用户名: 密码: 验证码:
长江口盐沼优势蟹类的生境选择与生态系统工程师效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
河口盐沼是高产的但非常脆弱的、易受干扰的生态系统,同时也是蟹类生物多样性最高的区域之一。蟹类作为生态系统工程师,对湿地生态系统的物质循环和能量流动具有深刻影响。蟹类的物种组成和洞穴分布决定了蟹类生态功能的范围和强度,而外来物种入侵则可能深刻改变了蟹类的群落结构和生态系统功能。本论文通过野外调查、野外受控实验、室内食性实验等一系列实验方法,研究了长江口盐沼优势蟹类的生境选择与生态系统工程师效应。主要结果如下:
     1)为了认识长江河口盐沼优势蟹无齿相手蟹的生境选择,在野外比较了互花米草、芦苇群落和裸地之间该蟹的多度和生物量差异。结果表明,互花米草生境中无齿相手蟹的多度和生物量显著高于芦苇和裸地。这是由于互花米草生境中的土壤含水量和植物群落特征显著不同于芦苇和裸地,互花米草群落更适合无齿相手蟹的栖息。摄食喜好实验结果表明,无齿相手蟹摄食互花米草的量是芦苇的两倍以上。互花米草通过向无齿相手蟹提供适口的食物和温和的环境条件,为其提供了适宜的生活环境。
     2)植物凋落物的存在可能对生境具有深刻影响,从而影响蟹类的分布。为了确定凋落物对蟹类生境选择的影响,通过野外操作实验探讨了凋落物密度和凋落物状态对蟹类分布的影响。凋落物密度对无齿相手蟹种群和雄性的生物量具有显著影响,适中的凋落物密度适合蟹类的生存。互花米草凋落物对雄性无齿相手蟹生物量具有显著影响,移除凋落物的生境中蟹类分布最多。在春季,对照和凋落物全移除的样地中天津厚蟹雌性蟹体重显著高于具有中等密度凋落物的样地,而在其他月份不同凋落物密度处理之间没有显著差异。春季的雌性天津厚蟹体重在站立凋落物内比倒伏的生境更小,而在其他月份则没有显著差异。天津厚蟹的种群参数,除了性比以外,在芦苇和互花米草之间都没有显著差异,但植物群落却对无齿相手蟹种群产生了深刻的影响。
     3)通过野外实验研究了盐沼中潮沟剖面环境异质性对蟹洞特征的影响,并比较了潮沟和非潮沟生境间蟹洞分布的差异。结果表明,在潮沟剖面上从底部到平滩,土壤含水量逐渐下降,含水量变化也引起了土壤其他物理、化学性质的变化。在斜坡上蟹洞密度高但是洞穴较小,在边沿和平滩洞穴较大而密度较低。这些洞穴分布的差异很可能是由蟹类的分带引起的。潮沟剖面上土壤性质呈现出从水生到陆地生境的过渡,这决定了蟹类在潮沟剖面上的分带。细粒土壤通常含有较多的粘滞性颗粒,所以也更稳定,在坡面洞穴开口总面积与土壤颗粒大小之间呈负相关关系。相对于非潮沟生境,潮沟内小洞穴的密度更高,但大洞穴的密度较低,而且潮沟内环境和生物组分的变异也更大。所以,潮沟剖面的环境异质性能满足不同蟹类的多样需求,并为蟹类提供了重要的生态交错区。
     4)为了认识不同生境类型对蟹洞形态的影响,通过原位洞穴浇塑法研究了洞穴形态在芦苇、互花米草和裸地间的差异。植物群落通过改变根系分布、土壤性质和其他的环境因素,显著改变了蟹洞的形态。相对于植物群落,裸地的土壤含水量较低,但容重较高。芦苇和互花米草群落内的洞穴分枝多,弯曲度高,但洞穴深度、长度和体积较小。与芦苇相比,互花米草的高度较小,根状茎生物量更低,但是密度、细根生物量更高,所以互花米草群落中洞穴深度、长度、体积都较小,开口直径和弯曲度都比芦苇群落内洞穴要大。互花米草老种群的上层土壤容重较低,但含水量较高,而新种群具有更大的高度、地上生物量,较低的密度和根系生物量。互花米草新种群中的蟹洞比老种群中具有更大的深度、长度、宽度和体积,但是更低弯曲度。进一步的分析表明,土壤含水量、容重、植物根状茎和细根、地上生物量对蟹洞形态起决定性的作用。
     5)蟹类掘穴对盐沼生态系统的物质循环和能量流动具有深刻影响;为了定量掘穴蟹类对盐沼土壤的生态系统工程师效应,通过野外实验研究了蟹类掘穴对土壤、碳、氮的垂直运输。蟹类掘穴行为引起了土壤含水量、碳、氮的增加和土壤容重的降低。蟹类对土壤和营养的周转率随着洞穴大小的增加而增加。植物(芦苇和互花米草)显著增加了土壤的营养浓度,但阻碍了蟹类对物质的垂直运输,限制了营养的循环和重新利用。蟹类挖掘的土壤量远高于沉积到蟹洞内的土壤量,导致了土壤向地面的净输出。芦苇、互花米草群落和裸地上蟹类净输出到地面的土壤量分别是171.7,109.5,375.0 g·m~(-2).d~(-1),三种生境中蟹类活动周转一次土壤的时间分别为2.89,4.07和1.83 yr。蟹类很显然是重要的生态系统工程师,在几年时间内能完全混合表层和深层土壤,加速碎屑分解和植物对营养的利用。
Coastal salt marshes are one of the most productive ecosystems but are fragile and sensitive to environmental changes. The salt marshes have a great diversity of burrowing crabs. As physical ecosystem engineers, crabs play important roles in controlling material cycles and energy flows in salt marsh ecosystems. Through a series of experimental methods, including field investigations, field controlled experiments and laboratory experiments, this study aimed to evaluate vertical movements of crabs' burrowing processes on soil, carbon and nitrogen in salt marsh, and analyze the effects of exotic plant invasions on crab distributions, burrow morphologies and ecological functions. The major findings are summarized as follows:
     Abundance and biomass of Sesarma dehaani in Spartina marsh were significantly greater than those in Phragmites marsh and mudflats. Soil water content and plant community characteristics of Spartina marsh also significantly differed from those of Phragmites marsh and mudflats. Moreover, analysis of feeding preference showed that S. dehaani consumed Spartina more than twice as much Phragmites. Therefore, Spartina provided compatible habitats for native crab S. dehaani through offering suitable food source and moderate environmental conditions.
     Plant litter had significant effects on some of crab community parameters. Spartina litter affected male S. dehaani biomass, and Spartina marsh with removal of litter had the highest crab density. In spring, body weight of female Helice tridens tientsinensis was the lowest in Spartina marsh with medium litter density; and it was lower in Spartina marsh with standing litter than with lodging litter. However, plant litter had no effects body weight of females in other seasons. Except for sex ratio, population parameters of H. tientsinensis were not significantly different between P. australis and S. alterniflora marshes, but those of S. dehaani had great defference between the marshes.
     Sediment properties showed a gradual transition from hydrophytic to terrestrial environments on creek sections. On the slope, the burrows were smaller in size and burrow density was higher, while at the edge and on the flat, the burrows were larger in size, and the burrow density was lower. The density of small crab burrows was greater, but the density of large burrows and total burrow opening area were lower in tidal creeks than in non-creek habitats. The environmental heterogeneities on creek sections met the requirements of different crab species, and hence the creeks of tidal salt marshes provided important ecotones for crabs.
