(?)jlund K, Wrzesinski K, Larsen PM, Fey SJ, Roepstorff P, Handberg A, Dela F, Vinten J, McCormack JG, Reynet C, Beck-Nielsen H. Proteome analysis reveals phosphorylation of ATP synthase beta -subunit in human skeletal muscle and proteins with potential roles in type 2 diabetes.[J] J Biol Chem. 2003, 278(12): 10436-10442.
    [297] Levengood J, Ataide SF, Roy H, Ibba M. Divergence in noncognate amino acid recognition between class I and class II lysyl-tRNA synthetases.[J] J Biol Chem. 2004, 279(17): 17707-17714.
    [298] Buklad NE, Sanborn D, Hirshfield IN. Particular influence of leucine peptides on lysyl-transfer ribonucleic acid ligase formation in a mutant of Escherichia coli K-12.[J] J. Bacteriol. 1973,116: 1477-1478.
    [299] Hirshfield IN, Yeh FM. An in vivo effect of the metabolites L-alanine and glycyl-L-leucine on the properties of the lysyl-tRNA synthetase from Escherichia coli K-12. II. Kinetic evidence.[J] Biochim. Biophys. Acta, 1976, 435: 306-314.
    [300] Leveque F, Plateau P, Dessen P, Blanquet S. Homology of lysS and lysU, the two Escherichia coli genes encoding distinct lysyl-tRNA synthetase species. [J] Nucleic Acids Res. 1990, 18(2): 305-312.
    [301] Ataide SF, Wilson SN, Dang S, Rogers TE, Roy B, Banerjee R, Henkin TM, Ibba M. Mechanisms of resistance to an amino acid antibiotic that targets translation.[J] ACS Chem Biol. 2007, 2(12): 819-827.
    [302] Levengood J, Ataide SF, Roy H, Ibba M. Divergence in noncognate amino acid recognition between class I and class II lysyl-tRNA synthetases.[J] J Biol Chem. 2004, 279(17):17707-17714.
    [303] Ataide SF, Ibba M. Small molecules: big players in the evolution of protein synthesis.[J] ACS Chem Biol. 2006, 1(5): 285-297.
    [304] Watson KA, Schinzel R, Palm D, Johnson LN. The crystal structure of Escherichia coli maltodextrin phosphorylase provides an explanation for the activity without control in this basic archetype of a phosphorylase.[J] EMBO J. 1997,16:1-14.
    [305] Xavier KB, Peist R, Kossmann M, Boos W, Santos H. Maltose metabolism in the hyperthermophilic archaeon Thermococcus litoralis: purification and characterization of key enzymes.[J] J Bacteriol. 1999, 181: 3358-3367
    [306] Atteia A, van Lis R, Gelius-Dietrich G, Adrait A, Garin J, Joyard J, Rolland N, Martin W. Pyruvate formate-Iyase and a novel route of eukaryotic ATP synthesis in Chlamydomonas mitochondria.[J] J Biol Chem. 2006, 281: 9909-9918.
    [307] Wagner AF, Frey M, Neugebauer FA, SchSfer W, Knappe J. The free radical in pyruvate formate-lyase is located on glycine-734.[J] Proc Natl Acad Sci USA. 1992, 89: 996-1000.
    [308] Fraser ME, James MN, Bridger WA, Wolodko WT. A detailed structural description of Escherichia coli succinyl-CoA synthetase.[J] J Mol Biol. 1999, 285: 1633-1653.
    [309] Hasona A, Kim Y, Healy FG, Ingram LO, Shanmugam KT. Pyruvate formate lyase and acetate kinase are essential for anaerobic growth of Escherichia coli on xylose.[J] J Bacteriol. 2004, 186: 7593-7600.
    [310] Wu H, Li ZM, Zhou L, Ye Q. Improved succinic acid production in the anaerobic culture of an Escherichia coli pflB ldhA double mutant as a result of enhanced anaplerotic activities in the preceding aerobic culture.[J] Appl Environ Microbiol. 2007,73: 7837-7843.
    [311] Donnelly MI, Millard CS, Clark DP, Chen MJ, Rathke W. A novel fermentation pathway in an Escherichia coli mutant producing succinic acid, acetic acid, and ethanol.[J] Appl Biochem Biotechnol. 1998, 70-72:187-198.
