用户名: 密码: 验证码:
云南个旧锡矿东区隐伏矿体定位与定量预测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
个旧矿区是我国重要的锡、铜多金属矿集区,其中锡储量200余万吨,堪称世界之最。但矿山经过长期大规模生产,资源消耗极大,目前锡、铜、铅、锌等有色金属的保有储量严重不足。本文以寻找矿山接替资源为目的,在区内展开了隐伏矿体定位定量预测研究。
     本研究以GIS和计算机技术为手段,在对研究区几十年来传统地质研究数据与成果进行成矿信息挖掘的基础上,以矿区最新成矿规律为指导,运用数学地质的理论与方法,充分发挥计算机技术的优势,完成了三个不同资料层次的成矿预测研究,即以多光谱遥感为主导成矿预测研究;以地、物、化、遥综合信息为主导的矿区外围二维成矿预测研究以及以三维GIS技术为手段,以重点勘探区高精度勘查资料为基础的三维隐伏矿体成矿预测研究。
     第一次层次利用当今主流的多光谱遥感数据ETM、Aster,探讨有效的数据预处理方案,构造信息,岩石组分、蚀变信息等挖掘方法,在此基础上,通过建立区域地质找矿模型,提出基于多光谱遥感技术的成矿预测方案,圈定找矿有利区。第二层次结合个旧东区最新的成矿模式和成矿规律,以成矿预测理论为指导,提取多元地质找矿因子,探讨地球物理地质深部信息反演,地球化学非线性异常识别等技术,并结合第一层次的预测成果,在此基础上进行基于多元成矿信息的二维成矿预测。第三层次是对平面预测的靶区展开三维隐伏矿体预测研究。在详细剖析靶区地质条件与成矿规律的前提下,充分利用矿区的钻探、工程以及高精度地球物理,构造地球化学资料,进行三维成矿信息提取,建立三维数字成矿预测模型,圈定隐伏矿体找矿有利区。
     第一、二层次的研究表明个旧东区老矿山边部仍然具有很好的找矿前景。在松矿的西南部,老厂的东西两侧、卡房的东侧,均显示出较好的成矿潜力,其中老厂矿田的东西两侧成矿远景最为良好。第三研究层次的预测结果显示在老厂东地区四个最有利的工程勘察位置中心坐标为X:126000,Y:57700,Z:1150;X:126300,575800,Z:1150;X:125000,Y:578800,Z:1710;X:125600,Y:57800,Z:1700,区内预测Sn潜在资源量为9465吨。
Gejiu tin-copper polymetallic ore deposit, located in the metallogenic belt of Southeast Yunnan, is famous for its huge Sn reserves, numerous mineralization type and very long exploitation history in China as well as in the world. However, after several decade exploitation, the known resource has almost exhausted. Gejiu are suffering shortage of resources. Hence, it has important realistic to carry on mineral recourse exploration using new theory and method. With the purpose of looking for succeeding mineral resources, the paper conducted the Study on Localized and Quantitative Prediction of Concealed deposits in the external and deep of Gejiu eastern district.
     GIS and computer technologies were the main tools used in this study. Based on the metallogenic information mining and extraction on the traditional geological data and other exploration information, under the guidance of the newest ore-forming regularity, using the theory and methods of mathematical geology, this paper conducted three levels mineral resources prediction researches based on different known exploration data in Gejiu eastern area. Namely: (1) mineral prediction based on multi-bands remote sensing data. (2) synthetic information based on geological, geophysical, geochemical and remote sensing data.(3)three dimensional concealed ore prediction based on high resolution exploit dada using digital ore deposits model method.
     The first level prediction was based on mainstream multi-spectrum remote sensing data ETM and ASTER. The author discussed how to pre-process these two data firstly, and then extracted structure, lithology and alteration information using proper processing methods. Through the establishment of regional geological prospecting model, favorable ore-forming area was delineated using the extracted remote sensing metallogenic information. The second level prediction was based on many multi-source geological data including geological, geochemical, gravity, airborne magnetic and remote sensing data. Under the guidance of regional metallogenic regularities and the geo-anomaly ore forming theory applying, nine diagnostic deposits recognition criteria layers are extracted from those geo-data sets And then, these deposits recognition criteria layers are combined in the weight of evidence (WolE) model which uses the spatial correlations between the evidence lays and the known mineral occurrences to calculation the posterior probability map and indentify the delineate the prospective area. The third level prediction was based on high resolution geophysical and geochemical data, as well as the geological profiles. Through establishing 3D model of geological units using exciting commercial 3D modeling software, the author extracted 3D metallogenic recognition criteria. And then conducted concealed ore bodies prediction“using cube Prediction model”method.
