用户名: 密码: 验证码:
平面磨削温度场及热损伤的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
与其它材料去除方法相比,磨削加工的主要局限性在于其比磨削能很高,且绝大部分磨削能转化为热能,传递到工件、砂轮、磨屑和磨削液等物质中,这往往会引起磨削区的温度急剧升高。磨削温度过高将会造成工件表层出现各种形式的热损伤,如铁基材料的烧伤、二次回火、白层、残余应力等。为了控制和防止磨削高温及热损伤的出现,有必要对磨削温度进行深入的研究。本文通过实验分析、理论推导和数值仿真等手段,对平面磨削温度场及热损伤进行了深入全面的研究,所做的工作主要包括:
     (1)对磨削温度进行了系统的实验研究。根据实验结果,深入分析了磨削参数、磨削方式、比磨削能和砂轮属性等对磨削温度的影响,讨论了磨削温度对工件表面质量的影响。实验发现:磨削温度随着切深、砂轮速度和工件速度的增大而升高,其中切深对温度的影响最大,砂轮速度次之,工件速度的影响最小;磨削温度随比磨削能的增大而升高;在相同磨削参数下,顺磨的磨削温度比逆磨的高,CBN砂轮磨削后的工件表面温度比氧化铝砂轮磨削后的低;磨削温度升高会引起工件表面形貌恶化,表面粗糙度增大,而当磨削温度不足以使工件表面出现烧伤时,其对表面粗糙度的影响不大;在磨削液或空气的冷却作用下,磨削区工件中心部位的温度高于其两侧附近的温度,使得中心区的热膨胀量较大,故其实际材料去除厚度大于两侧的去除厚度,所以磨削后工件表面沿宽度方向呈中间低两侧高的“凹”型曲面。
     (2)对砂轮-工件接触长度进行了深入的理论研究和实验研究。研究发现,由于工件、砂轮以及磨粒在磨削力和磨削温度等因素的作用下会产生弹性变形和热变形,使得实际接触长度大于几何长度,当工件速度较大或切深较小时,二者的差距更加明显。增大工件速度、砂轮直径和切深,接触长度增大。讨论了磨削力、磨削温度与接触长度之间的关系:当磨削温度升高时,工件变软,使得接触长度增大;同时,接触长度增大导致磨削区散热条件恶化,引起磨削温度升高;此外,随着磨削力的增大,砂轮、工件和磨粒的变形增大,从而接触长度增大。
     (3)对磨削温度场和热量分配进行了深入的理论分析。根据磨削过程中磨粒与工件的相互作用,探讨了磨削热源分布综合模型。根据砂轮-工件的实际接触状态,以及未变形切屑形态,将砂轮-工件的几何接触圆弧面假定为工件的热源面,流入工件的热流密度沿着热源面呈抛物线分布,建立了新的磨削温度场数学模型,实验表明通过该模型获得的理论值与实验值吻合较好。分析了磨削区热量的传递途径,并讨论了各种传热方式的热流密度,建立了新的磨削热量分配的数学模型。
     (4)提出了一种新的平面磨削温度场三维数值仿真方法。该方法考虑了工件材料物理性能参数与温度的非线性关系,以及磨削区热流密度与未变形切屑厚度的比例关系,根据砂轮与工件的接触状态,提出了流入工件的热流密度呈抛物线分布。采用该数值仿真方法进行了实例仿真,获得了工件的温度场及温度的变化历程,实验发现采用该方法获得的仿真结果与实验结果吻合较好。讨论了不同工件材料物理性能值、热流密度和热源模型的选取方法对仿真结果的影响。根据仿真获得的温度分布情况,参照工件材料金相转变的临界温度,可以预测工件的热影响程度。
     (5)对磨削白层性质及其影响因素进行了深入的研究。实验发现:磨削淬硬钢时产生的白层比退火钢产生的白层更厚且硬度更高,淬硬钢的亚表层因回火而出现软化黑层,而退火钢却没有这一现象;与45钢相比,轴承钢含碳量高,产生的白层更厚且硬度更高;白层厚度随切深的增大而增大;在较小的工件速度下,增大工件速度,白层变厚,当工件速度超过某一临界值时,进一步增大工件速度白层厚度反而变小了;由于磨削过程中工件各个区域的传热情况不同,导致工件磨削起始区的白层厚度最小,中间区次之,磨削终止区的厚度最大。
Grinding process is often selected for the final machining in the production of components because of its ability to obtain a high surface quality with fine tolerance and roughness. Compared with other machining processes, grinding process requires extremely high specific energy, and almost all of the energy is converted into heat which is conducted into the workpiece, the wheel, the chips and the coolant if used. This usually results in rise for the temperature of both the wheel and workpiece. The high temperature in the grinding zone will cause various types of thermal damage to the workpiece, such as burning, retempering, white layer, residual tensile stresses, etc. Therefore, the investigation of the grinding temperature is necessary for controlling the high temperature and preventing the thermal damage of the workpiece. In this paper, the temperature field and the thermal damage in surface grinding are investigated deeply through experimental analysis, theoretical calculation, and numerical simulation.