     Plant communities significantly changed crab burrow morphologies through changing root distribution pattern, soil properties and other environmental conditions during the course of plant growth, plant invasion and plant colonization of mudflats in salt marshes. Burrows in Phragmites and Spartina marshes had higher branch number and sinuosity degree, but burrow depth, and volume compared to mudflats. Burrows in Spartina marshes had lower burrow depth and burrow volume, but higher opening diameter, sinuosity degree compared to Phragmites marshes. Burrows in young Spartina marshes had higher burrow depth and volume, but lower sinuosity degree than those in old marshes.
     Crab burrowing increased soil water content, carbon and nitrogen and decreased soil bulk density; and the turnover of soil and nutrients by crabs increased with burrow size. Plants (Phragmites and Spartina) significantly enhanced soil nutrient concentrations, but obstructed the vertical movement of materials through crab burrowing, limiting nutrient cycling and reuse. The burrowing behavior of crabs led to a net transport of soil to the surface. Burrowing crabs are clearly important ecosystem engineers that can entirely mix surface and deeper soils over a period of one-four years and accelerate litter decomposition and efficient reuse of nutrients by plants.
引文
陈家宽.上海九段沙湿地自然保护区科学考察集[M].北京:科学出版社,2003:251.
    陈中义.互花米草入侵国际重要湿地崇明东滩的生态后果[D].上海:复旦大学博士学位论文,2004.
    陈中义,傅萃长,王海毅,李博,吴纪华,陈家宽.互花米草入侵东滩盐沼对大型底栖无脊椎动物群落的影响[J].湿地科学,2005,3(01):1-7.
    崔保山,杨志峰.湿地学[M].北京:北京师范大学出版社,2006:507.
    戴爱云.中国海洋蟹类[M].北京:海洋出版社,1986:642.
    戴爱云,宋玉枝.我国方蟹科的研究[J].动物学报,1977,23(4):360-376.
    堵南山.甲壳动物学[M].北京:科学出版社,1993:1004.
    冯志新,关燕如.螃蜞的食性及其与农业的关系[J].动物学杂志,1964,(2):81-82.
    冯志新,关燕如.螃蜞繁殖习性的初步观察[J].动物学杂志,1965,(3):125-126.
    冯志新,关燕如.广东地区螃蜞的分布[J].动物学杂志,1966,(1):30-31.
    葛宝明,鲍毅新,郑祥.灵昆岛围垦滩涂潮沟大型底栖动物群落生态学研究[J].生态学报,2005,25(03):446-453.
    黄正一,孙振华,虞 快,周满章,赵仁泉,高峻.上海鸟类资源及其生境[M].上海:复旦大学出版社,1993.
    纪成林.上海地区螃蜞的周年活动及其防治和利用[J].动物学杂志,1974,(3):21-27.
    敬凯,唐仕敏,陈家宽,马志军.崇明东滩白头鹤的越冬生态[J].动物学杂志,2002,37(06):29-34
    李长松,戴国梁,陈卫忠,俞连福,汤建华,沈德华,郁连春.天津厚蟹及其大眼幼体的调查研究[J].中国水产科学,1999,6(01):122-124.
    廖成章.外来入侵植物对生态系统碳氮循环的影响:互花米草入侵长江河口的案例研究和整合分析[D].上海:复旦大学博士学位论文,2007.
    刘光崧,蒋能慧,张连第,刘兆礼.土壤理化分析与剖面描述[M].北京:中国标准出版社,1996:266.
    欧善华,方永鑫,沈光华.海三棱蔗草在上海滩涂分布规律的环境因子分析及生
    产量的研究[J].上海师范大学学报(自然科学版),1992,21(增刊):10-22.
    全为民.长江口盐沼湿地食物网的稳定同位素研究[D].上海:复旦大学博士学位论文,2007.
    沈国英,施并章.海洋生态学[M].北京:科学出版社,2002:446.
    孙儒泳.动物生态学原理(第三版)[M].北京:北京师范大学出版社,2001:636.
    孙书存,蔡永立,刘红.长江口盐沼海三棱藨草在高程梯度上的生物量分配[J].植物学报,2001,43(2):178-185.
    唐龙,高扬,赵斌,梁宗锁,李博.生态系统工程师:理论与应用[J].生态学报,2008,28(7):3344-3355.
    王丽卿.无齿相手蟹的幼体发育[J].上海水产大学学报,2001,10(03):199-206.
    王丽卿.天津厚蟹的幼体发育[J].海洋科学集刊,2002,44:139-150.
    王卿.长江口盐沼植物群落分布动态及互花米草入侵的影响[D].上海:复旦大学博士学位论文,2007.
    王卿,安树青,马志军,赵斌,陈家宽,李博.入侵植物互花米草-生物学、生态学及管理[J].植物分类学报,2006,(05):559-588.
    邬祥光.广东所见几种螃蜞的初步观察[J].生物学通报,1959,(4):154-157.
    谢东风,范代读,高抒.崇明岛东滩潮沟体系及其沉积动力学[J].海洋地质与第四纪地质,2006,26(02):9-16
    徐国万,卓荣,宗曹豪,李相敢.互花米草生物量年动态及其与滩涂生境的关系[J].植物生态学与地植物学学报,1989,13(3):230-235.
    徐宏发,赵云龙.上海市崇明东滩鸟类自然保护区科学考察集[M].北京:中国林业出版社,2005:250.
    袁兴中,陆健健.长江口潮沟大型底栖动物群落的初步研究[J].动物学研究,2001,22(03):211-215.
    浙江动物志编辑委员会.浙江动物志甲壳类[M].杭州:浙江科学技术出版社,1991:481
    Abele LG.Taxonomy,distribution and ecology of genus Sesarma(Cmstacea,Decapoda,Grapsidae) in eastern North-America,with special reference to Florida[J].American Midland Naturalist,1973,90:375-386.
    Aller RC,Dodge RE.Animal sediment relations in a tropical lagoon Discovery Bay, Jamaica [J]. Journal of Marine Research, 1974, 32: 209-232.
    Alper J. Ecology - Ecosystem "engineers" shape habitats for other species [J]. Science, 1998,280: 1195-1196.
    Ashton EC. Mangrove sesarmid crab feeding experiments in Peninsular Malaysia [J]. Journal of Experimental Marine Biology and Ecology, 2002, 273: 97-119.
    Ashton EC, Hogarth PJ, Macintosh DJ. A comparison of brachyuran crab community structure at four mangrove locations under different management systems along the Melaka Straits-Andaman Sea Coast of Malaysia and Thailand [J]. Estuaries, 2003a, 26: 1461-1471.
    Ashton EC, Macintosh DJ, Hogarth PJ. A baseline study of the diversity and community ecology of crab and molluscan macrofauna in the Sematan mangrove forest, Sarawak, Malaysia [J]. Journal of Tropical Ecology, 2003b, 19:127-142.
    Barnes DKA. Hermit crabs, humans and Mozambique mangroves [J]. African Journal of Ecology, 2001, 39: 241-248.
    Barrass R. The burrows of Ocypode ceratophthalmus (Pallas) (Crustacea, Ocypodidae) on a tidal wave beach at Inhaca Island, Mocambique [J]. Journal of Animal Ecology, 1963, 32: 73-85.
    Bas C, Luppi T, Spivak E. Population structure of the South American Estuarine crab, Chasmagnathus granulatus (Brachyura : Varunidae) near the southern limit of its geographical distribution: comparison with northern populations [J]. Hydrobiologia, 2005, 537: 217-228.
    Beck MW. A test of the generality of the effects of shelter bottlenecks in four stone crab populations [J]. Ecology, 1997, 78: 2487-2503.
    Bede LM, Oshiro LMY, Melo GAS. Observation on the occurrence of Uca victoriana von Hagen (Decapoda, Brachyura, Ocypodidae) on the Coast of Rio de Janeiro, Brazil [J]. Brazilian Journal of Biology, 2007, 67: 799-800.