     The first and second prediction results show that peripheral areas of known ore fields are still with great potential for mineral exploration.The most favorable target area is located in the eastern flank of Laochang ore field. The third level prediction shows that the most promising location for reconnaissance drilling is (X: 126000, Y: 57700, Z: 1150; X: 126300,575800, Z: 1150; X: 125000, Y: 578800, Z: 1710; X: 125600, Y: 57800, Z: 1700). And Sn resource with the grade above 0.07% is estimated to be 9465 tons.
引文
[1]陈建平,陈勇,曾敏,等.基于数字矿床模型的新疆可可托海3号脉三维定位定量研究.地质通报,2008,27(4):551-559
    [2]陈江,王安建.利用ASTER热红外遥感数据开展岩石化学成分填图的初步研究.遥感学报,2007,11(4):601-607
    [3]陈勇,陈建平,赵洁,等.赤峰金矿资源定量预测与评价.中国地质,2008,35(3):551-556
    [4]陈毓川.当代矿产资源勘察评价的理论与方法.北京:地震出版社,1999,397-406
    [5]成秋明.多重分形与地质统计学方法用于勘查地球化学异常空间结构和奇异性分析.地球科学-中国地质大学学报,2001, 26(02): 161-166
    [6]成秋明.多维分形理论和地球化学元素分布规律.地球科学-中国地质大学学报,2000,5(03): 311-318
    [7]程朋根,龚健雅,史文中,等.基于似三棱柱体的地质体三维建模与应用研究.武汉大学学报(信息科学版),2004,29(7):602-607
    [8]池顺都,赵鹏大.应用GIS圈定找矿可行地段和有利地段-以云南元地区大红山群同矿床预测为例.地球科学-中国地质大学学报,1998,23(2):25-128
    [9]邓明国.个旧矿区芦塘坝10号矿群矿床模型研究:[硕士学位论文].昆明:昆明理工大学,2005:114
    [10]邓玉书.云南个旧锡矿和构造的关系.地质论评,1951 (2)
    [11]丁建华,肖克炎.遥感技术在我国矿产资源预测评价中的应用.地球物理学进展,2006,21(2):588-593
    [12]冯贤仁.个旧含锡花岗岩副矿物类型、成因及其与矿化关系问题[J].云南地质,1982,1(2):129-133
    [13]甘甫平,王润生.遥感岩矿信息提取基础与技术方法研究.北京:地质出版社,2004:43-47
    [14]甘甫平,王润生,郭小方,等.利用成像光谱遥感技术识别和提取矿化蚀变信息-以河北赤城-崇礼地区为例.现代地质,2000,14(4):465-469
    [15]甘甫平,王润生,马蔼乃,等.遥感地质信息提取集成与矿物遥感地质分析模型.遥感学报,2003,7(3):208-213
    [16]黄福生,穆治国,陈成业,等.个旧锡矿花岗岩的氢氧同位素稳定同位素研究.岩石矿物及侧试,1983,2(4):241-247
    [17]黄廷燃.个旧原生锡矿典型矿床概论[J].云南地质,1984,3(1):36-47
    [18]金祖德.个旧层状赤铁矿型锡矿热液成因之否定.地质与勘探,1991,27(1):19-20
    [19]金祖德.个旧土状赤铁矿型锡矿成因商榷.地质与勘探,1981,17(7):32-34
    [20]黎兵.遥感图像线性体统计数据在塔里木盆地北部油气勘探中的应用及效果.国土资源遥感,1994,19(1):29-35
    [21]李继宏,张万昌.内蒙古东乌旗草原覆盖区遥感构造信息提取.地质找矿论丛,2005 20(2):137-141
    [22]李清泉.基于混合结构的三维GIS数据模型与空间分析研究:[博士学位论文].武汉:武汉测绘科技大学,1998
    [23]廖崇高.成矿预测中遥感与地质异常的综合分析-以兰坪盆地为例.地质找矿论丛,2003,18(1):66-70
    [24]刘锦新.个旧锡矿的特点及成矿规律.地质学报,1957,(4)
    [25]刘庆生.内蒙哈达门沟金矿区山前钾化带遥感信息提取.遥感技术与应用,1999,(3)
    [26]刘燕君.遥感找矿的原理和方法.北京:冶金工业出版社,1991
    [27]罗智勇.面向地质勘查的三维可视化系统研制与开发:[博士学位论文].成都:成都理工大学,2008
    [28]马建文.利用TM数据快速提取含矿蚀变带方法研究.遥感学报,1997,1(3)
    [29]彭张翔.个旧锡矿成矿模式商榷.云南地质,1992,11(4):362-368
    [30]齐安文,吴立新.一种新的三维地学空间构模方法一类三棱柱法.煤炭学报,2002,27(2):112-116
    [31]孙绍有,陈永健,高福有.高松矿田芦塘坝矿段隐伏层间矿床控矿特征新认识-构造溶蚀控矿.见:俏永兴,祝新友主编.走向地学新世纪-首届有色系统青年地质工作者学术讨论会论文集.北京:冶金工业出版社, 1995,218-222
    [32]谭允谦.个旧矿区层间氧化矿与古岩溶.西南冶金地质,1993 (3):31-34
    [33]涂光炽.超大型矿床的找寻和理论研究.矿产与地质,1989,(1):1-8
    [34]汪志芬.个旧岩浆岩矿物中包裹体特征与锡多金属矿床的成矿关系.锡矿地质讨论会会议论文集.北京:地质出版社,1987,286-294
    [35]汪志芬.关于个旧锡矿成矿作用的几个问题[J].地质学报,1983,57(2):154~163
    [36]王润生.矿产资源调查评价中遥感新方法新技术应用研究.中国地质调查局国土资源大调查项目报告,2002
    [37]王润生.遥感地质技术发展的战略思考.国土资源遥感,2008,1:1-8
    [38]王润生,丁谦,张幼莹,等.遥感色调异常分析的协同优化策略.地球科学-中国地质大学学报,1999,24 ( 5):498–503
    [39]王世称,陈永良.中国大型金矿床空间分布规律及找矿方向.地球科学—中国地大学学报,1999,24(5):455-458
    [40]王世称,陈永良,夏立显.综合信息矿产预测理论与方法.北京:科学出版社,2000
    [41]王世称,陈永清.成矿系列顶测的基本原则及特点.地质找矿论从,1994,9(4):79-85
    [42]王新光,朱金初.个旧花岗岩的成因、演化及其找矿意义.大地构造与成矿学,1992, 16(4):379-387