     (1) The effects of the grinding parameters, the grinding manners, the specific grinding energy and the grinding wheel properties on the grinding temperature are analyzed deeply on the basis of the experiment. The effect of the grinding temperature on the workpiece surface quality is also discussed. It is found that the grinding temperature increases with the cutting depth, the wheel speed and the table speed. The cutting depth is primary and the wheel speed is secondary factor for the increasing of the grinding temperature. The temperature of the down-grinding is higher than that of the up-grinding, and the temperature increases with the specific grinding energy. The temperature in the workpiece surface which is ground by CBN wheel is higher than that by aluminium oxide wheel. The relation between the grinding temperature and the morphology of the ground surface is discussed, as well as the relation between the grinding temperature and the surface roughness of the ground surface. The grinding temperature has little effect on the surface roughness of the ground surface, provided that the grinding temperature is not high enough to cause an evident burnout on the ground surface. The temperature, thereby the thermal expansion in the central zone of the workpiece is higher than that in the side zone under grinding fluid. Therefore, the actual workpiece material removal layer in the central zone is thicker than that in the side zone, and the workpiece surface is concave after grinding.
     (2) The contact length between the wheel and workpiece is studied. It is found that the real contact length is larger significantly than the geometric contact length for the deformations of the workpiece, the wheel and the wheel grains caused by grinding forces and heat, especially at a small cutting depth or a high table speed. The contact length increases on the conditions of larger cutting depth, higher table speed or bigger wheel diameter. The relations among the grinding force, grinding temperature and the contact length are discussed. A high temperature makes the wheel and the workpiece soften seriously, consequently the real contact length increases. At the same time, with the increase of the contact length, the dissipate heat condition of the grinding zone deteriorates, thus the grinding temperature increases. Wheel, workpiece and wheel grains deform subjected to the grinding force, thus the real contact length increases.
     (3) The theoretical calculations of the grinding temperature field and energy partitioning are carried out. Based on the interaction of the wheel grains with the workpiece, the grinding heat flux integrated model is discussed. The effects of the parameters in the model on the temperature field, the rate of the temperature change and the position of the maximum grinding temperature are described. The theoretical model of the grinding temperature is analysised on the basis of the moving heat source model which is proposed by Jaeger. A new mathematic model of energy partitioning in the grinding zone is proposed, and the effects of the material properties for the grinding wheel and the workpiece, the grain effective contact flat radius, the grinding parameters, grinding fluid, grinding forces and equivalent diameter of grinding wheel on the energy partitioning are considered in the model.
     (4) A new three dimensional numerical simulation technique of the temperature field in surface grinding is proposed. According to the contact condition between the grinding wheel and the workpiece, the physical properties of the workpiece material are considered non-linear according to the temperature and the heat flux in the grinding zone is considered proportional to the undeformed chip thickness in this technique. The circular arc heat source model in which the heat flux entering the workpiece is assumed to have a parabolic distribution is used to simulate the temperature field. A good agreement is found between the simulational results and experimental observations. The heat affected grade of the workpiece can be predicted from the temperature fields derived from the simulation, considering the critical temperatures for tempering, martensitic and austenitic transformation.