    [312] Bridger WA, Wolodko WT, Henning W, Upton C, Majumdar R, Williams SP. The subunits of succinyl-coenzyme A synthetase-function and assembly.[J] Biochem Soc Symp. 1987, 54:103-111.
    [313] Fraser ME, James MN, Bridger WA, Wolodko WT. A detailed structural description of Escherichia coli succinyl-CoA synthetase.[J]J Mol Biol. 1999, 285: 1633-1653.
    [314] Leveque F, Plateau P, Dessen P, Blanquet S. Homology of lysS and lysU, the two Escherichia coli genes encoding distinct lysyl-tRNA synthetase species.[J] Nucleic Acids Res. 1990,18(2): 305-312.
    [315] Jakubowski H. Misacylation of tRNALys with noncognate amino acids by lysyl-tRNA synthetase.[J] Biochemistry, 1999,38: 8088-8093.
    [316] Brevet A, Chen J, Leveque F, Blanquet S, Plateau P. Comparison of the enzymatic properties of the two Escherichia coli lysyl-tRNA synthetase species.[J]J. Biol. Chem. 1995, 270: 14439-14444.
    [317] Desogus G, Todone F, Brick P, Onesti S. Active site of lysyl-tRNA synthetase: structural studies of the adenylation reaction.[J] Biochemistry, 2000,39: 8418-8425.
    [318] Yanofsky C, Horn V. Bicyclomycin sensitivity and resistance affect Rho factor-mediated transcription termination in the tna operon of Escherichia coli.[J] J Bacteriol. 1995,177(15): 4451-4456.
    [319] Bordi C, Theraulaz L, Mejean V, Jourlin-Castelli C. Anticipating an alkaline stress through the Tor phosphorelay system in Escherichia coli.[J] Mol Microbiol. 2003,48(1): 211-223.
    [320] Sinha AM, Ghosh S, Chatterjee GC.Effect of rifampicin on tryptophanase induction in normal and rifampicin-resistant Vibrio el tor.[J] Folia Microbiol (Praha). 1977, 22(5): 402-409.
    [321] Related Articles,Bianchi AA, Baneyx F. Hyperosmotic shock induces the sigma32 and sigmaE stress regulons of Escherichia coli.[J] Mol Microbiol. 1999, 34(5): 1029-1038.
    [322] Aertsen A, Vanoirbeek K, De Spiegeleer P, Sermon J, Hauben K, Farewell A, Nystrom T, Michiels CW. Heat shock protein-mediated resistance to high hydrostatic pressure in Escherichia coli.[J] Appl Environ Microbiol. 2004, 70(5): 2660-2666.
    [323] Rockabrand D, Arthur T, Korinek G, Livers K, Blum P. An essential role for the Escherichia coli DnaK protein in starvation-induced thermotolerance, H2O2 resistance, and reductive division.[J] J Bacteriol. 1995,177(13): 3695-3703.
    [324] Singh VK, Utaida S, Jackson LS, Jayaswal RK, Wilkinson BJ, Chamberlain NR. Role for dnaK locus in tolerance of multiple stresses in Staphylococcus aureus.[J] Microbiology. 2007, 153(Pt 9): 3162-3173.
    [325] Cho YS, Park SH, Kim CK, Oh KH. Induction of stress shock proteins DnaK and GroEL by phenoxyherbicide 2,4-D in Burkholderia sp. YK-2 isolated from rice field.[J] Curr Microbiol. 2000 Jul;41(1):33-38.
    [326] Yamaguchi Y, Tomoyasu T, Takaya A, Morioka M, Yamamoto T. Effects of disruption of heat shock genes on susceptibility of Escherichia coli to fluoroquinolones.[J] BMC Microbiol. 2003,3:16,1-8.
    [327] Low B, Gates F, Goldstein T, Soll D. Isolation and partial characterization of temperature-sensitive Escherichia coli mutants with altered leucyl- and seryl-transfer ribonucleic acid synthetase.[J] J Bacteriol. 1971,108(2): 742-750.
    [328] Vinella D, D'Ari R, Bouloc P. Penicillin binding protein 2 is dispensable in Escherichia coli when ppGpp synthesis is induced.[J] EMBO J. 1992,11:1493-1501.