    [43]王学琨.个旧西区火山岩的化学成分特征及火山喷发旋回.西南矿产地质,1987,1(2):57-68
    [44]徐克勤,朱金初.华南钨锡矿床的时空分布和成矿控制.见:中华人民共和国地质矿产部,联合国亚太经社会区域矿产资源开发中心锡矿地质讨论会论文集(中国).北京:地质出版社,1987,50-59
    [45]闫柏琨.热红外遥感岩矿波谱机理及信息提取技术方法研究:[博士学位论文].北京:中国地质大学(北京),2006
    [46]杨金中,方洪宾.中国西部重要成矿带遥感找矿异常提取的方法研究.国土资源遥感,2003,57(3):50-53
    [47]叶天竺,肖克炎,严光生.矿床模型综合地质信息预测技术研究.地学前缘,2007,14(05):11-19
    [48]淤祟文,唐元骏,石平方,等.云南个旧锡-多金属成矿区内生成矿作用的动力学体系.武汉:中国地质大学出版社,1989,1-304
    [49]曾新平.地质体三维可视化建模系统GeoModel的总体设计与实现技术:[博士学位论文].北京:中国地质人学(北京),2005
    [50]翟裕生.论成矿系统.地学前缘,1999,6(1):13-27
    [51]张新宇.地学空间三维可视化储量计算辅助分析系统关键技术的研究:[博士学位论文].吉林:吉林大学,2006
    [52]张玉君. ETM+(TM)蚀变遥感异常提取方法研究与应用方法选择和技术流程.国土资源遥感,2003,56(2):44-49
    [53]赵鹏大.“三联式”资源定量预测与评价.地球科学-中国地质大学学报,2002,27(5): 482-489
    [54]赵鹏大,陈建平,张寿庭.“三联式”成矿预测新进展.地学前缘,2003,10(02):455-463
    [55]赵鹏大,池顺都.初论地质异常.地球科学-中国地质大学学报,1991,16(3):241-248
    [56]赵鹏大,胡光道,陈建平,等.云南个旧锡铜多金属矿床找矿预测研究:[项目报告].中国地质大学,2008
    [57]赵鹏大,胡旺亮,李紫金.矿床统计预测的理论与实践.地球科学—武汉地质学院学报,1983,4: 107-121
    [58]赵鹏大,张寿庭,陈建平.危机矿山可接替资源预测评价若干问题探讨.成都理工大学学报(自然科学版),2004,31(2):111-117
    [59]赵一鸣,李大新.云南个旧锡矿床花岗岩接触带的交代现象.中国地质科学院院报,1987 (16):237-252
    [60]赵元洪.波段比值主成份复合在热液蚀变信息提取中的应用.国土资源遥感,1991,(3)
    [61]周怀阳.论个旧-大厂地区火山喷气沉积-花岗岩热液叠加改造型锡石硫化物矿床的地质特征及其成矿地质条件:[博士学位论文].南京:南京大学,1998
    [62]周建平,徐克勒,华仁民,等.滇东南锡多金属矿床成因商榷.云南地质,1997,16(4):309-349
    [63]周建平,徐克勤,华仁民,等.滇东南喷流沉积块状硫化物特征与矿床成因.矿物学报,1998,18(2):158-168
    [64]周建平,徐克勤,华仁民,等.个旧等锡矿中沉积组构的发现与矿床成因新探.自然科学进展,1999,9(5):419-422
    [65]朱亮璞.遥感地质学.北京:地质出版社,1994
    [66] Agterberg, F. P. Computer Programs for Exploration. Science, 1989, 245: 76–81
    [67] Agterberg F. P., Chung C. F. Geomathematical prediction of sulphur in coal, New Lingan Mine Area, Sydney Coalfield. Canadian Mining and Metallurgical Bulletin, 1973, 66 (738):85-96
    [68] Agterberg F. P., Kelly A. M. Geomathematical methods for use in prospecting. Canadian Mining Journal, 1971, 92(5):61-72
    [69] Allais M, Chung C F. Methods of appraising economic prospects of mining exploration over large territories: Algerian Sahara case study. Management Science.1957, (3):285-345
    [70] Allègre C. J., Lewin E.. Scaling laws and geochemical distributions [J]. Earth and Planetary Science Letters, 1995, 132:1-13
    [71] Andrea Z. C, Salvi F, Chetta S, and et al. 3D reconstruction of complex geological bodies: Examples from the Alps. Computers & Geosciences, 2009, 35: 49-69
    [72] Baugh W. M., Kruse F. A., William W. A., et al. Quantitative Geochemical Mapping of Ammonium Minerals in the Southern Cedar Mountains, Nevada, Using the Airborne Visible/Infrared Imaging Spectrometer (AVIIS). Remote sensenvrion, 1998, 65(3): 92-308
    [73] Bonham-Carter G. F. Geographic Information Systems for Geoscientists: Modeling with GIS. Oxford, 1994, 1-398
    [74] Cengiz E, Yagmurlu F. A Satellite image approach to the study of linements, circular structures and regional geology in the Golcuk Crater District and its environs (Isparta, SWTurkey). Journal of Asian Earth Sciences, 2006, 155-163
    [75] Chen X., Warner, T. A., Campagna, D. J. Integrating visible, near infrared and short wave infrared hyperspectral and multispectral thermal imagery for geologic mapping: simulated data. International Journal of Remote Sensing, 2007, 2811, doi: 10.1080/01431160600702624