     (5) The properties and the influence factors of the white layer in the grinding are investigated. The influences of heat treatment, carbon content and grinding conditions on the white layer formation are discussed. It is found that the white layer in the hardened steel is thicker and harder than that in the annealed steel, and there is not a softer transition zone in the annealed steel. Higher carbon content tends to increase white layer thickness at the larger cutting depth, while no difference is observed at the smaller cutting depth. Increased carbon content tends to increase white layer hardness. The white layer thickness increases as the cutting depth increases. The table speed increases the white layer thickness at the low table speed. However, it is contrary at the high one. The white layer in the central zone of the workpiece is thicker than that in the entrance zone, but it is thinner than that in the exit zone.
引文
[1]王先逵.机械制造工艺学.北京:机械工业出版社, 2000,1-9
    [2]周志雄,孙宗禹. 2020年制造业挑战的展望.长沙:内部资料, 1998,9-41
    [3] Malkin S.磨削技术理论与应用.蔡光起,巩亚东,宗贵亮.沈阳:东北大学出版社,2002,1-137
    [4]李伯民,赵波.现代磨削技术.北京:机械工业出版社, 2003,1-70
    [5]任敬心,华定安.磨削原理.西安:西北工业大学出版社, 1988,1-91
    [6]陈日曜.金属切削原理.北京:机械工业出版社, 1992,178-214
    [7]傅杰才.磨削原理与工艺.长沙:湖南大学出版社,1986,179-180
    [8] CIRP work group. Technical university of Braunschweig. Institute of Machine Tools and Production Technology, 2004:1-10
    [9] Davidov V I. Investigation of heat process in the grinding of alloy with diamond wheel. Izveestiya Vuzov 11 Mashinostroenie Moscow, 1967:141- 146
    [10] Bezombes F A, Allanson D R, Burton D R. et al. Hi-speed temperature measurement using novel optic fibre-based system. SPIE, 2003,5145:117-127
    [11] Batako A S, Rowe W B, Morgan M N. Temperature measurement in high efficiency deep grinding. International Journal of Machine Tools & Manufacture, 2005,45:1131-1145
    [12] Jaeger J C. Moving source of heat and temperature at sliding contacts. Proc. Roy. Soc. New South Wales, 1942,76:203-224
    [13] Outwater J O, Shaw M C. Surface temperatures in grinding. Trans ASME, 1952,74:73-78
    [14] Hahn R S. On the nature of the grinding process. Proceedings 3rd Machine Tool Design and Research Conference, 1962,1:129-154
    [15] Malkin S, Cook N H. The wear of grinding wheels Part 2- fracture wear. ASME Journal of Engineering for Industry, 1971,11:1129-1133
    [16] Des Ruisseaux N R, Zerkle R D. Temperatures in semi-infinite and cylindrical bodies subject to moving heat sources and surface cooling. Journal of Heat Transfer, 1970,92:456-464
    [17] Howes T D, Neailey K, Harrison A J. Fluid film boiling in shallow-cut grinding. Annals of the CIRP, 1987,36(1):223-226
    [18] Shafto G R. Creep-feed grinding. [PhD thesis of University of Bristol], Bristol :University of Bristol, 1975:84-102
    [19] Rowe W B, Qi H S, Morgan M N, et al. The effect of deformation in the contact area in grinding. Annals of the CIRP, 1993,42(1):409-412
    [20] Rowe W B, Pettit J A, Boyle A, et al. Avoidance of thermal damage in grinding and prediction of the damage threshold. Annals of the CIRP, 1988,37(1):327-330
    [21] Rowe W B, Black S, Mills B, et al. Grinding temperatures and energy partitioning. Proceedings of the Royal Society, 1997,453(1):1083-1104