    [329] Jovanovic M, Lilic M, Janjusevic R, Jovanovic G, Savic DJ. tRNA synthetase mutants of Escherichia coli K-12 are resistant to the gyrase inhibitor novobiocin.[J] J Bacteriol. 1999, 181(9): 2979-2983.
    [330] Hansson S, Singh R, Gudkov AT, Liljas A, Logan DT. Structural insights into fusidic acid resistance and sensitivity in EF-G.[J] J Mol Biol. 2005, 348(4): 939-949.
    [331] Laurberg M, Kristensen O, Martemyanov K, Gudkov AT, Nagaev I, Hughes D, Liljas A. Structure of a mutant EF-G reveals domain III and possibly the fusidic acid binding site.[J] J. Mol. Biol. 2000, 303: 593-603.
    [332] Noren T, Akerlund T, Wullt M, Burman LG, Unemo M. Mutations in fusA associated with posttherapy fusidic acid resistance in Clostridium difficile.[J] Antimicrob Agents Chemother. 2007, 51(5): 1840-1843.
    [333] Noguchi T, Tanaka T. Insulin resistance in obesity and its molecular control.[J] Obes Res. 1995, 3 Suppl 2:195-198.
    [334] Franckhauser S, Munoz S, Elias I, Ferre T, Bosch F. Adipose overexpression of phosphoenolpyruvate carboxykinase leads to high susceptibility to diet-induced insulin resistance and obesity.[J] Diabetes. 2006,55(2): 273-280.
    [335] Lamont BJ, Andrikopoulos S, Funkat A, Favaloro J, Ye JM, Kraegen EW, Howlett KF, Zajac JD, Proietto J. Peripheral insulin resistance develops in transgenic rats overexpressing phosphoenolpyruvate carboxykinase in the kidney. [J] Diabetologia. 2003, 46(10): 1338-1347.
    [336] Yan L, Zhang JD, Cao YB, Gao PH, Jiang YY. Proteomic analysis reveals a metabolism shift in a laboratory fluconazole-resistant Candida albicans strain.[J] J Proteome Res. 2007, 6(6): 2248-2256.
    [337] Waterer GW, Wunderink RG Increasing threat of Gram-negative bacteria.[J] Crit Care Med, 2001,29:75-81.
    [338] Denyer SP, Maillard JY. Cellular impermeability and uptake of biocides and antibiotics in gram-negative bacteria.[J] Symp Ser Soc Appl Microbiol, 2002,31: 35-45.
    [339] Poole K. Outer membranes and efflux: the path to multidrug resistance in Gram-negative bacteria.[J]Curr Pharm Biotechnol,2002,3:77-98.Piddock LJ.Mechanisms of fluoroquinolone resistance:an update 1994-1998.[J]Drugs,1999,58(2):11-18.
    [340]Piddock LJ.Mechanisms of fluoroquinolone resistance:an update 1994-1998.[J]Drugs,1999,58(2):11-18.
    [341]Hiroaki Yoshida.Quinolone resistance-determining region in the DNA gyrase gyrA gene of Escherichia coli.[J]Antimicrobial A2 gents and Chemotherapy,1990,34(6):1271-1272.
    [342]Soussy CJ,Wolfson JS,Ng EY,Hooper DC.Limitations of plasmid complementation test for determination of quinolone resistance due to changes in the gyrase A protein and identification of condi2 tional quinolone resistance locus.[J]Antimicrobial Agents And Chemotherapy,1993,37(12):2588-2592.
    [343]Jordi Vila,Joaquim Ruiz,Francesc Marco,et al.Association be tween double mutation in gyra gene of ciprofloxacin-resistant clinical isolates of Escherichia coli and MICs.[J].Antimicrobial Agents and Chemotherapy,1994,38(10):2477-2479.
    [344]蒋杰.大肠埃希菌对喹诺酮类抗菌药耐药机制的研究近况.[J]医学综述,2008,14:767-770.