    [76] Cheng Q. M. Mapping Singularities with Stream Sediment Geochemical Data for Prediction of Undiscovered Mineral Deposits in Gejiu, Yunnan Province, China. Ore Geology Review, 2007, 32: 314–324
    [77] Cheng Q. M. Non-linear Theory and Power-Law Models for Information Integration and Mineral Resources Quantitative Assessments. Mathematical Geosciences, 2008, doi: 10.1007 /s 11004 -008-9172-6
    [78] Christensen P. R., Bandfield J. L., Hamilton V. E. A thermal emission spectral library of rock-forming minerals. Journal of Geophysical Research, 2000, 105(E4): 9735-9739
    [79] Clark R. N, Swayze G. A. Mapping Minerals, Amorphous Materials, Environmental Materials, Vegetation, Water, Ice and Snow, and Other Materials: The USGS Tricorder Algorithm. Summaries of the Fifth Annual JPL Airborne Earth Science Workshop, January 23-26, R. O. Green, Ed., JPL Publication 95-1, 1995: 39-40
    [80] Clark, R. N., Swayze, G. A., Gallagher, A., et al. The U.S. Geological Survey, Digital Spectral Library: Version 1: 0.2 to 3μm. United States Geological Survey, Open File Report, 1993, 93-592
    [81] Crosta A. P, Sabine C, Taranik J. M. Hydrothermal Alteration Mapping at Bodie, California, Using AVIRIS Hyperspectral Data. Remote senses of Environment 1998, 65(3): 309-319
    [82] Crowley, J. K., Brickey, D. W., Rowan, L. C. Airborne imaging spectrometer data of the Ruby Mountains, Montana: mineral discrimination using relative absorption band-depth images. Remote Sensing of Environment, 1989, 29, 121-134
    [83] DeDonatis M., Jones S., Pantaloni M., et al. A national project on three-dimensional geology of Italy: sheet 280—fossombrone in 3D. Episodes, 2002, 25 (1): 29-32
    [84] Feldman S. C, Taranik J. V. Comparison of techniques for discriminating hydrothermal alteration minerals with airborne imaging spectrometer data. RemoteSens Environ, 1988, 24(1): 67-83
    [85] Fujisada H. Design and performance of ASTER instrument. Proceedings of SPIE, the International Society for Optical Engineering, 1995, 25(83):16-25
    [86] GalleriniG., DeDonatis M. 3D modeling using geognostic data: The case of the low valley of Foglia river (Italy). Computers & Geosciences, 2009, 35:146-164
    [87] Gillespie A.R. Lithologic mapping of silicate rocks using TIMS, in The TIMS Data Users’Workshop. JPL Publication 86-38, Jet Propulsion Laboratory, Pasadena, CA, 1985
    [88] Griffiths J. C, Singer D. A. Size Shape and Arrangement of Some Uranium ore Bodies. American Society of Mechanical Engineers, 1973:82-112
    [89] Hamilton V. E., Wyatt M.B., Mcsween H.Y. Analysis of terrestrial and Martian volcanic composition using thermal emission spectroscopy: Application to Martian surface spectral from the Mars global surveyor thermal emissions spectrometer. Journal of Geophysical Research, 2001, 106(E7):14733-14746
    [90] Harchinkov, A. G. Principles and Methods for Mineral Prediction. Moscow: Nedra Press, 1987