    [22] Rowe W B, Morgan M N, Black S, et al. A simplified approach to thermal damage in grinding. Annals of the CIRP, 1996,45(1):299-302
    [23] Rowe W B, Black S, Mills B, et al. Analysis of grinding temperatures by energy partitioning. Proceedings of Institution of Mechanical Engineers, 1996,210:579-588
    [24] Guo C, Wu Y, Varghese V, et al. Temperatures and energy partition for grinding with vitrified CBN wheels. Annals of the CIRP, 1999,48(1):247-250
    [25]贝季瑶.磨削温度的分析与研究.上海交通大学学报, 1964,28(3): 45-49
    [26]蔡光起,郑焕文.钢坯磨削温度的若干实验研究.东北大学学报, 1985,15(4): 10-13
    [27]高航,宋振武.断续磨削温度场的研究.机械工程学报, 1989,25(2): 22-27
    [28]金滩.高效深切磨削技术的基础研究:[东北大学博士学位论文].沈阳:东北大学, 1999,65-82
    [29]王西彬,师汉民,任敬心.结构陶瓷的磨削温度.华中理工大学学报, 1996,24(4): 14-18
    [30] Yu X X, Lau W S. A finite element analysis of residual stress in stretch grinding. Journal of Materials Processing Technology, 1999,94:13-22
    [31] Moulik P N, Yang H T, Chandrasekar S. Simulation of thermal stresses due to grinding. International Journal of Mechanical Sciences, 2001,43:831-851
    [32] Yang X P, Liu C R. A new stress based model of friction behavior in machining and its sighficant impact on residual stresses computed by finite element method. International Journal of Mechanical Sciences, 2002,44:703-723
    [33] Ramesh M V, Seetharamu K N, Ganesan N, et al. Finite element modeling of heat transfer analysis in machining of isotropic materials. International Journal of Heat and Mass Transfer, 1999,42:1569-1583
    [34]叶文华,张幼桢.磨削加工的计算机模拟技术.南京航空航天大学学报, 1992,24(2): 129-134
    [35] Suto T, Sata T. Simulation of grinding process based on wheel surfacecharacteristics. Bull. Japan Soc. Prec. Engg, 1981,15:27-34
    [36] Steffens K. Closed loop simulation of grinding. Annals of the CIRP, 1983,32(1):255-259
    [37] Chiu N, Malkin S. Computer simulation for cylindrical plunge grinding. Annals of the CIRP, 1993,42(1):671-674
    [38] Malkin S, Guo C. Optimization simulation and control of cylindrical grinding processes. In: 11th Grinding and Machining Conference Advances in Abrasive Processes, Quanzhou, China, 2001,1-9
    [39]高航,屈力刚,兰雄侯.断续磨削温度场的计算机模拟.东北大学学报, 2002,23(5): 466-469
    [40]范敏霞,张飞虎,崔玲丽.用有限元法进行低温磨削钛合金温度场的研究.金刚石与磨料模具工程, 2002,130(4): 20-23
    [41]王霖,秦勇,刘镇昌等.磨削温度场的研究现状与发展趋势.工具技术, 2002,36(6):7-10
    [42]王霖,秦勇,刘镇昌等.计算机仿真技术在磨削温度场中的应用.工具技术, 2001,35(10):19-21
    [43] Tang J S, Pu X F, Xu H J, et al. The prediction and control of workpiece burn grinding process-application of graphite-penetrated wheels. Annals of the CIRP, 1986,35(1):227-230
    [44]浦学锋.表面硬化钢磨削烧伤的监测和预报.磨料磨具与磨削, 1993,77(5): 11-16
    [45] Tomlinson W J, Blunt L A, Spraggett S. The effect of workpiece speed and grinding wheel condition on the thickness of white layers formed on EN 24 ground surfaces. Journal of Materials Processing Technology, 1991,25:105-110
    [46] Shaw M C, Vyas A. Heat-affected zones in grinding steel. Annals of the CIRP, 1994,43(1):279-282
    [47] Barbacki A, Kawalec M, Hormol A. Turning and grinding as a source of microstructural changes in the surface layer of hardened steel. Journal of Materials Processing Technology, 2003,133:21-25
    [48] Eda H, Koshi K, Hashimoto S. The formation mechanism of ground white layers. Bull. JSME24, 1981, (24):743-747
    [49] Guo Y B, Sahni J. A comparative study of hard turned and cylindrically ground white layers. International Journal of Machine Tools & Manufacture, 2004,44: 135-145