    Alpuche J, Pereyra A, Agundis C, Rosas C, Pascual C, Slomianny MC, Vazquez L, Zenteno E (2005) Purification and characterization of a lectin from the white shrimp Litopenaeus setiferus (Crustacea decapoda) hemolymph. Biochim Biophys Acta 1724, 86-93
    Beltramini M, Colangelo N, Giomi F, Bubacco L, Di Muro P, Hellmann N, Jaenicke E, Decker H (2005) Quaternary structure and functional properties of Penaeus monodon hemocyanin. FEBS J 272, 2060-2075
    Brouwer M, Bonaventura C, Bonaventura J (1978) Analysis of the effect of three different allosteric ligands on oxygen binding by hemocyanin of the shrimp, Penaeus setiferus. Biochemistry 17,2148-2154
    Cominetti MR, Marques MR, Lorenzini DM, Lofgren SE, Daffre S, Barracco MA (2002) Characterization and partial purification of a lectin from the hemolymph of the white shrimp Litopenaeus schmitti. Dev Comp Immunol 26, 715-721
    Dainese E, Di Muro P, Beltramini M, Salvato B, Decker H (1998) Subunits composition and allosteric control in Carcinus aestuarii hemocyanin. Eur J Biochem 256,350-358
    Decker H, Jaenicke E (2004) Recent findings on phenoloxidase activity and antimicrobial activity of hemocyanins. Dev Comp Immunol 28,673-687
    Decker H, Ryan M, Jaenicke E, Terwilliger N (2001) SDS-induced phenoloxidase activity of hemocyanins from Limulus polyphemus, Eurypelma californicum, and Cancer magister. J Biol Chem 276, 17796-17799
    Drickamer K, Fadden AJ (2002) Genomic analysis of C-type lectins. Biochem Soc Symp 69, 59-72
    Hagner-Holler S, Kusche K, Hembach A, Burmester T (2005) Biochemical and molecular characterisation of hemocyanin from the amphipod Gammarus roeseli: complex pattern of hemocyanin subunit evolution in Crustacea. J Comp Physiol B 175,445-452
    Jaenicke E, Decker H (2004) Conversion of hemocyanin to tyrosinase and catecholoxidase. Micron 35, 89-90
    Jaenicke E, Foll R, Decker H (1999) Spider hemocyanin binds ecdysone and 20-OH-ecdysone. J Biol Chem 274,34267-34271
    Jiang H, Wang Y, Kanost M (1998) Pro-phenol oxidase activating proteinase from an insect, Manduca sexta: a bacterialinducible protein similiar to Drosophila easter. Proc Natl Acad Sci USA 95,12220-12225
    Jiang N, Tan NS, Ho B, Ding JL (2007) Respiratory protein-generated reactive oxygen species as an antimicrobial strategy. Nat Immunol 8, 1114-1122
    Larsen F, Madsen HO, Sim RB, Koch C, Garred P (2004) Disease-associated mutations in human mannose-binding lectin compromise oligomerization and activity of the final protein. J Biol Chem 279, 21302-21311
    Lee S, Kwon T, Hyun J, Choi J, Kawabata S, Iwanaga S, Lee B (1998) In vitro activation of prophenoloxidase by two kinds of prophenoloxidase-activating factors isolated from hemolymph of coleopteran, Holotrichia diomphalia larvae. Eur J Biochem 254, 50-57
    Lei K, Li F, Zhang M, Yang H, Luo T, Xu X. (2008) Difference between hemocyanin subunits from shrimp Penaeus japonicus in anti-WSSV defense. Dev Comp Immunol 3, 808-813
    Lis H, Sharon N (1998) Lectins: Carbohydrate-specific proteins that mediate cellular recognition. Chem Rev 98,637-674
    Liu YC, Li FH, Dong B, Wang B, Luan W, Zhang XJ, Zhang LS, Xiang JH (2007) Molecular cloning, characterization and expression analysis of a putative C-type lectin (Fclectin) gene in Chinese shrimp Fenneropenaeus chinensis. Mol Immunol 44, 598-607
    Luo T, Yang H, Li F, Zhang X, Xu X (2006) Purification, characterization and cDNA cloning of a novel lipopolysaccharide-binding lectin from the shrimp Penaeus monodon. Dev Comp Immunol 30, 607-617
