用户名: 密码: 验证码:
具有特殊浸润性的二氧化硅功能表面的制备与研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
透明材料(如玻璃、塑料)在工农业生产和日常生活以及军事领域中有着广泛的用途,例如护目镜、激光防护镜、望远镜及各种摄像设备的镜头、机械观察窗、运动潜水镜、浴室玻璃及镜子、车辆挡风玻璃及后视镜、头盔、太阳能电池板、测量仪器的观察窗、温室的玻璃墙等等。然而雾化问题给人们的生产和生活带来了诸多的不便,甚至造成了重大的损失。防雾技术与防雾材料的研究与开发倍受科学界和企业界的关注。
     目前所研究的防雾表面按其作用机理分为三种:第一种是利用具有光催化性能的物质,如二氧化钛及氧化锌,它们受紫外光或可见光的辐照后,具有超亲水的性能;第二种方法是制备含高分子或者含表面活性剂的涂料;第三种方法是通过制备特殊结构使材料表面具有超亲水或者超疏水性能。本论文第一章从原理介绍和发展状况两方面分别介绍了防雾材料和抗反射材料。总的来说,制备方法简单、原料成本低廉、具有优异的耐磨性、粘结性、透明性和持久性的防雾表面,是研究者们的一直努力方向。
     本论文正是基于以上思路,以无需光照的防雾涂层作为导向,采用较低的反射率、较高的光透过率、较好的亲水性以及很好的耐磨性能的二氧化硅材料,设计并制备出几种性能良好的功能性涂层(包括防雾涂层、超亲水增透涂层以及高接触角低滚动角的超疏水涂层),具体研究内容和结果如下:
     1.以聚电解质为媒介,通过静电组装技术把小尺寸的二氧化硅纳米粒子组装到大尺寸的二氧化硅纳米粒子表面,制备出类覆盆子结构的复合粒子。再通过静电组装把该复合粒子组装到沉积有聚电解质的玻璃片上,得到具有阶层粗糙表面结构的涂层,再经过煅烧提高涂层的机械强度以及涂层与玻璃表面的粘附力。我们用扫描电镜,透射电镜观察了粒子及其涂层的微观结构,用接触角仪测量了水滴与涂层的接触角及其铺展速度,并且详细讨论了表面结构与表面性能的关系。实验结果表明,该涂层结合了二氧化硅本身的高亲水性能和所制备的阶层粗糙结构的高比表面积,所设计的阶层粗糙结构达到了预期的超亲水效果,并实现了无需光照的超亲水防雾性能。
     2.与实心的类覆盆子二氧化硅复合粒子涂层相比,空心的二氧化硅纳米粒子涂层由于表面的毛细管作用,水滴在其表面应该具有更快的铺展速度,同时由于空心球表面是纳米尺寸的粒子,涂层的透光率应该有所提高,因此我们设计并制备了空心球涂层。首先用层状自组装方法制备出聚苯乙烯球核/二氧化硅纳米粒子壳的类覆盆子结构的有机/无机复合粒子,然后把该复合粒子组装到沉积有聚电解质的玻璃基片上,再经过煅烧去除聚苯乙烯球核以及聚电解质,得到具有阶层粗糙结构和阶层孔结构的空心球涂层。我们通过扫描电镜和透射电镜观察了有机/无机复合粒子、二氧化硅空心球以及空心球涂层的微观结构,用接触角仪测量了该涂层的接触角以及铺展速度,并测量了其防雾效果。实验结果表明,该涂层有很好的超亲水性,尤其是水滴在其表面铺展到接近0o所需的时间小于33 ms,具有很好的防雾性能。
     3.超亲水防雾材料表面的浸润性是很重要的影响因素,同时透光率是很关键的因素。我们用层状自组装结合煅烧方法制备出不同尺寸的二氧化硅粒子夹心涂层。水滴在煅烧后的(PDDA/S-150)3/(PDDA/S-30)2涂层表面铺展到接触角接近0o所需的最短时间大约为0.28 s,实现了超亲水性能;而涂层(PDDA/S-30)8的最大透光率达到98.5%,大大高于普通玻璃的透光率(91.3%),达到了增透的效果。我们对涂层的超亲水以及增透性能的影响因素如沉积层数,粒子尺寸,表面粗糙度等进行了系统研究。通过对实验条件的优化,我们制备出既具有超亲水性能又具有增透性能的(PDDA/S-30)8/(PDDA/S-150)2/(PDDA/S-30)2涂层,其最大透光率达到97.1%,而铺展到接近0o所需要的时间<0.5 s。同时我们对S-30(30 nm的二氧化硅纳米粒子)和S-150(150 nm的二氧化硅纳米粒子)在涂层中所起的作用分别进行了讨论。
     4.在本论文的第五章中,我们以普通玻璃片为原料,用一步水热法制备出了具有阶层粗糙结构的表面。表面形貌从网状结构、花状结构到刺球状结构可以通过对反应温度和反应时间的调控来控制。直接制备出的表面干燥后显示出超亲水性,接触角接近0o,当经过氟硅烷表面处理之后,表面显示出超疏水性,接触角高达160o,滚动角低至1o。另外,在文中我们对其形成机理也进行了详细的讨论,该方法操作简单,原料廉价,无论从操作上还是成本上都具有很大的优越性。
Transparent materials have important applications, including mirrors, glasses, goggles, laser safety eye protective lenses, face masks, windows for vehicles, and solar cells. However, fogging usually occurs when their surface temperature is lower than that of their air surrounding, which has caused serious influences in industry and our daily life, and antifogging coatings have been attracting much attention of scientists and investors.