    [50]张凌飞,张弘弢.高硬金属加工过程中表面白层的研究.工具技术, 2004,38(2):characteristics. Bull. Japan Soc. Prec. Engg, 1981,15:27-34
    [36] Steffens K. Closed loop simulation of grinding. Annals of the CIRP, 1983,32(1):255-259
    [37] Chiu N, Malkin S. Computer simulation for cylindrical plunge grinding. Annals of the CIRP, 1993,42(1):671-674
    [38] Malkin S, Guo C. Optimization simulation and control of cylindrical grinding processes. In: 11th Grinding and Machining Conference Advances in Abrasive Processes, Quanzhou, China, 2001,1-9
    [39]高航,屈力刚,兰雄侯.断续磨削温度场的计算机模拟.东北大学学报, 2002,23(5): 466-469
    [40]范敏霞,张飞虎,崔玲丽.用有限元法进行低温磨削钛合金温度场的研究.金刚石与磨料模具工程, 2002,130(4): 20-23
    [41]王霖,秦勇,刘镇昌等.磨削温度场的研究现状与发展趋势.工具技术, 2002,36(6):7-10
    [42]王霖,秦勇,刘镇昌等.计算机仿真技术在磨削温度场中的应用.工具技术, 2001,35(10):19-21
    [43] Tang J S, Pu X F, Xu H J, et al. The prediction and control of workpiece burn grinding process-application of graphite-penetrated wheels. Annals of the CIRP, 1986,35(1):227-230
    [44]浦学锋.表面硬化钢磨削烧伤的监测和预报.磨料磨具与磨削, 1993,77(5): 11-16
    [45] Tomlinson W J, Blunt L A, Spraggett S. The effect of workpiece speed and grinding wheel condition on the thickness of white layers formed on EN 24 ground surfaces. Journal of Materials Processing Technology, 1991,25:105-110
    [46] Shaw M C, Vyas A. Heat-affected zones in grinding steel. Annals of the CIRP, 1994,43(1):279-282
    [47] Barbacki A, Kawalec M, Hormol A. Turning and grinding as a source of microstructural changes in the surface layer of hardened steel. Journal of Materials Processing Technology, 2003,133:21-25
    [48] Eda H, Koshi K, Hashimoto S. The formation mechanism of ground white layers. Bull. JSME24, 1981, (24):743-747
    [49] Guo Y B, Sahni J. A comparative study of hard turned and cylindrically ground white layers. International Journal of Machine Tools & Manufacture, 2004,44: 135-145
    [50]张凌飞,张弘弢.高硬金属加工过程中表面白层的研究.工具技术, 2004,38(2):when being worked by cutting tools. German Patent, 1931,1:523594
    [69]李晓天.新型高温合金磨削烧伤机理及砂轮激光修锐技术:[上海交通大学博士学位论文].上海:上海交通大学,2000,12-14
    [70] Wager J G, Gu D Y. Influence of up-grinding and down-grinding on the contact zone. Annals of the CIRP, 1991,40:323-326
    [71]林正白,徐昌齐,陈迅.关于平面磨削中顺、逆磨特性的研究.磨料磨具与磨削, 1983,4: 12-17
    [72] Kaczmarek J. Principles of machining by cutting abrasion and erosion. Stevenage: Peregrinus, 1976,1:125-138
    [73] Rowe W B, Black S C, Mill B. Experimental investigation of heat transfer in grinding. Annals of the CIRP, 1995,44:329-332
    [74]诸兴华.磨削原理.北京:机械工业出版社, 1986,80-81
    [75]李树棠.晶体X射线衍射学基础.北京.冶金工业出版社, 1990, 158-175
    [76]史兴宽,任敬心.磨削接触长度的新定义及新的测量方法.磨床与磨削, 1996,2: 14-17
    [77]周志雄,傅杰才,顾笃一.平面磨削时砂轮和工件最大接触长度、任意接触长度及其测试方法的研究.磨料磨具与磨削, 1985,2: 6-11
    [78] Zhou Z X, van Lutterwelt C A. The real contact length between grinding wheel and workpiece- a new concept and a new measuring method. Annals of the CIRP, 1992,41(1):387-391
    [79] Salje E, Matsoo T, Lindsay R P. Transfer of grinding research data for different operations in grinding. Annals of the CIRP, 1982,31(2):519-527
    [80]刘镇昌.平面磨削几何接触长度的新公式.华中科技大学学报, 1983,11(4): 109-111
    [81] Lindsay R P, Hahn R S. On the basic relationships between grinding parameters. Annals of the CIRP, 1971,20(1):657-660
    [82] Brown R H, Saito K, Shaw M C. Local elastic deflections in grinding. Annals of the CIRP, 1971,20(1):105-113