    Ma TH, Tiu SH, He JG, Chan SM (2007) Molecular cloning of a C-type lectin (LvLT) from the shrimp Litopenaeus vannamei: Early gene down-regulation after WSSV infection. Fish Shellfish Immunol 23, 430-437
    Maheswari R, Mullainadhan P, Arumugam M (2002) Isolation and characterization of an acetyl group-recognizing agglutinin from the serum of the Indian white shrimp Fenneropenaeus indicus. Arch Biochem Biophys 402, 65-76
    Minamikawa M, Hine M, Russell S, Huber P, Duignan P, Lumsden JS (2004) Isolation and partial characterization of a calcium-dependent lectin (chiletin) from the haemolymph of the flat oyster, Ostrea chilensis. Fish Shellfish Immunol 17,463-476
    Nagai T, Kawabata S (2000) A link between blood coagulation and prophenoloxidase activation in arthropod host defense. J Biol Chem 275, 29264-29267
    Nagai T, Osaki T, Kawabata S (2001) Functional conversion of hemocyanin to phenoloxidase by horseshoe crab antimicrobial peptides. J Biol Chem 276,27166-27170
    Olianas A, Sanna MT, Messana I, Castagnola M, Masia D, Manconi B, Cau A, Giardina B, Pellegrini M (2006) The hemocyanin of the shamefaced crab Calappa granulata: structural-functional characterization. J Biochem (Tokyo) 139, 957-966
    Paul R, Bergner B, Pfeffer-Seidl A, Decker H, Efinger R, Storz H (1994) Gas transport in the haemolymph of arachnids I. Oxygen transport and the physiological role of haemocyanin. J Exp Biol 188, 25-46
    Paul R, Pirow R (1998) The physiological significance of respiratory proteins in invertebrates. Zoology 100,319-327
    Pless D, Aguilar M, Falcon A, Lozano-Alvarez E (2003) Heimer dela Cotera E. Latent phenoloxidase activity and N-terminal amino acid sequence of hemocyanin from Bathynomus giganteus, a primitive crustacean. Arch Biochem Biophys 409,402—410
    Podda G., Manconi B, Olianas A, Pellegrini M, Messana I, Mura M, Castagnola M, Giardina B, Sanna MT (2008) Structural and functional characterization of hemocyanin from the anemone hermit crab Dardanus calidus. J Biochem (Tokyo) 143, 207-216
    Ratanapo S, Chulavatnatol M (1990) Monodin, a new sialic acid specific lectin from black tiger prawn (Penaeus monodon). Comp Biochem Physiol 97, 515-520
    Satoh D, Horii A, Ochiai M, Ashida M (1999) Prophenoloxidase-activating enzyme of the silkworm, Bombyx mori: purification, characterization and cDNA cloning. J Biol Chem 274, 7441-7453
    Sellos D, Lemoine S, Van Wormhoudt A (1997) Molecular cloning of hemocyanin cDNA from Penaeus vannamei (Crustacea, Decapoda): structure, evolution and physiological aspects. FEBS Letters 407, 153-158
    Terwilliger N, Dumler K. (2001) Ontogeny of decapod crustacean hemocyanin: effects of temperature and nutrition. J Exp Biol 204,1013-1020
    Wang R, Lee S, Cerenius L, Soderhall K (2001) Properties of the prophenoloxidase activating enzyme of the freshwater crayfish, Pacifastacus leniusculus. Eur J Biochem 268, 895-902
    Zhang L, Ikegami M, Crouch EC, Korfhagen TR, Whitsett JA (2001) Activity of pulmonary surfactant protein-D (SP-D) in vivo is dependent on oligomeric structure. J Biol Chem 276, 19214-19219
    Zhang X, Huang C, Qin Q (2004) Antiviral properties of hemocyanin isolated from shrimp Penaeus monodon. Antiviral Res 61,93-99
    Zhang YL, Wang SY, Peng XX (2004) Identification of a type of human IgG-like protein in shrimp Penaeus vannamei by mass spectrometry. J Exp Biol Ecol 301, 39-54
    Zhang YL, Wang SY, Xu AL, Chen J, Lin BK, Peng XX (2006) Affinity proteomic approach for identification of an IgA-like protein in Litopenaeus vannamei and study on its agglutination characterization. J Proteome Res 5, 815-821

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700