     To date, several approaches have been developed to prepare antifogging coatings. The first involves the use of photochemically active materials such as TiO2 or ZnO that become superhydrophilic after exposure to UV, or after suitable chemical modifications and exposure to visible radiation. The second involves spraying an appropriate surfactant or polymer solution to lower the surface energy. The third case is the use of rough surfaces to fabricate superhydrophilic (water droplet contact angle <5°within 0.5 s or less )or superhydrophobic (water droplet contact angle >150°and low contact angle hysteresis ) surfaces. The theory and development of anti-fogging and antireflective materials have been reviewed in chapter 1. In a word, antifogging coatings with good mechanical durability, transmittance, and stability have been attracting much attention.
     In this work, we have designed and fabricated several functional coatings based on silica with low reflectivity, good hydrophilicity and good mechanical durability. The functional coatings include antifogging coatings, superhydrophilic and antireflective coatings, and superhydrophobic coatings with high contact angle and low sliding angle. The main works are listed as follows:
     1. Raspberry-like silica nanospheres were prepared by electrostatic self-assembly of polyelectrolytes and monodisperse silica nanoparticles of two different sizes, and their coatings were fabricated via layer-by-layer assembly with polyelectrolytes and following calcination. The morphology of the raspberry-like silica nanospheres and their coatings were observed by scanning and transmission electron microscopies. The surface properties of these coatings were investigated by measuring their water contact angles, and the results showed that such hierarchically structured coatings had unique superhydrophilic and antifogging properties. Finally, the formation mechanism and the property–structure relationship were discussed in details.
     2. Raspberry-like organic/inorganic composite spheres are prepared by stepwise electrostatic assembly of polyelectrolytes and silica nanoparticles onto monodisperse polystyrene spheres. Hierarchically structured porous films of silica hollow spheres are fabricated from these composite spheres by layer-by-layer assembly with polyelectrolytes followed by calcination. The morphologies of the raspberry-like organic/inorganic composite spheres and the derived hierarchically structured porous films are observed by scanning and transmission electron microscopies. The surface properties of these films are investigated by measuring their water contact angles, water-spreading speeds, and antifogging properties. The results show that such hierarchically structured porous films of silica hollow spheres have unique superhydrophilic and antifogging properties. Finally, the formation mechanism of these nanostructures and property–structure relationships are discussed in detail on the basis of experimental observations.
     3. Superhydrophilic and antireflective coatings were fabricated from silica nanoparticles of 30 nm (S-30), 150 nm (S-150) and polyelectrolytes of poly(diallyldimethylammonium) chloride (PDDA) and sodium poly(4- styrenesulfonate) (PSS) via layer-by-layer assembly and post-calcination. The time for a droplet to spread flat decreases to as short as 0.28 s by applying a coating of (PDDA/S-150)3/ (PDDA/S-30)2 while the maximum transmittance reaches as high as 98.5% by applying a coating of (PDDA/S-30)8. Factors that affect the superhydrophilic and antireflective properties of coatings, such as the number of deposition cycles, size of nanoparticles and surface roughness, were investigated in details by observing their surface morphologies and by measuring their water contact angles, water spreading time and transmittances. Systematic investigation gave an optimal structure of calcinated (PDDA/S-30)8/(PDDA/S-150)2/(PDDA/S-30)2 for the superhydrophilic and antireflective coating. Its maximum transmittance and the time for a droplet to spread flat reached 97.1% and <0.5 s, respectively, indicating that both antireflective and superhydrophilic properties were achieved by a single coating. Finally, the roles of S-30 and S-150 nanoparticles in enhancing the superhydrophilic and antireflective properties were discussed.