    [83] Tsuwa H. On change of arc of contact length in surface grinding. J. Japan Soc. Precision Engng, 1975,41:358-363
    [84] Vansevenant. A subsurface integrity model in grinding. [PhD thesis of Katholieke University of Leuven], Belgium : Katholieke University of Leuven, 1987:54-106
    [85] Verkerk J. Final report concerning CIRP cooperative work on the characterization of grinding wheel topography. Annals of the CIRP, 1977,26(2):385-395
    [86] Brandin H. Pendelschleifen and tiefschleifen vergleichende untersuchungen beimschleifen von rechteckprofilen. [PhD thesis of Braunschweig University], Germany : Braunschweig University, 1978
    [87] Maris M. Thermische aspekten van de oppervlakte intefriteit bij het slijpen. [PhD thesis of Katholieke University of Leuven], Belgium : Katholieke University of Leuven, 1977
    [88] Kumar K V, Shaw M C. The role of wheel-work deflection in grinding operations. Trans. ASME, J. Engng for Industry, 1981,103:73-78
    [89] Qi H S, Rowe W B, Mills B. Experimental investigation of contact behaviour in grinding. Tribology International, 1997,30(4):283-294
    [90] Qi H S, Mills B, Rowe W B. An analysis of real contact length in abrasive machining processes using contact mechanics. Wear, 1994,176:137-141
    [91] Brown R H, Wager J G, Watson J D. An examination of the wheel-work interface using an explosive device to suddenly interrupt the surface grinding process. Annals of the CIRP, 1977,26(1):143-146
    [92] Gu D Y, Wager J G. Further evidence on the contact zone in surface grinding. Annals of the CIRP, 1990,39(1):349-352
    [93] Verkerk J. The real contact length in cylindrical plunge grinding. Annals of the CIRP, 1975,24(1):259-264
    [94] Gu D Y, Wager J G. New evidence on the contact zone in grinding- contact length sliding and cutting regions. Annals of the CIRP, 1988,37(1):335-338
    [95] Zhang L C, Mahdi M. Applied mechanics in grinding-Ⅳthe mechanism of grinding induced phase transformation. Int. J. Mach. Tools Manufact., 1995, 35(10):1397-1409
    [96]张磊.单程平面磨削淬硬技术的理论分析和试验研究:[山东大学博士学位论文].济南:山东大学,2006,58-72
    [97] Takazawa K. The flowing rate into the work of the heat generated by grinding- theoretical analyses on the grinding temperature. Journal of Japan Society of Precision Engineering, 1964,30(11):851-857
    [98] Kawamura S, Iwao Y, Nishiguchi S. Studies on the fundamental of grinding burn- surface temperature in process of oxidation. Journal of Japan Society of Precision Engineering, 1979,45(1):831-88
    [99] Ramanath S, Shaw M C. Abrasive grain temperature at the beginning of a cut in fine grinding. ASME Journal of Engineering for Industry, 1988,110(1):15-18
    [100] Lavine A S. A simple model for convective cooling during the grinding process. ASME Journal of Engineering for Industry, 1988,110(1):1-6
    [101] Lavine A S, Malkin S. Thermal aspects of grinding with CBN wheels. Annals of the CIRP, 1989,38(1):557-560
    [102] Guo C, Malkin S. Analysis of transient temperature in grinding. Journal of Engineering for Industry, 1995, 117:571-577
    [103] Rowe W B, Morgan M N, Black S C E. Validation of thermal properties in grinding. Annals of the CIRP, 1998,47(1):275-279
    [104] Rowe W B. Thermal analysis of high efficiency deep grinding. International Journal of Machine Tools & Manufacture, 2003,41:1-19