    Bertness MD. Fiddler crab regulation of Spartina alterniflora production on a New England salt marsh [J]. Ecology, 1985, 66: 1042-1055.
    Bertness MD, Miller T. The distribution and dynamics of Uca pugnax (Smith) burrows in a New England salt marsh[J].Journal of Experimental Marine Biology and Ecology,1984,83:211-237.
    Bertness M,Silliman BR,Jefferies R.Salt marshes under siege[J].American Scientist,2004,92:54-61.
    Bortolus A,Iribarne O.Effects of the SW Atlantic burrowing crab Chasmagnathus granulata on a Spartina salt marsh[J].Marine Ecology-Progress Series,1999,178:79-88.
    Bortolus A,Laterra P,Iribarne O.Crab-mediated phenotypic changes in Spartina densiflora Brong[J].Estuarine,Coastal and Shelf Science,2004,59:97-107.
    Bortolus A,Schwindt E,Iribarne O.Positive plant-animal interactions in the high marsh of an Argentinean coastal lagoon[J].Ecology,2002,83:733-742.
    Bosire JO,Dahdouh-Guebas F,Kairo JG,Cannicci S,Koedam N.Spatial variations in macrobenthic fauna recolonisation in a tropical mangrove bay[J].Biodiversity and Conservation,2004,13:1059-1074.
    Botto F,Iribarne O.Effect of the burrowing crab Chasmagnathus granulata(Dana)on the benthic community of a SW Atlantic coastal lagoon[J].Journal of Experimental Marine Biology and Ecology,1999,241:263-284.
    Botto F,Iribarne O.Contrasting effects of two burrowing crabs(Chasmagnathus granulata and Uea uruguayensis) on sediment composition and transport in estuarine environments[J].Estuarine,Coastal and Shelf Science,2000,51:141-151.
    Botto F,Iribarne O,Gutierrez J,Bava J,Gagliardini A,Valiela I.Ecological importance of passive deposition of organic matter into burrows of the SW Atlantic crab Chasmagnathus granulatus[J].Marine Ecology-Progress Series,2006,312:201-210.
    Botto F,Palomo G,Iribarne O,Martinez HM.The effect of southwestern Atlantic burrowing crabs on habitat use and foraging activity of migratory shorebirds[J].Estuaries,2000,23:208-215.
    Botto F,Valiela I,Iribarne O,Martinetto P,Alberti J.Impact of burrowing crabs on C and N sources,control,and transformations in sediments and food webs of SW Atlantic estuaries [J]. Marine Ecology-Progress Series, 2005, 293: 155-164.
    Callaway RL. Positive interactions among plants. Botanical Review, 1995, 61:306-349.
    Cammen LM, Seneca ED, Stroud LM. Energy flow through the fiddler crabs Uca pugnax and Uca minax and the marsh periwinkle Littorina irrorata in a North Carolina salt marsh [J]. American Midland Naturalist, 1980, 103: 238-250.
    Cammen LM, Seneca ED, Stround LM. Long-term variation of fiddler crab populations in North Carolina salt marshes [J]. Estuaries, 1984, 7: 171-175.
    Capehart AA, Hackney CT. The potential role of roots and rhizomes in structuring salt marsh benthic communities [J]. Estuaries, 1989, 12:119-122.
    Caraco N, Cole J, Findlay S, Wigand C. Vascular plants as engineers of oxygen in aquatic systems [J]. BioScience, 2006, 56: 219-225.
    Cesar II, Armendariz LC, Becerra RV. Bioecology of the fiddler crab Uca uruguayensis and the burrowing crab Chasmagnathus granulatus (Decapoda, Brachyura) in the Refugio de Vida Silvestre Bahia Samborombon, Argentina [J]. Hydrobiologia, 2005, 545: 237-248.
    Chakrabarti A. Burrow patterns of Ocypode ceratophthalma (Pallas) and their environmental significance [J]. Journal of Paleontology, 1981, 55: 431-441.
    Chan BKK, Chan KKY, Leung PCM. Burrow architecture of the ghost crab Ocypode ceratophthalma on a sandy shore in Hong Kong [J]. Hydrobiologia, 2006, 560:43-49.
    Charmantier G, Gimenez L, Charmantier-Daures M, Anger K. Ontogeny of osmoremilation, physiological plasticity and larval export strategy in the grapsid crab Chasmagnathus granulata (Crustacea, Decapoda) [J]. Marine Ecology-Progress Series, 2002, 229: 185-194.
    Chartosia N, Koukouras A, Mavidis M, Kitsos MS. Preliminary estimation of the factors influencing the distribution of the midlittoral crab Portumnus lysianassa (Herbst, 1796) [J]. Hydrobiologia, 2006, 557: 97-106.
    Chen GC, Ye Y, Lu CY. Changes of macro-benthic faunal community with stand age of rehabilitated Kandelia candel mangrove in Jiulongjiang Estuary, China [J]. Ecological Engineering, 2007, 31: 215-224.
    Chen HL, Li B, Fang CM, Chen JK, Wu JH. Exotic plant influences soil nematode communities through litter input [J]. Soil Biology and Biochemistry. 2007a, 39:1782-1793.
    Chen ZY, Li B, Zhong Y, Chen JK. Local competitive effects of introduced Spartina alterniflora on Scirpus mariqueter at Dongtan of Chongming Island, the Yangtze River estuary and their potential ecological consequences [J]. Hydrobiologia, 2004, 528: 99-106.
    Cheng XL, Luo YQ, Chen JQ, Lin GH, Chen JK, Li B. Short-term C_4 plant Spartina alterniflora invasions change the soil carbon in C_3 plant-dominated tidal wetlands on a growing estuarine Island [J]. Soil Biology and Biochemistry, 2006, 38: 3380-3386.
    Cheng XL, Peng RH, Chen JQ, Luo YQ, Zhang QF, An SQ, Chen JK, Li B. CH_4 and N_2O emissions from Spartina alterniflora and Phragmites australis in experimental mesocosms [J]. Chemosphere, 2007, 68: 420-427.
    Chung CH. Forty years of ecological engineering with Spartina plantations in China [J]. Ecological Engineering, 2006, 27: 49-57.
    Costa MJ, Catarino F, Bettencourt A. The role of salt marshes in the Mira estuary (Portugal) [J]. Wetlands Ecology and Management, 2001, 9: 121-134.
    Costanza R, d'Arge R, deGroot R, Farber S, Grasso M, Harmon B, Limburg K, Naeem S, Oneill RV, Paruelo J, Raskin RG, Sutton P, van den Belt M. The value of the world's ecosystem services and natural capital [J]. Nature, 1997, 387: 253-260.
    Croll GA, McClintock JB. An evaluation of lekking behavior in the fiddler crab Uca spp [J]. Journal of Experimental Marine Biology and Ecology, 2000, 254:109-121.
    Crooks JA. Characterizing ecosystem-level consequences of biological invasions: the role of ecosystem engineers [J]. Oikos, 2002, 97: 153-166.
    Daehler CC, Strong DR. Status, prediction and prevention of introduced cordgrass Spartina spp invasions in Pacific estuaries, USA [J]. Biological Conservation,1996, 78: 51-58.
    Daleo P,Fanjul E,Casariego AM,Silliman BR,Bertness MD,Iribarne O.Ecosystem engineers activate mycorrhizal mutualism in salt marshes[J].Ecology Letters,2007,10:902-908.
    Daleo P,Ribeiro P,Iribarne O.The SW Atlantic burrowing crab Chasmagnathus granulatus Dana affects the distribution and survival of the fiddler crab Uca uruguayensis Nobili[J].Journal of Experimental Marine Biology and Ecology,2003,291:255-267.