     4. Hierarchically structured coatings were fabricated on glass substrates by one-step hydrothermal method. The surfaces of the coatings are rough, and are composed of flower-like particles assembled by nanoflakes or urchin-like particles constructed by nanowires. These rough surfaces exhibit superhydrophilicity, their water contact angles reaching 0o in less than 40 ms. After surface modification by 1H, 1H, 2H, 2H-perfluorooctyltriethoxysilane, the wetting properties of these coatings switch from superhydrophilicity to superhydrophobicity, with water contact angles as high as 160o and slide angle as low as 1o. The formation mechanism of the hierarchically structured coatings is discussed in details on the basis of experimental results.
引文
[1]本田智士,嘉悦,氟烷醇-多异氰酸酯反应产物防雾涂料[P],JP:6-172675. 1994-06-21.
    [2] Taguchi, Setsuo,聚酯防雾涂料[P],JP:05-287237. 1993-11-02.
    [3] Honda, Tomoji,由氟烷基硅烷衍生物构成的防雾涂料[P],JP:05-125299. 1993-05-21.
    [4] Scholz Matthew, Kausch William, Coating composition having anti-reflective and anti-fogging properties [P], WO: 97/23571. 1997- 07-03.
    [5] Hosono, Taniguchi, Nishil, Process for preparation of anti-fogging coating [P], EP: 0410798A2. 1991-01-30.
    [6] Song Jian Cheng, S.K., Yang Sen, A transparent anti-fog coating [P], EP:0747460A1. 1996-12-11.
    [7] Watanabe, Seichi,塑料薄膜用含有胶体氧化铝和二氧化硅的防雾涂料组合物[P],JP:96-295876. 1996-11-12.
    [8] Corp, L.,玻璃防雾剂[P],JP:58-98379. 1983-06-11.
    [9] Fuji Masayoshi, Fujimori Hiroshi, ,Takei Takashi, Watanabe Tohru, Chikazawa Masatoshi, Wettability of Glass-Bead Surface Modified by Trimethylchlorosilane. The Journal of Physical Chemistry B, 1998. 102(51): p. 10498-10504.
    [10] Han, J.T., Lee, D.H., Ryu, C.Y. and Cho, K., Fabrication of Superhydrophobic Surface from a Supramolecular Organosilane with Quadruple Hydrogen Bonding. Journal of the American Chemical Society, 2004. 126(15): p. 4796-4797.
    [11] Hikita, M., Tanaka, K., Nakamura, T., Kajiyama, T. and Takahara, A., Super-liquid-repellent surfaces prepared by colloidal silica nanoparticles covered with fluoroalkyl groups. Langmuir, 2005. 21(16): p. 7299-7302.
    [12] Onda, T., Shibuichi, S., Satoh, N. and Tsujii, K., Super-water-repellent fractal surfaces. Langmuir, 1996. 12(9): p. 2125-2127.
    [13] Oner, D. and McCarthy, T. J., Ultrahydrophobic Surfaces. Effects ofTopography Length Scales on Wettability. Langmuir, 2000. 16(20): p. 7777-7782.
    [14] Venkateswara Rao, A., Kulkarni, M.M., Amalnerkar, D.P. and Seth, T., Superhydrophobic silica aerogels based on methyltrimethoxysilane precursor. Journal of Non-Crystalline Solids, 2003. 330(1-3): p. 187-195.
    [15]沙鹏宇,亲水性防雾耐磨杂化涂料的设计制备与性能研究. 2008,吉林大学博士学位论文:长春. p. 9.
    [16]谢全彪,肖超渤,谢伟,关于玻璃表面憎水膜的研究(Ⅰ).孝感学院学报(自然科学版), 2000. 20(4): p. 64-66.
    [17]谢全彪,肖超渤,谢伟,关于玻璃表面的憎水膜的研究(Ⅱ).孝感学院学报(自然科学版), 2001. 21(3): p. 50-52.
    [18]司宅祥隆,正冈恒博,防雾性物品[P],JP:6-158031. 1994-06-07.