    [105] Hou Z B, Komanduri R. On the mechanics of the grinding process, partⅡ-thermal analysis of fine grinding. International Journal of Machine Tools & Manufacture, 2004,44:247-270
    [106]杨世铭,陶文铨.传热学.北京:高等教育出版社, 1998,20-50
    [107]王勖成,邵敏.有限单元法基本原理和数值方法.北京:清华大学出版社,1997,116-224
    [108] Isenberg J, Malkin S. Effects of variable thermal properties on moving-band -source temperatures. J. Engng Ind. Trans. ASME, 1975,55:1074-107
    [109] Li Y Y, Chen Y. Simulation of surface grinding. J. Engng Mater. Technol. Trans. ASME, 1989,111:46-53
    [110] Mamalis A G, Kundrak J, Manolakos D E, et al. Effect of the workpiece material on the heat affected zones during grinding: a Numerical simulation. Int J. Adv Manuf Technol, 2003,22:761-767
    [111] Mahdi M, Zhang L C. The finite element thermal analysis of grinding processes by ADINA. Computers & Structures, 1995,56:313-320
    [112] Lefebvre A, Vieville P, Lipinski P, et al. Numerical analysis of grinding temperature measurement by the foil/workpiece thermocouple method. International Journal of Machine Tools & Manufacture, 2006,46:1716-1726
    [113] Jin T, Stephenson D J. Three dimensional finite element simulation of transient heat transfer in high efficiency deep grinding. Annals of the CIRP, 2004, 53:259-262
    [114] Li J. Temperature distribution in workpiece during scratching and grinding. Materials Science and Engineering, 2005,409:108-119
    [115] Jin T, Stephenson D J, Rowe W B. Estimation of the convection heat transfer coefficient of coolant within the grinding zone. Proc. Institution of Mechanical Engineers, Part B, Journal of Engineering Manufacture, 2004,217:397-407
    [116] Molinari A, Straffelini G, Tesi B. Dry sliding wear mechanisms of the Ti6A14Valloy. Wear, 1997,208:105-112
    [117] Griffiths B J. White layer formations at machined surfaces and their relationship to white layer formations at worn surfaces, ASME J. Tribol,1985,107:165-171
    [118] Rice S L, Nowotny H, Wayne S F. A survey of the development of subsurface zones in the wear of materials, Key Engneering Materials,1989,33:77-100
    [119] Brinksmier E, Brockhoff T. White layers in machining steels, Proc. 2nd Int. German and French Conf. on High Speed Machining,1999,1:5-13
    [120] Osterle W, Rooch H, Pyzalla A. Investigation of white etching layers on rails by optical microscopy electron microscopy X-ray and sunchrotron X-ray diffraction, Mat. Sci. and Eng.,2001,A303:150-157
    [121] Turley D M. The nature of the white-etcing layers produced during reaming ultra-high strength steel, Mat. Sci. and Eng.,1975,19:79-86
    [122] Ramesh A, Melkote S N, Allard L F. Analysis of white layers formed in hard turning of AISI 52100 steel, Mat. Sci. and Eng.,2005,390:88-97
    [123] Fayeulle S, Blanchard P, Vincent L. Fretting behavior of titanium alloys, Tribol. Trans.,1993,36:267-275
    [124] Scott D, Smith A I, Tait J. Materials and metallurgical aspects of piston ring scuffing- a literature survey,Wear,1975,33:293-315
    [125] Mashloosh K M, Eyre T S. Abrasive wear and its application to digger teeth, Tribol. Int.,1985,18:259-266
    [126] Yang Y Y, Fang H S, Huang W G. A study on wear resistance of the white layer, Tribol. Int.,1996,29:425-428

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700