    Dame R,Alber M,Allen D,Mallin M,Montague C,Lewitus A,Chalmers A,Gardner R,Gilman C,Kjerfve B,Pinckney J,Smith N.Estuaries of the south Atlantic coast of North America:Their geographical signatures[J].Estuaries,2000,23:793-819.
    Desmond JS,Zedler JB,Williams GD.Fish use of tidal creek habitats in two southern California salt marshes[J].Ecological Engineering,2000,14:233-252.
    Duncan GA.Burrows of Ocypode quadrata(Fabricius) as related to slopes of substrate surfaces[J].Journal of Paleontology,1986,60:384-389.
    Eggleston DB,Etherington LL,Elis WE.Organism response to habitat patchiness:species and habitat-dependent recruitment of decapod crustaceans[J].Journal of Experimental Marine Biology and Ecology,1998,223:111-132.
    Emmerson WD.Seasonal breeding cycles and sex ratios of eight species of crabs from Mgazana,a mangrove estuary in Transkei,southem Africa[J].Journal of Crustacean Biology,1994,14:568-578.
    Emmerson WD.Aspects of the population dynamics of Neosarmatium meinerti at Mgazana,a warm temperate mangrove swamp in the East Cape,South Africa,investigated using an indirect method[J].Hydrobiologia,2001,449:221-229.
    Eshky AA,Atkinson RJA,Taylor AC.Physiological ecology of crabs from Saudi-Arabian mangrove[J].Marine Ecology-Progress Series,1995,126:83-95.
    Fanjul E,Grela MA,Iribarne O.Effects of the dominant SW Atlantic intertidal burrowing crab Chasmagnathus granulatus on sediment chemistry and nutrient distribution[J].Marine Ecology-Progress Series,2007,341:177-190.
    Flores AAV, Abrantes KG, Paula J. Estimating abundance and spatial distribution patterns of the bubble crab Dotilla fenestrata (Crustacea: Brachyura) [J]. Austral Ecology, 2005, 30: 14-23.
    Forward RB, Cohen JH, Irvine RD, Lax JL, Mitchell R, Schick AM, Smith MM, Thompson JM, Venezia JI. Settlement of blue crab Callinectes sapidus megalopae in a North Carolina estuary [J]. Marine Ecology-Progress Series, 2004, 269: 237-247.
    Fratini S, Cannicci S, Vannini M. Competition and interaction between Neosarmatium smithi (Crustacea : Grapsidae) and Terebralia palustris (Mollusca : Gastropoda) in a Kenyan mangrove [J]. Marine Biology, 2000, 137: 309-316.
    Frey RW, Basan PB, Scott RM. Techniques for sampling salt marsh benthos and burrows [J]. American Midland Naturalist, 1973, 89: 228-234.
    Frusher SD, Giddins RL, Smith TJ. Distribution and abundance of grapsid crabs (Grapsidae) in a mangrove estuary - effects of sediment characteristics, salinity tolerances, and osmoregulatory ability [J]. Estuaries, 1994, 17: 647-654.
    Fukui Y, Wada K. Distribution and reproduction of four intertidal crabs (Crustacea, Brachyura) in the Tonda River estuary, Japan [J]. Marine Ecology-Progress Series, 1986,30:229-241.
    Gabet EJ. Lateral migration and bank erosion in a saltmarsh tidal channel in San Francisco Bay, California [J]. Estuaries, 1998, 21: 745-753.
    Gerzabek MH, Haberhauer G, Kirchmann H. Nitrogen distribution and N-15 natural abundances in particle size fractions of a long-term agricultural field experiment [J]. Journal of Plant Nutrition and Soil Science-Zeitschrift Fur Pflanzenernahrung und Bodenkunde, 2001, 164:475-481
    Gillikin DP, Kamanu CP. Burrowing in the East African mangrove crab, Chiromantes ortmanni (Crosnier, 1965) (Decapoda, Brachyura, Sesarmidae) [J]. Crustaceana, 2005,78:1273-1275.
    Green PT, Dowd DJO, Lake PS. Control of seedling recruitment by land crabs in rain forest on a remote oceanic island [J]. Ecology, 1997, 78: 2474-2486.
    Gribsholt B, Kostka JE, Kristensen E. Impact of fiddler crabs and plant roots on sediment biogeochemistry in a Georgia saltmarsh [J]. Marine Ecology-Progress Series, 2003, 259:237-251.
    Griffis RB, Suchanek TH. A model of burrow architecture and trophic modes in thalassinidean shrimp (Decapoda, Thalassinidea) [J]. Marine Ecology-Progress Series, 1991,79: 171-183.
    Guebas FD, Kairo JG, Jayatissa LP, Cannicci S, Koedam N. An ordination study to view vegetation structure dynamics in disturbed and undisturbed mangrove forests in Kenya and Sri Lanka [J]. Plant Ecology, 2002a, 161: 123-135.
    Guebas FD, Verneirt M, Cannicci S, Kairo JG, Tack JF, Koedam N. An exploratory study on grapsid crab zonation in Kenyan mangroves [J]. Wetlands Ecology and Management, 2002b, 10: 179-187.
    Guest MA, Connolly RM. Fine-scale movement and assimilation of carbon in saltmarsh and mangrove habitai by resident animals [J]. Aquatic Ecology, 2004,38: 599-609.
    Guest MA, Connolly RM, Lee SY, Loneragan NR, Breitfuss MJ. Mechanism for the small-scale movement of carbon among estuarine habitats: organic matter transfer not crab movement [J]. Oecologia, 2006, 148: 88-96.
    Gutierrez JL, Jones CG, Groffman PM, Findlay SEG, Iribarne OO, Ribeiro PD, Bruschetti CM. The contribution of crab burrow excavation to carbon availability in surficial salt-marsh sediments [J]. Ecosystems, 2006, 9: 647-658.
    Haines EB. Relation between the stable carbon isotope composition of fiddler crabs, plants, and soils in a salt marsh [J]. Limnology and Oceanography, 1976, 21:880-883.
    Hall D, Lee SY, Meziane T. Fatty acids as trophic tracers in an experimental estuarine food chain: Tracer transfer [J]. Journal of Experimental Marine Biology and Ecology, 2006, 336: 42-53.
    Hampel H, Cattrijsse A, Vincx M. Tidal, diel and semi-lunar changes in the faunal assemblage of an intertidal salt marsh creek [J]. Estuarine, Coastal and Shelf Science, 2003, 56: 795-805.
    Hedge P, Kriwoken LK. Evidence for effects of Spartina anglica invasion on benthic macrofauna in Little Swanport estuary,Tasmania[J].Austral Ecology,2000,25:150-159.
    Hemmi JM,Zeil J.Burrow surveillance in fiddler crabs - Ⅰ.Description of behaviour [J].Journal of Experimental Biology,2003,206:3935-3950.
    Hemmi JM,Marshall J,Pix W,Vorobyev M,Zeil J.The variable colours of the fiddler crab Uca vomeris and their relation to background and predation[J].Journal of Experimental Marine Biology and Ecology,2006,209:4140-4153.
    Heron SF,Ridd PV.The use of computational fluid dynamics in predicting the tidal flushing of animal burrows[J].Estuarine,Coastal and Shelf Science,2001,52:411-421.
    Hunt GL,Baduini C,Jahncke J.Diets of short-tailed shearwaters in the southeastern Bering Sea[J].Deep-Sea Research Part Ⅱ-Topical Studies in Oceanography,2002,49:6147-6156.
    Iribame O,Bortolus A,Botto E Between-habitat differences in burrow characteristics and trophic modes in the southwestern Atlantic burrowing crab Chasmagnathus granulata[J].Marine Ecology-Progress Series,1997,155:137-145.