    [19] Kitamura, Yoshinao,耐水防雾剂[P],JP:1-266184. 1989-10-24.
    [20] Hikita, M., Tanaka, K., Nakamura, T., Kajiyama, T.,Takahara, A., Super-Liquid-Repellent Surfaces Prepared by Colloidal Silica Nanoparticles Covered with Fluoroalkyl Groups. Langmuir, 2005. 21(16): p. 7299-7302.
    [21] Gao, X., Yan, X, Yao, X, Xu, L, Zhang, K, Zhang, J, Yang, B, Jiang, L, The dry-style antifogging properties of mosquito compound eyes and artificial analogues prepared by soft lithography. Adv Mater, 2007. 19(17): p. 2213-2217.
    [22] Kusano, Keigo,防雾剂[P],JP:54-35881. 1979-05-16.
    [23] Galvin, K.P., Briseoe,B.J. , Williams, D.R, Antifogging treatment of modified Plastie surfaees using colloidal Particles of hydrous metal oxides: UK, GB2249041.
    [24] Yamagishi, Hiroshi,含有氧化铝溶胶和硅溶胶的防雾涂饰物[P]. JP:03-50288, 1991-03-04.
    [25]旭田卓,川向裕志,硝子用防雾剂组成物[P]. JP:10-101790, 1998-04-21.
    [26] John A. Howarter, Jeffrey P. Youngblood, Self-Cleaning and Next Generation Anti-Fog Surfaces and Coatings. Macromolecular Rapid Communications, 2008. 29(6): p. 455-466.
    [27]沙鹏宇,刘岩,谢雷,崔占臣亲水性有机硅杂化防雾涂料的制备及性能.高等学校化学学报, 2007. 28(11): p. 2205-2209.
    [28] Keller, Martin,制备防雾涂膜用的可聚合的丙烯酸酯组合物[P],EP:604371. 1994-06-29.
    [29] Ishimaru, Kazutomi,防雾丙烯酸组合物[P],JP:97-40941. 1997-02-10.
    [30] Groos lannert , Renate,以吸湿性聚合物及表面活性剂为主的防雾涂料[P],EP:498005,. 1992-08-12.
    [31]周书仪,镜面清洁防雾剂[P],CN:85102034A. 1986-09-17.
    [32] Hoson, Hiroshi,以聚乙烯醇为基料的防雾涂层[P],USP:513402. 1992-07-28.
    [33] Kawasaki, Masae,耐久的玻璃防结露剂[P],JP:94-158033. 1994-06-07.
    [34] Myake, Yoshitaka,防结露的玻璃和塑料薄膜[P],JP:94-158031. 1994-06-07.
    [35]赵邦君,玻璃去污防雾剂[P],CN:1107173. 1995-08-23.
    [36] Dymov, S.I.,玻璃表面用的聚乙烯醇防结露涂料[P],Zh Prikl Khim. 1991,64:2305.
    [37] Hoson, Hiroshi,防雾涂料的制法[P],EP:410798. 1991-01-30.
    [38] Deglina, S.A.,有机硅氧烷防雾组合物[P],SU:1666505. 1991-07-30.
    [39] Oonishi, Shunichi,含紫外吸收单体的硅溶胶的防雾组合物[P],JP:97-59603. 1997-03-04.
    [40] Yoshida, Tamio,硅烷改性的聚醚及其作为防雾剂的应用[P],JP:04-180917,. 1992-06-29.
    [41] Kawai, Norio,环氧-聚氧化乙烯-硅氧烷防雾涂料[P],JP:02-173078. 1990-07-04.
    [42] Kawai, Norio,防雾涂料[P],JP:01-141959. 1989-06-02.
    [43] Yoshida, Tamio,硅氧烷改性的醚及其作为防雾剂的应用[P],JP:04-180916. 1992-06-29.
    [44] Hoson, Hiroshi,使用期持久的防雾涂料[P],JP:02-18048. 1990-02-06.
    [45] Ishiguro, Kiichiro,玻璃或塑料用丙烯酸聚氨酯防雾涂料[P],JP:04-36376. 1992-02-06.
    [46] Alers, Andreas,防雾涂料[P],DE:4017341. 1991-12-05.
    [47]张刚,崔占臣,杨柏,透明材料的表面改性与防雾防霜性.功能高分子学报, 2000. 13(1): p. 97-102.
    [48]张颖,谢斌,姚同杰,杨柏,亲水性防雾耐磨透明涂层的固化分析及性能研究.热固性树脂2006. 21(5): p. 21-24.