    [91] Harris D. P. A subjective probability appraisal of metal and endowment of North Sonora, Mexico. Economic Geology and the Bulletin of the Society of Economic Geologists, 1973,68:222-242
    [92] Harris D. P. Mineral Resources Appraisal-Mineral Endowment, Resources, and Potential Supply: Concepts, Methods, and Cases. New York: Oxford University Press, 1984, 1-455
    [93] Harris D. P, Freyman, A. J, Barry, G. S. Methodology employed to estimate potential mineral supply of the Canadian Northwest. DeP Energy, Can, Mines Resource, Miner Resource Div Miner Inform Bull, 1970, 105:1-56
    [94] Houlding S.W. 3D Geosciences modeling-computer techniques for geological characterization. New York: Springer-Verlag, 1994
    [95] Johnson, B. R., S. J. Young. In-Scene Atmospheric Compensation: Application to SEBASS Data Collected at the ARM Site. Technical Report, Space and Environment Technology Center, The Aerospace Corporation, May 1998
    [96] Kaufmann O. Martin Th. 3D geological modeling over a former natural gas storage in coal mines. In: Proceeding of the32nd International Geological Congress, Florence, Italy, 2004, Part 1:426–427
    [97] Kaufmann O. Martin Th. Reprint of“3D geological modeling from boreholes, cross-sections and geological maps, application over former natural gas storages in coal mines. Computers & Geosciences, 2009, (35) 70-82
    [98] Kruse. F. A., Boardman, J. W., Huntington, J. F. Comparison of airborne hyperspectral data and EO-1 Hypersion for mineral mapping. IEEE Transactions on Geoscience and Remote Sensing. Special issue, 2003, 41(6):1388-1400
    [99] Kruse. F. A., Boardman, J. W., Huntington, J. F. Fifteen years of hyperspectral data: Northern grapevine mountains, Nevada. In: Proceedings of the 8th JPL airborne each science workshop. JPL Publication, 1999, 99(17):247-258
    [100] Kruse, F. A., Lefkoff, A. B., Boardman, J. B., et al. The Spectral Image Processing System (SIPS) - Interactive Visualization and Analysis of Imaging spectrometer Data. Remote Sensing of the Environment, 1993, 44: 145 -163
    [101] Le?nio S, Galva, Raimundo A.F, and et al. Spectral discrimination of hydrothermally altered materials using ASTER short-wave infrared bands: Evaluation in a tropical savannah environment. International Journal of Applied Earth Observation and Geoinformation 7, 2005, 107-114
    [102] Li Z.L., Becker F., Stoll M.P. Evaluation of six methods for extracting relative emissivity spectra from thermal infrared images. Remote Sensing of Environment, 1999, 69(3):197-214
    [103] Longhlin W. P. Principal component analysis for alteration mapping. In: Proceedings of the 8th Thematic Conference on Geologic Remote Sensing. Denver, USA: 1991, p293-306
    [104] Mallet J.L. Discrete modeling for nature objects. Mathematical Geology, 1997, 29(2): 199-218
    [105] Marinoni O. Improving geological models using a combined ordinary-indicator kriging approach. Engineering Geology, 2003, 69: 37-45
    [106] Ninomiya, Y., Fu, B. Quartz index, carbonate index and SiO2content index defined for ASTER TIR data. Journal of Remote Sensing Society of Japan. 2002, 22, 50-61