    Iribarne O,Botto F,Martinetto P,Gutierrez JL.The role of burrows of the SW Atlantic intertidal crab Chasmagnathus granulata in trapping debris[J].Marine Pollution Bulletin,2000,40:1057-1062.
    Iribarne O,Bruschetti M,Escapa M,Bava J,Botto F,Gutierrez J,Palomo G,Delhey K,Petracci P,Gagliardini A.Small- and large-scale effect of the SW Atlantic burrowing crab Chasmagnathus granulatus on habitat use by migratory shorebirds[J].Journal of Experimental Marine Biology and Ecology,2005,315:87-101.
    Iribarne O,Martinetto P,Schwindt E,Botto F,Bortolus A,Borboroglu PG.Evidences of habitat displacement between two common soft-bottom SW Atlantic intertidal crabs[J].Journal of Experimental Marine Biology and Ecology,2003,296:167-182.
    Jayabalan N.Food and feeding habits of the ponyfish Leiognathus splendens(Pisces,Leiognathidae) from Porto-Novo coast[J].Indian Journal of Marine Sciences, 1991,20: 157-160.
    Jensen GC, McDonald PS, Armstrong DA. East meets west: competitive interactions between green crab Carcinus maenas, and native and introduced shore crab Hemigrapsus spp [J]. Marine Ecology-Progress Series, 2002, 225: 251-262.
    Jin BS, Fu CZ, Zhong JS, Li B, Chen JK, Wu JH. Fish utilization of a salt marsh intertidal creek in the Yangtze River estuary, China [J]. Estuarine, Coastal and Shelf Science, 2007, 73: 844-852.
    Jivoff PR, Able KW. Blue crab, Callinectes sapidus, response to the invasive common reed, Phragmites australis: Abundance, size, sex ratio, and molting frequency [J]. Estuaries, 2003, 26: 587-595.
    Jones CG, Gutierrez JL, Groffman PM, Shachak M. Linking ecosystem engineers to soil processes: a framework using the Jenny State Factor Equation [J]. European Journal of Soil Biology, 2006, 42: S39-S53.
    Jones CG, Lawton JH, Shachak M. Organisms as ecosystem engineers. Oikos, 1994, 69: 373 -386.
    Jones MB. Effect of temperature, season, and stage of life cycle on salinity tolerance of the estuarine crab Helice crassa Dana (Grapsidae) [J]. Journal of Experimental Marine Biology and Ecology, 1981, 52: 271-282.
    Jones MB, Simons MJ. Habitat preferences of two estuarine burrowing crabs Helice crassa Dana (Grapsidae) and Macrophthalmus hirtipes (Jacquinot) (Ocypodidae) [J]. Journal of Experimental Marine Biology and Ecology, 1982, 56: 49-62.
    Kent CPS, McGuinness KA. A comparison of methods for estimating relative abundance of grapsid crabs [J]. Wetlands Ecology and Management, 2006, 14:1-9.
    Kerwin JA. Distribution of the fiddler crab (Uca minax) in relation to marsh plants within a Virginia Estuary [J]. Chesapeake Science, 1971, 12: 180-183.
    Kneib RT. Patterns of invertebrate distribution and abundance in the intertidal salt marsh: Causes and questions [J]. Estuaries, 1984, 7: 392-412.
    Kneib RT. The role of tidal marshes in the ecology of estuarine nekton [J].Oceanography and Marine Biology an Annual Review, 1997,35, 163-220.
    Kneib RT,Lee SY,Kneib JP.Adult-juvenile interactions in the crabs Sesarma (Perisesarma) bidens and S(Holometopus).dehaani(Decapoda:Grapsidae)from intertidal mangrove habitats in Hong Kong[J].Journal of Experimental Marine Biology and Ecology,1999,234:255-273.
    Koch V,Wolff M.Energy budget and ecological role of mangrove epibenthos in the Caeté estuary,North Brazil[J].Marine Ecology Progress Series,2002,228:119-130.
    Koch V,Wolff M,Diele K.Comparative population dynamics of four fiddler crabs (Ocypodidae,genus Uca) from a North Brazilian mangrove ecosystem[J].Marine Ecology-Progress Series,2005,291:177-188.
    Koh CH,Shin HC.Environmental characteristics and distribution of macrobenthos in a mudflat of the west coast of Korea(Yellow Sea)[J].Netherlands Journal of Sea Research,1988,22:279-290.
    Koo BJ,Kwon KK,Hyun JH.Effect of environmental conditions on variation in the sediment-water interface created by complex macrofaunal burrows on a tidal flat [J].Journal of Sea Research,2007,58:302-312.
    Kristensen E.Mangrove crabs as ecosystem engineers;with emphasis on sediment processes[J].Journal of Sea Research,2008,59:30-43.
    Kwak TJ,Zedler JB.Food web analysis of southern California coastal wetlands using multiple stable isotopes[J].Oecologia,1997,110:262-277.
    Lawton JH,Jones CG.Linking species and ecosystem perspectives[J].Trends in Ecology and Evolution,1993,8:311-313.
    Le Vay L,Ut VN,Walton M.Population ecology of the mud crab Scylla paramamosain(Estampador) in an estuarine mangrove system:a mark-recapture study[J].Marine Biology,2007,151:1127-1135.
    Lee HY,Shih SS.Impacts of vegetation changes on the hydraulic and sediment transport characteristics in Guandu mangrove wetland[J].Ecological Engineering,2004,23:85-94.
    Lee SY.Potential trophic importance of the faecal material of the mangrove sesarmine crab Sesarma messa[J].Marine Ecology-Progress Series,1997,159:275-284.
    Lee SY. Ecological role of grapsid crabs in mangrove ecosystems: a review [J]. Marine and Freshwater Research, 1998, 49: 335-343.
    Lee SY. Carbon dynamics of Deep Bay, eastern Pearl River estuary, China. II: Trophic relationship based on carbon- and nitrogen-stable isotopes [J]. Marine Ecology- Progress Series, 2000, 205: 1-10.
    Lee SY. Exchange of organic matter and nutrients between mangroves and estuaries: Myths, methodological issues and missing links [J]. International Journal of Ecology and Environmental Sciences, 2005, 31:163-176.
    Lee SY, Kwok PW. The importance of mangrove species association to the population biology of the sesarmine crabs Parasesarma affinis and Perisesarma bidens [J]. Wetlands Ecology and Management, 2002, 10: 215-226.
    Lee YH, Koh CH. Biogenic sedimentary structures on a Korean mud flat: Spring-neap variations[J]. Netherlands Journal of Sea Research, 1994, 32: 81-90.
    Leonard LA, Luther ME. Flow hydrodynamics in tidal marsh canopies [J]. Limnology and Oceanography, 1995,40: 1474-1484.
    Lerberg SB, Holland AF, Sanger DM. Responses of tidal creek macrobenthic communities to the effects of watershed development [J]. Estuaries, 2000, 23:838-853.
    Levin LA, Talley TS, Hewitt J. Macrobenthos of Spartina foliosa (Pacific cordgrass) salt marshes in southern California: Community structure and comparison to a Pacific mudflat and a Spartina alterniflora (Atlantic smooth cordgrass) marsh [J]. Estuaries, 1998, 21: 129-144.
    
    Li B, Liao CZ, Zhang XD, Chen HL, Wang Q, Chen ZY, Gan XJ, Wu JH, Zhao B, Ma ZJ, Cheng XL, Jiang LF, Chen JK. Spartina alterniflora invasions in the Yangtze River estuary, China: an overview of current status and ecosystem effects. Ecological Engineering, 2008, doi: 10.1016/j.ecoleng.2008.05.013.