    [49]张颖,崔占臣,姚同杰,杨柏,亲水性防雾耐磨透明涂层的固化分析及性能研究.石油化工高等学校学报2008. 21(4): p. 1.
    [50] Chen Shih Chung, B., Darryl W., Antistatic and antifog coating containing surfactant and radically-curable hydrophilic compound[P].EP:399 441,. 1990-11-28.
    [51] Kanemitsu, Hideyuki,硬质防雾涂层材料[P].JP:63-172778. 1988-07-16.
    [52] Naoto, H., Masaki, K., Akio T.,防雾耐磨塑料薄膜[P].JP:3-42238. 1991-02-22.
    [53] Swerdlow, Martin, Simon, [P].EP:52 427. 1982-05-26.
    [54] Tsukruk, V., Luzinov, I. and Julthongpiput, D., Sticky molecular surfaces: epoxysilane self-assembled monolayers. Langmuir, 1999. 15(9): p. 3029-3032.
    [55] Loy, D., Baugher, B., Baugher, C., Schneider, D., Rahimian, K, Substituent Effects on the Sol- Gel Chemistry of Organotrialkoxysilanes. Chem. Mater, 2000. 12(12): p. 3624-3632.
    [56]藤川勉,阪谷泰一,中西美都子,防雾膜[P],CN:115881A. 1997-09-10.
    [57] Fasce, D.P., Williams, R. J. J., Mechin, F., Pascault, J. P., Llauro, M. F., Petiaud, R., Synthesis and Characterization of Polyhedral Silsesquioxanes Bearing Bulky Functionalized Substituents. Macromolecules, 1999. 32(15): p. 4757-4763.
    [58]张子勇,余祥正,有机-无机杂化涂料及其制备方法[P],CN:1621468A. 2005-06-01.
    [59] Douglas A., L., ,Baugher, Brigitta M., Baugher, Colleen R., Schneider, Duane A., Rahimian, Kamyar, Substituent Effects on the Sol-Gel Chemistry of Organotrialkoxysilanes. Chemistry of Materials, 2000. 12(12): p. 3624-3632.
    [60] Tsukruk, V.V., Luzinov, I. and Julthongpiput, D., Sticky Molecular Surfaces:Epoxysilane Self-Assembled Monolayers. Langmuir, 1999. 15(9): p. 3029-3032.
    [61] Sha, P., Liu, Y., Xie, L. , Cui, Z., Preparation and Properties of Hydrophilic DEA/Organosilane Hybrid Antifogging Coating. Chem. J.Chinese Universities, 2007. 28: p. 2205-2209.
    [62] Lee, H., Park, Y., Ko, K., Correlation between Surface Morphology and Hydrophilic/Hydrophobic Conversion of MOCVD-TiO2 Films. Langmuir, 2000. 16(18): p. 7289-7293.
    [63] Miyauchi, M., Nakajima, A., Watanabe, T. and Hashimoto, K., Photocatalysis and photoinduced hydrophilicity of various metal oxide thin films. Chemistry of Materials, 2002. 14(6): p. 2812-2816.
    [64] Miyauchi, M., Nakajima, A., Watanabe, T. and Hashimoto, K., Photoinduced Hydrophilic Conversion of TiO2/WO3 Layered Thin Films. Chemistry of Materials, 2002. 14(11): p. 4714-4720.
    [65] Wang, R., Hashimoto, K., Fujishima, A., Chikuni, M., Kojima, E., Kitamura, A., Shimohigoshi, M., and Watanabe, T., Light-induced amphiphilic surfaces. Nature, 1997. 388(6641): p. 431-431.
    [66] Liu, X., Du, X. and He, J., Hierarchically structured porous films of silica hollow spheres via layer-by-layer assembly and their superhydrophilic and antifogging properties. Chemphyschem, 2008. 9(2): p. 305-9.
    [67] Liu, X. and He, J., Hierarchically structured superhydrophilic coatings fabricated by self-assembling raspberry-like silica nanospheres. J. Colloid Interface Sci., 2007. 314(1): p. 341-345.
    [68] Liu, X. and He, J., Superhydrophilic and Antireflective Properties of Silica Nanoparticle Coatings Fabricated via Layer-by-Layer Assembly and Postcalcination. J. Phys. Chem. C, 2009. 113(1): p. 148-152.