    [107] Ninomiya, Y., Fu, B, Cudahy T. J. Detecting lithology with Advanced Spaceborne Thermal Emission and Reflection Radiometer(ASTER) multispectral thermal infrared“radiance-at-sensor”data. Remote Sensing of Environment. 2005, 99,127-139
    [108] Regli, C., Rosenthaler, L., Huggenberger, P. GEOSSAV: a simulation tool for subsurface applications. Computers &Geosciences, 2004, 30:221-238
    [109] Rowan L. C., Goetz A. F. H., Ashley, R. P. Discrimination of hydrothermally altered and unaltered rocks in visible and near infrared multispectral images. Geophysics, 1977 (42):522-535
    [110] Rowan, L. C., Mars, J. C. Lithologic mapping in the Mountain Pass, California area using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data. Remote Sensing of Environment, 84, 2003, 350-366
    [111] Rowan, L. C., Mars, J. C., Simpson C, J. Lithologic mapping of the Mordor, NT, Australia ultramafic complexby using the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER). Remote Sensing of Environment. 2005, 99105-126
    [112] Rowan L. C., Schmidt R. G., Mars J. C. Distribution of hydrothermally altered rocks in the Reko Diq, Pakistan mineralized area based on spectral analysis of ASTER data. Remote Sensing of Environment, 2006, 104:74-87
    [113] Sabins F.F. Remote sensing for mineral exploration. Ore Geology Reviews, 1999, 14: 159-167
    [114] Singer, D. A. Mineral Deposit Densities for Estimating Mineral Resources. Mathematical Geosciences, 2008, 40: 33-46
    [115] Singer D. A. Relative Efficiencies of Square and Triangular Grids in the Search for Elli Ptically Shaped Resource Targets. Journal of Research of the United States Geological Survey. 1975, 32:163-167
    [116] Solomon S, Ghebread W. Lineament characterization and their tectonic significance using Landsat TM data and field studies in the central highlands of Eritrea. Journal of African Earth Sciences, 2006, 4:371-378
    [117] Tanner, D. C., Behrmann, J. H., Dresmann, H. Three dimensional retro-deformation of the Lechtal Nappe, northern calcareous Alps. Journal of Structural Geology, 2003, 25: 737-748
    [118] U.S. Department of the Interior, U.S. Geological Survey. The U.S. Geological Survey Mineral Resources Program, 2005, Five-Year Plan, 2006-2010. http://minerals.usgs.gov/plan/
    [119] Yao L. Q, Pan M, Cheng Q. M. 3D Property Modeling of Void Ratio by Cokriging. Journal of China University of Geosciences, 2008, 19(4):410-415
    [120] Zhao P. D, Cheng Q. M, Xia Q. L. Quantitative Prediction for Deep Mineral Exploration. Journal of University of Geosciences, 2008, 19(4):309-318
    [121] Zhao Z. F. Mineral Alteration Abnormity Extraction from ETM Data: Application in Northwestern Yunnan, China. In: Proceedings of the International Conference on Information Technology & Environmental System Sciences 2008 (ITESS’2008) (EI), May 2008, Jiaozuo, China. (2008 Proceedings of Information Technology and Environmental System Science, Vol. 4, ISBN 978-7-121-06305-3)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700