    Liao CZ, Luo YQ, Jiang LF, Zhou XH, Wu XW, Fang CM, Chen JK, Li B. Invasion of Spartina alterniflora enhanced ecosystem carbon and nitrogen stocks in the Yangtze Estuary, China [J]. Ecosystems, 2007, 10: 1351-1361.
    Liao CZ, Peng RH, Luo YQ, Zhou XH, Wu XW, Fang CM, Chen JK, Li B. Altered ecosystem carbon and nitrogen cycles by plant invasion: A meta-analysis [J].New Phytologist, 2008, 177: 706-714.
    Likens GE, Bormann FH. Linkages between terrestrial and aquatic ecosystems. BioScience, 1974, 24: 447-456.
    Lim SSL. Fiddler crab burrow morphology: How do burrow dimensions and bioturbative activities compare in sympatric populations of Uca vocans (Linnaeus, 1758) and U. annulipes (H. Milne Edwards, 1837)? [J] Crustaceana, 2006, 79: 525-540.
    Lim SSL, Diong CH. Burrow-morphological characters of the fiddler crab, Uca annulipes (H. Milne Edwards, 1837) and ecological correlates in a lagoonal beach on Pulau Hantu, Singapore [J]. Crustaceana, 2003, 76: 1055-1069.
    Lim SSL, Heng MMS. Mangrove micro-habitat influence on bioturbative activities and burrow morphology of the fiddler crab, Uca annulipes (H. Milne Edwards, 1837) (Decapoda, Ocypodidae) [J]. Crustaceana, 2007, 80: 31-45.
    Litulo C. Population structure and reproductive biology of the fiddler crab Uca inversa (Hoffman, 1874) (Brachyura : Ocypodidae) [J]. Acta Oecologica - International Journal of Ecology, 2005, 27: 135-141.
    Lomovasky BJ, Casariego AM, Brey T, Iribarne O. The effect of the SW Atlantic burrowing crab Chasmagnathus granulatus on the intertidal razor clam Tagelus plebeius [J]. Journal of Experimental Marine Biology and Ecology, 2006, 337:19-29.
    Luppi TA, Spivak ED, Anger K, Valero JL. Patterns and processes of Chasmagnathus granulata and Cyrtograpsus angulatus (Brachyura : Grapsidae) recruitment in Mar Chiquita coastal lagoon, Argentina [J]. Estuarine, Coastal and Shelf Science, 2002, 55: 287-297.
    Ma ZJ, Li B, Zhao B, Jing K, Tang SM, Chen JK. 2004. Are artificial wetlands good alternatives to natural wetlands for waterbirds? A case study on Chongming Island, China [J]. Biodiversity and Conservation, 2004, 13: 333-350.
    Macia A, Quincardete I, Paula J. A comparison of alternative methods for estimating population density of the fiddler crab Uca annulipes at Saco Mangrove, Inhaca Island (Mozambique) [J]. Hydrobiologia, 2001, 449: 213-219.
    Macintosh DJ, Ashton EC, Havanon S. Mangrove rehabilitation and intertidal biodiversity: A study in the Ranong mangrove ecosystem, Thailand [J].Estuarine, Coastal and Shelf Science, 2002, 55: 331-345.
    Mallin MA. The importance of tidal creek ecosystems [J]. Journal of Experimental Marine Biology and Ecology, 2004, 298: 145-149.
    Mayer MS, Schaffner L, Kemp WM. Nitrification potentials of benthic macrofaunal tubes and burrow walls: Effects of sediment NH~(4+) and animal irrigation behavior [J]. Marine Ecology-Progress Series, 1995, 121: 157-169.
    McCraith BJ, Gardner LR, Wethey DS, Moore WS. The effect of fiddler crab burrowing on sediment mixing and radionuclide profiles along a topographic gradient in a southeastern salt marsh [J]. Journal of Marine Research, 2003, 61:359-390.
    McHenga ISS, Mfilinge PL, Tsuchiya M. Bioturbation activity by the grapsid crab Helice formosensis and its effects on mangrove sedimentary organic matter [J].Estuarine, Coastal and Shelf Science, 2007, 73: 316-324.
    McHenga ISS, Tsuchiya M. Nutrient dynamics in mangrove crab burrow sediments subjected to anthropogenic input [J]. Journal of Sea Research, 2008, 59:103-113.
    McIvor CC, Odum WE. The flume net: a quantitative method for sampling fishes and macrocrustaceans on tidal marsh surfaces [J]. Estuaries, 1986, 9: 219-224.
    Mclvor CC, Smith TJ. Differences In The crab fauna of mangrove areas at a southwest Florida and a northeast Australia location: Implications for leaf-litter processing [J]. Estuaries, 1995, 18: 591-597.
    Menone ML, Bortolus A, Botto F, de Moreno JEA, Moreno VJ, Iribarne O, Metcalfe TL, Metcalfe CD. Organochlorine contaminants in a coastal lagoon in Argentina: Analysis of sediment, crabs, and cordgrass from two different habitats [J].Estuaries, 2000, 23: 583-592.
    
    Menone ML, Miglioranza KSB, Iribarne O, de Moreno JEA, Moreno VJ. The role of burrowing beds and burrows of the SW Atlantic intertidal crab Chasmagnathus granulata in trapping organochlorine pesticides [J]. Marine Pollution Bulletin,2004, 48: 240-247.
    Mense, DJ, Wenner, EL. Distribution and abundance of early life history stages of the blue crab, Callinectes sapidus, in tidal marsh creeks near Charleston, South Carolina [J]. Estuaries, 1989, 12: 157-168.
    Meziane T, Agata FD, Lee SY. Fate of mangrove organic matter along a subtropical estuary: small-scale exportation and contribution to the food of crab communities [J]. Marine Ecology -Progress Series, 2006, 312: 15-27.
    Meziane T, Sanabe MC, Tsuchiya M. Role of fiddler crabs of a subtropical intertidal flat on the fate of sedimentary fatty acids [J]. Journal of Experimental Marine Biology and Ecology, 2002, 270: 191-201.
    Mia Y, Shokita S, Watanabe S. Stomach contents of two grapsid crabs, Helice formosensis and. Helice leachi [J]. Fisheries Science, 2001, 67: 173-175.
    Micheli F, Peterson CH. Estuarine vegetated habitats as corridors for predator movements. Conservation Biology, 1999, 13: 869-881.
    Middleton BA, McKee KL. Degradation of mangrove tissues and implications for peat formation in Belizean island forests [J]. Journal of Ecology, 2001, 89:818-828.
    Miller KG, Maurer D. Distribution of the fiddler crabs, Uca pugnax and Uca minax, in relation to salinity in Delaware rivers [J]. Chesapeake Science, 1973, 14:219-221.
    
    Mitsch JW, Gosselink JG Wetlands [M]. Van Nostrand Reinhold, New York, 1993. Montague CL. The influence of fiddler crab burrows and burrowing on metabolic processes in salt marsh sediments. In: Kennedy VS (ed) Estuarine Comparisons [M]. Academic Press, New York, 1982: 283-301.
    Morrisey DJ, DeWitt TH, Roper DS, Williamson RB. Variation in the depth and morphology of burrows of the mud crab Helice crassa among different types of intertidal sediment in New Zealand [J]. Marine Ecology-Progress Series, 1999,182:231-242.
    Mouton EC, Felder DL. Burrow distributions and population estimates for the fiddler crabs Uca spinicarpa and Uca longisignalis in a Gulf of Mexico salt marsh[J].Estuaries,1996,19:51-61.
    Murai M,Backwell PRY.A conspicuous courtship signal in the fiddler crab Uca perplexa:female choice based on display structure[J].Behavioral Ecology and Sociobiology,2006,60:736-741.