    [69] Cebeci, F., Wu, Z, Zhai, L, Cohen, RE, Rubner, MF, Nanoporosity-driven superhydrophilicity: A means to create multifunctional antifogging coatings. Langmuir, 2006. 22(6): p. 2856-2862.
    [70] Lee, D., Rubner, M., Cohen, R., All-nanoparticle thin-film coatings. Nano Lett,2006. 6(10): p. 2305-2312.
    [71] Gan, W., Lam, SW, Chiang, K, Amal, R, Zhao, H, Brungs, MP, Novel TiO 2 thin film with non-UV activated superwetting and antifogging behaviours. Journal of Materials Chemistry, 2007. 17(10): p. 952-954.
    [72] Song, S., Jing, L., Li, S., Fu, H. and Luan, Y., Superhydrophilic anatase TiO2 film with the micro- and nanometer-scale hierarchical surface structure. Materials Letters, 2008. 62(20): p. 3503-3505.
    [73] Sakai, N., Fujishima, A., Watanabe, T. and Hashimoto, K., Quantitative evaluation of the photoinduced hydrophilic conversion properties of TiO2 thin film surfaces by the reciprocal of contact angle. J. Phys. Chem. B, 2003. 107(4): p. 1028-1035.
    [74] White, J., Szanyi, J. and Henderson, M., The Photon-Driven Hydrophilicity of Titania: A Model Study Using TiO2 (110) and Adsorbed Trimethyl Acetate. J. Phys. Chem. B, 2003. 107(34): p. 9029-9033.
    [75] Makoto Hayakawa, Eiichi Kojima, ,Keiichiro Morimoto,Mitsuyoshi Machida,Atsushi Kitamura,Toshiya Watanabe,Makoto Chikuni,Akira Fujishima,Kazuhito Hashimoto,, Method for photocatalytically rendering a surface of a substrate superhydrophilic,a substrate with a superhydrophilic photocatalytic surface and method of making thereof.[P],USP:6830785B1. 2004-11-14.
    [76] Zhi, J.F., Wang, HB, Fujishima, A, Development of photocatalytic coating agents with indicator dyes. Ind. Eng. Chem. Res, 2002. 41(4): p. 726-731.
    [77] Takeuchi, M., Sakamoto, K., Martra, G., Coluccia, S. and Anpo, M., Mechanism of Photoinduced Superhydrophilicity on the TiO2 Photocatalyst Surface. The Journal of Physical Chemistry B, 2005. 109(32): p. 15422-15428.
    [78] Rahimi, A., Gharazi, S., Ershad-Langroudi, A. and Ghasemi, D., Synthesis and characterization of hydrophilic nanocomposite coating on glass substrate. Journal of Applied Polymer Science, 2006. 102(6): p. 5322.
    [79] Song, K., Park, J., Kang, H. and Kim, S., Synthesis of Hydrophilic CoatingSolution for Polymer Substrate Using Glycidoxypropyltrimethoxysilane. Journal of Sol-Gel Science and Technology, 2003. 27(1): p. 53-59.
    [80] Feng, X., Jiang, L, Design and creation of superwetting/antiwetting surfaces. Advanced Materials, 2006. 18(23): p. 3063.
    [81] Shibuichi, S., Onda, T., Satoh, N. and Tsujii, K., Super Water-Repellent Surfaces Resulting from Fractal Structure. The Journal of Physical Chemistry, 1996. 100(50): p. 19512-19517.
    [82] Shiu, J.-Y., Kuo, C.-W., Chen, P. and Mou, C.-Y., Fabrication of Tunable Superhydrophobic Surfaces by Nanosphere Lithography. Chemistry of Materials, 2004. 16(4): p. 561-564.
    [83] Lin, C., Fang, Y., Kuo, C., Chen, S., Lin, C.,Chou, T., Lee, Y., Lin, J., Hwang, S., Design and fabrication of a TiO2/nano-silicon composite visible light photocatalyst. Applied Surface Science, 2006. 253(2): p. 898-903.
    [84] N. Mcsporran, V. Rico, A. Borrás, A.R. González-Elipe, G. Sauthier, E. Gy?rgy, J. Santiso, G. Garcia, A. Figueras, L. Parafianovic, A. Abrutis, Synthesis of undoped and Ni doped InTaO4 photoactive thin films by metal organic chemical vapor deposition. Surface and Coatings Technology, 2007. 201(22-23): p. 9365-9368.