    Naiman R J,Decamps H.The Ecology and Management of Aquatic-terrestrial Ecotones[M].UNESCO and The Parthenon Publishing Group,Paris,1990:316.
    Neira C,Grosholz ED,Levin LA,Blake R.Mechanisms generating modification of benthos following tidal flat invasion by a Spartina hybrid[J].Ecological Applications,2006,16:1391-1404.
    Netto SA,Lana PC.The role of above- and below-ground components of Spartina alterniflora(Loisel) and detritus biomass in structuring macrobenthic associations of Paranagua Bay(SE,Brazil)[J].Hydrobiologia,1999,400:167-177.
    Nickell LA,Atkinson RJA.Functional morphology of burrows and trophic modes of three thalassinidean shrimp species,and a new approach to the classification of thalassinidean burrow morphology[J].Marine Ecology - Progress Series,1995,128:181-197.
    Nielsen OI,Kristensen E,Macintosh DJ.Impact of fiddler crabs(Uca spp.) on rates and pathways of benthic mineralization in deposited mangrove shrimp pond waste[J].Journal of Experimental Marine Biology and Ecology,2003,289:59-81.
    Nobbs M.Effects of vegetation differ among three species of fiddler crabs(Uca spp.)[J].Journal of Experimental Marine Biology and Ecology,2003,284:41-50.
    Nobbs M,McGuinness KA.Developing methods for quantifying the apparent abundance of fiddler crabs(Ocypodidae:Uca) in mangrove habitats[J].Australian Journal of Ecology,1999,24:43-49.
    Nomann BE,Pennings SC.Fiddler crab-vegetation interactions in hypersaline habitats[J].Journal of Experimental Marine Biology and Ecology,1998,225: 53-68.
    Nordhaus I, Wolff M, Diele K. Litter processing and population food intake of the mangrove crab Ucides cordatus in a high intertidal forest in northern Brazil [J].Estuarine, Coastal and Shelf Science, 2006, 67: 239-250.
    Odum EP. The Status of Three Ecosystem Level Hypothesis Regarding Salt Marsh Estuaries: Tidal, Subsidy, Outwelling and Detritus Based Food Chains [M]. Academic Press, New York, 1980.
    Odum WE, Smith III TJ, Hoover JK, McIvor CC. The Ecology of Tidal Freshwater Marshes of the United States East Coast: A Community Profile [M]. U.S. Fish and Wildlife Service, Washington, D.C, 1984:177.
    Omori K, Irawan B, Kikutani Y. Studies on the salinity and desiccation tolerances of Helice tridens and Helice japonica (Decapoda: Grapsidae) [J]. Hydrobiologia,1998,386:27-36.
    Omori K, Shiraishi K, Hara M. Life histories of sympatric mud-flat crabs, Helice japonica and H tridens (Decapoda: Grapsidae), in a Japanese estuary [J].Journal of Crustacean Biology, 1997, 17:279-288.
    Onda Y, Itakura N. An experimental study on the burrowing activity of river crabs on subsurface water-movement and piping erosion [J]. Geomorphology, 1997, 20:279-288.
    Palmer ML, Mazzotti FJ. Structure of Everglades alligator holes [J]. Wetlands, 2004,24: 115-122.
    Palomo G, Botto F, Navarro D, Escapa M, Iribarne O. Does the presence of the SW Atlantic burrowing crab Chasmagnathus granulatus Dana affect predator-prey interactions between shorebirds and polychaetes? [J] Journal of Experimental Marine Biology and Ecology, 2003, 290: 211-228.
    Pennings SC, Carefoot TH, Siska EL, Chase ME, Page TA. Feeding preferences of a generalist salt-marsh crab: Relative importance of multiple plant traits [J]. Ecology, 1998,79: 1968-1979.
    Perillo GME, Minkoff DR, Piccolo MC. Novel mechanism of stream formation in coastal wetlands by crab-fish-groundwater interaction [J]. Geo-Marine Letters, 2005,25:214-220.
    Peterson, CH, Renaud PE. Analysis of feeding preference experiments [J]. Oecologia, 1989,80:82-86.
    Petracco M, Veloso VG, Cardoso RS. Population dynamics and secondary production of Emerita brasiliensis (Crustacea : Hippidae) at Prainha Beach, Brazil [J]. Marine Ecology-Pubblicazioni Delia Stazione Zoologica Di Napoli I, 2003, 24:231-245.
    Reaney LT, Backwell PRY. Temporal constraints and female preference for burrow width in the fiddler crab, Uca mjoebergi[J]. Behavioral Ecology and Sociobiology, 2007, 61:1515-152.
    Reinsel KA. Impact of fiddler crab foraging and tidal inundation on an intertidal sandflat: season-dependent effects in one tidal cycle [J]. Journal of Experimental Marine Biology and Ecology, 2004, 313: 1-17.
    Ringold PL. Burrowing, root mat density, and the distribution of fiddler crabs in the eastern United States [J]. Journal of Experimental Marine Biology and Ecology,1979,36:11-21.
    Roast SD, Widdows J, Pope N, Jones MB. Sediment-biota interactions: mysid feeding activity enhances water turbidity and sediment erodability [J]. Marine Ecology-Progress Series, 2004, 281: 145-154.
    Rosa LC, Bemvenuti CE. Effects of the burrowing crab Chasmagnathus granulata (Dana) on meiofauna of estuarine intertidal habitats of Patos Lagoon, Southern Brazil [J]. Brazilian Archives of Biology and Technology, 2005, 48: 267-274.
    Rudnick DA, Chan V, Resh VH. Morphology and impacts of the burrows of the Chinese mitten crab, Eeriocheir sinensis H. Milne Edwards (decapoda, grapsoidea), in South San Francisco Bay, California, USA [J]. Crustaceana, 2005, 78: 787-807.
    Ryer, CH. Temporal patterns of feeding by blue crabs (Callinectes sapidus) in a tidal-marsh creek and adjacent seagrass meadow in the lower Chesapeake Bay [J]. Estuaries, 1987, 10: 136-140.
    Saigusa M. Adaptive significance of a semilunar rhythm in the terrestrial crab Sesarma[J]. Biological Bulletin, 1981, 160: 311-321.
    Saigusa M. Larval release rhythm coinciding with solar day and tidal cycles in the terrestrial crab Sesarma harmony with the semilunar timing and its adaptive significance [J]. Biological Bulletin, 1982, 162: 371-386.
    Salgado JP, Cabral HN, Costa MJ. Spatial and temporal distribution patterns of the macrozoobenthos assemblage in the salt marshes of Tejo estuary (Portugal) [J]. Hydrobiologia, 2007, 587: 225-239.
    Sanderson EW, Foin TC, Ustin SL. A simple empirical model of salt marsh plant spatial distributions with respect to a tidal channel network [J]. Ecological Modelling, 2001, 139: 293-307.
    Sanderson EW, Ustin SL, Foin TC. The influence of tidal channels on the distribution of salt marsh plant species in Petaluma Marsh, CA, USA [J]. Plant Ecology,2000,146:29-41.
    Sassa S, Watabe Y. Threshold, optimum and critical geoenvironmental conditions for burrowing activity of sand bubbler crab, Scopimera globosa[J]. Marine Ecology-Progress Series, 2008, 354: 191-199.
    Schindler DE, Johnson BM, Mackay NA, Bouwes N, Kitchell JF. Crab-snail size-structured interactions and salt marsh predation gradients [J]. Oecologia,1994,97:49-61.
    Schories D, Bergan AB, Barletta M, Krumme U, Mehlig U, Rademaker V. The keystone role of leaf-removing crabs in mangrove forests of North Brazil [J].Wetlands Ecology and Management, 2003, 11: 243-255.