    [85] Decher, G., Fuzzy nanoassemblies: Toward layered polymeric multicomposites. Science, 1997. 277(5330): p. 1232-1237.
    [86] Decher, G., Hong, J. D., Buildup of Ultrathin Multilayer Films by a Self-Assembly Process .1. Consecutive Adsorption of Anionic and Cationic Bipolar Amphiphiles on Charged Surfaces. Makromolekulare Chemie-Macromolecular Symposia, 1991. 46: p. 321-327.
    [87] Zhang, X., Sato, O., Taguchi, M., Einaga, Y., Murakami, T., and Fujishima, A., Self-cleaning particle coating with antireflection properties. Chem. Mater, 2005. 17(3): p. 696-700.
    [88]林永昌,卢维强,光学薄膜原理[M]. 1990,北京:国防工业出版社.
    [89]孙少妮,减反射薄膜膜系优化设计与工艺研究[D]. 2006,东北大学硕士学位论文:沈阳.
    [90]王贺权,太阳电池减反射薄膜的研究[D]沈阳,东北大学博士学位论文. 2005.
    [91]尹树百,薄膜光学一理论与实践[M]. 1987,北京:科学出版社. 1-2.
    [92] Xu, S., Cheah, L.K. and Tay, B.K., Spectroscopic ellipsometry studies of tetrahedral amorphous carbon prepared by filtered cathodic vacuum arc technique. Thin Solid Films, 1998. 312(1-2): p. 160-169.
    [93]马玉蓉,王听,张红泉,等,用YAG激光制备类金刚石薄膜及光学折射率研究.光学学报, 1994. 14(12): p. 1294.
    [94]刘祖明,张忠文,等,晶体硅太阳电池TiO2与SiN减反射膜对比研究.昆明师范高等专科学校学报, 2003. 25(4): p. 75一77.
    [95]朱震,光学薄膜及其应用.光机电信息, 2000(1): p. 37-39.
    [96] Mizuta, T., Ikuta, T., Minemoto, T., Takakura, H., Hamakawa, Y., and Numai, T., An optimum design of antireflection coating for spherical silicon solar cells. Solar Energy Materials and Solar Cells, 2006. 90(1): p. 46-56.
    [97]刘晓林,张伟清,唐永兴,等,溶胶一凝胶工艺提拉法制备二氧化硅增透膜.光子学报, 1998. 1(27): p. 29-33.
    [98]魏芸,吕海兵等,高功率激光宽光谱减反膜的溶胶一凝胶旋转法制备工艺.强激光与粒子束, 2003. 15(7): p. 647一650.
    [99]孙继红,章斌, SiO2光学增透膜的制备及光学性能.光学技术, 2000. 26(002): p. 104-106.
    [100]张晓晖,丁双红,光纤通信系统用减反膜的研究.海军工程大学学报, 2003. 15(003): p. 23-26.
    [101]张晓晖, WDM光纤通信用光学薄膜的研究[D]. 2001,华中科技大学:武汉.
    [102]李克坚,光学增透膜是如何起增透作用的.广西物理, 1995. 16(5,6): p. 71-72.
    [103] Watson, G. and Watson, J., Natural nano-structures on insects—possible functions of ordered arrays characterized by atomic force microscopy. Applied Surface Science, 2004. 235(1-2): p. 139-144.
    [104] Hattori, H., Anti-reflection surface with particle coating deposited by electrostatic attraction. Advanced Materials, 2001. 13(1): p. 51.
    [105] Koo, H., Yi, D., Yoo, S., Kim, D., A snowman-like array of colloidal dimers for antireflecting surfaces. Advanced Materials, 2004. 16(3): p. 274-277.
    [106] Ahn, J.S., Hammond, P. T. ,Rubner, M. F., Lee, I., Self-assembled particle monolayers on polyelectrolyte multilayers: particle size effects on formation, structure, and optical properties. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 2005. 259(1-3): p. 45-53.
    [107]江雷,冯琳,仿生智能纳米界面材料. 2007,北京:化学工业出版社.
    [108]顾惕人,朱步瑶,李外郎,马季铭,戴乐蓉,程虎民,表面化学. 2001,北京:科学出版社.
    [109] Young, T., An essay on the cohesion of fluids. Philosophical Transactions of the Royal Society of London (1776-1886), 1805. 95(-1): p. 65-87.
    [110] Vogler, E., Structure and reactivity of water at biomaterial surfaces. Advances in Colloid and Interface Science, 1998. 74(1-3): p. 69-117.