    Schuh M, Diesel R. Effects of salinity and starvation on the larval development of Sesarma curacaoense Deman, 1892, a mangrove crab with abbreviated development (Decapoda, Grapsidae) [J]. Journal of Crustacean Biology, 1995a,15:645-654.
    Schuh M, Diesel R. Effects of salinity, temperature, and starvation on the larval development of Armases (=Sesarma) miersii (Rathbun, 1897), a semiterrestrial crab with abbreviated development (Decapoda, Grapsidae) [J]. Journal of Crustacean Biology, 1995b, 15: 205-213.
    Seike K, Nara M. Occurrence of bioglyphs on Ocypode crab burrows in a modem sandy beach and its palaeoenvironmental implications [J]. Palaeogeography Palaeoclimatology Palaeoecology, 2007, 252: 458-463.
    Shinn EA. Burrowinq in recent lime sediments of Florida and the Bahamas [J]. Journal of Paleontology, 1968,42: 879-894.
    Skov MW, Hartnoll RG Comparative suitability of binocular observation, burrow counting and excavation for the quantification of the mangrove fiddler crab Uca annulipes (H. Milne Edwards) [J]. Hydrobiologia, 2001, 449: 201-212.
    Skov MW, Vannini M, Shunula JP, Hartnoll RG, Cannicci S. Quantifying the density of mangrove crabs: Ocypodidae and Grapsidae [J]. Marine Biology, 2002, 141:725-732.
    Smith NF, Ruiz GM, Reed SA. Habitat and host specificity of trematode metacercariae in fiddler crabs from mangrove habitats in Florida [J]. Journal of Parasitology, 2007, 93: 999-1005.
    Stenzel LE, Hickey CM, Kjelmyr JE, Page, GW. Abundance and distribution of shorebirds in the San Francisco Bay area [J]. Western Birds, 2002, 33: 69-98.
    Stieglitz T, Ridd P, Muller P. Passive irrigation and functional morphology of crustacean burrows in a tropical mangrove swamp [J]. Hydrobiologia, 2000, 421:69-76.
    Stinchcombe JR, Schmitt J. Ecosystem engineers as selective agents: the effects of leaf litter on emergence time and early growth in Impatiens capensis [J].Ecology Letters, 2006, 9: 255-267.
    Takahashi M, Suzuki N, Koga T. Burrow defense behaviors in a sand-bubbler crab: Scopimera globosa, in relation to body size and prior, residence [J]. Journal of Ethology, 2001, 19:93-96.
    
    Takeda S, Kurihara Y. The distribution and abundance of Helice tridens (De Haan) burrows and substratum conditions in a northeastern Japan salt marsh (Crustacea: Brachyura). Journal of Experimental Marine Biology and Ecology, 1987a, 107:9-19.
    Takeda S, Kurihara Y. The effects of burrowing of Helice tridens (Dehaan) on the soil of a salt marsh habitat[J].Journal of Experimental Marine Biology and Ecology,1987b,113:79-89.
    Takeda S,Kurihara Y.The occupation of artificial burrows by Helice tridens(Dehaan)and the length of its stay[J].Journal of Experimental Marine Biology and Ecology,1987c,114:27-37.
    Tan CGS,Ng PKL.An annotated checklist of mangrove brachyuran crabs from Malaysia and Singapore[J].Hydrobiologia,1994,285:75-84.
    Teal JM.Distribution of fiddler crabs in Georgia salt marshes[J].Ecology,1958,39:185-193.
    Thongtham N,Kristensen E.Physical and chemical characteristics of mangrove crab (Neoepisesarma versicolor) burrows in the Bangrong mangrove forest,Phuket,Thailand with emphasis on behavioural response to changing environmental conditions[J].Vie Et Milieu-Life And Environment,2003,53:141-151.
    Trussell GC,Ewanchuk PJ,Bertness MD.Field evidence of trait-mediated indirect interactions in a rocky intertidal food web[J].Ecology Letters,2002,5:241-245.
    Vendel AL,Spach HL,Lopes SG,Santos C.Structure and dynamics of fish assemblages in a tidal creek environment[J].Brazilian Archives of Biology and Technology,2002,45:365-373.
    Wada K,Murata I.Chimney building in the fiddler crab Uca arcuata[J].Journal of Crustacean Biology,2000,20:505-509.
    Walton ME,Vay L L,Lebata JH,Binas J,Primavera JH.Assessment of the effectiveness of mangrove rehabilitation using exploited and non-exploited indicator species[J].Biological Conservation,2007,138:180-188.
    Wang JQ,Zhang XD,Nie M,Fu CZ,Chen JK,Li B.Exotic Spartina alterniflora provides compatible habitats for native estuarine crab Sesarma dehaani in the Yangtze River estuary[J].Ecological Engineering,2008,34:57-64.
    Warner GF.The occurrence and distribution of crabs in a Jamaican mangrove swamp [J].Journal of Animal Ecology,1969,38:379-389.
    Warren JH.Role of burrows as refuges from subtidal predators of temperate mangrove crabs[J].Marine Ecology-Progress Series,1990a,67:295-299.
    Warren JH.The use of open burrows to estimate abundances of intertidal estuarine crabs[J].Australian Journal of Ecology,1990b,15:277-280.
    Warren JH,Underwood AJ.Effects of burrowing crabs on the topography of mangrove swamps in New South Wales[J].Journal of Experimental Marine Biology and Ecology,1986,102:223-235.
    Webb AP,Eyre BD.The effect of natural populations of the burrowing and grazing soldier crab(Mictyris longicarpus) on sediment irrigation,benthic metabolism and nitrogen fluxes[J].Journal of Experimental Marine Biology and Ecology,2004,309:1-19.
    Weis JS,Windham L,Santiago-Bass C.,Weis P.Growth,survival,and metal content of marsh invertebrates fed diets of detritus from Spartina alterniflora Loisel,and Phragmites australis Cav.Trin.ex Steud.from metal-contaminated and clean sites[J].Wetlands Ecology and Management,2002,10:71-84.
    Weis JS,Perlmutter J.Burrowing behavior by the fiddler crab Uca pugilator:inhibition by the insecticide diflubenzuron[J].Marine Ecology-Progress Series,1987,38:109-113.
    Werry J,Lee SY.Grapsid crabs mediate link between mangrove litter production and estuarine planktonic food chains[J].Marine Ecology Progress Series,2005,293:165-176.
    Williamson HJ,Ockenden MC.ISIS:An instrument for measuring erosion shear stress in situ[J].Estuarine,Coastal and Shelf Science,1996,42:1-18.
    Wolfrath B.Burrowing of the fiddler crab Uea tangeri in the Ria Formosa in Portugal and its influence on sediment structure.Marine Ecology-Progress Series,1992,85:237-243.
    Wright JR,Jones CG.The concept of organisms as ecosystem engineers ten years on:progress,limitations,and challenges[J].BioScience,2006,56:203-209.
    Yee SH,Willig MR,Moorhead DL.Tadpole shrimp structure macroinvertebrate communities in playa lake microcosms[J].Hydrobiologia,2005,541:139-148.
    Young T,Komarow S,Deegan L,Garritt R.Population size and summer home range of the green crab, Carcinus maenas, in salt marsh tidal creeks [J]. Biological Bulletin, 1999, 197: 297-299.
    Zimmerman TL, Felder DL. Reproductive ecology of an intertidal brachyuran crab, Sesarma Sp (Nr Reticulatum), from the Gulf of Mexico [J]. Biological Bulletin, 1991,181:387-401.
    Zipperer VT. Ecological effects of the introduced cordgrass, Spartina alterniflora, on the benthic community structure of Willapa Bay, Washington[D]. M.S. Thesis. University of Washington, Seattle, Washington, USA, 1996.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700