    [111] Wenzel, R.N., Resistance of solid surfaces to wetting by water. Industrial and Engineering Chemistry, 1936. 28: p. 988-994.
    [112] Patankar, N., On the modeling of hydrophobic contact angles on rough surfaces. Langmuir, 2003. 19(4): p. 1249-1253.
    [113] Cassie, A., Baxter, S, Wettability of porous surfaces. Transactions of the Faraday Society, 1944. 40: p. 546-551.
    [114] Bico, J., Thiele, U, Quéré, D, Wetting of textured surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002. 206(1-3): p. 41-46.
    [115] Bico, J., Tordeux, C.,Quere, D., Rough wetting. Europhysics Letters, 2001. 55(2): p. 214-220.
    [116] Callies, M., Quéré, D, On water repellency. Soft Matter, 2005. 1(1): p. 55-61.
    [117] Quere, D., Non-sticking drops. Reports on Progress in Physics, 2005. 68(11): p. 2495-2532.
    [118] Aussillous, P., Quéré, D., Liquid marbles. Nature, 2001. 411(6840): p.924-927.
    [119] Richard, D., Clanet, C. and Quéré, D., Surface phenomena: Contact time of a bouncing drop. Nature, 2002. 417(6891): p. 811-811.
    [120] Shibuichi, S., Onda, T., Satoh, N. and Tsujii, K., Super water-repellent surfaces resulting from fractal structure. Journal of Physical Chemistry, 1996. 100(50): p. 19512-19517.
    [121] Johnson Jr., R., Dettre, RH, Contact Angle. Wettability and Adhesion, Adv. Chem. Ser, 1964. 43: p. 112.
    [122] Welton, T., Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chemical reviews, 1999. 99: p. 2071-2084.
    [123] Sun, J., MacFarlane, D. and Forsyth, M., Synthesis and properties of ambient temperature molten salts based on the quaternary ammonium ion. Ionics, 1997. 3(5): p. 356-362.
    [124]赵燕,具有特殊润湿性能的聚合物基界面材料的构筑:表面化学组成与微观几何结构. 2007,上海交通大学:上海.
    [125] Jin, M., Feng, X, Feng, L., Sun, T., Zhai, J., Li, T., Jiang, L., Superhydrophobic aligned polystyrene nanotube films with high adhesive force. Advanced materials(Weinheim), 2005. 17(16): p. 1977-1981.
    [126] Barthlott, W., Neinhuis, C, Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta, 1997. 202(1): p. 1-8.
    [127] Han, J., Zheng, Y, Cho, JH, Xu, X, Cho, K, Stable Superhydrophobic Organic? Inorganic Hybrid Films by Electrostatic Self-Assembly. J. Phys. Chem. B, 2005. 109(44): p. 20773-20778.
    [128] Zhang, L., Chen, H., Sun, J. and Shen, J., Layer-by-Layer Deposition of Poly (diallyldimethylammonium chloride) and Sodium Silicate Multilayers on Silica-Sphere-Coated Substrate-Facile Method to Prepare a Superhydrophobic Surface. Chem. Mater, 2007. 19(4): p. 948-953.
    [129] Zhang, L., Li, Y., Sun, J. and Shen, J., Layer-by-layer fabrication of broad-band superhydrophobic antireflection coatings in near-infrared region. J. Colloid Interface Sci., 2007. 319: p. 302-308.
    [130] Zhang, L., Li, Y., Sun, J. and Shen, J., Mechanically Stable Antireflection and Antifogging Coatings Fabricated by the Layer-by-Layer Deposition Process and Postcalcination. Langmuir, 2008. 24(19): p. 10851-10857.
    [131] Zhai, L., Cebeci, F., Cohen, R. and Rubner, M., Stable superhydrophobic coatings from polyelectrolyte multilayers. Nano Letters, 2004. 4(7): p. 1349-1353.
    [132] Zhai, L., Berg, M., Cebeci, F., Kim, Y., Milwid, J., Rubner, M., and Cohen, R., Patterned superhydrophobic surfaces: toward a synthetic mimic of the namib desert beetle. Nano Lett, 2006. 6(6): p. 1213-1217.
    [133] Matsumoto, Y., Ishida, M, The property of plasma-polymerized fluorocarbon film in relation to CH4/C4F8 ratio and substrate temperature. Sensors & Actuators: A. Physical, 2000. 83(1-3): p. 179-185.
    [134] Teshima, K., Sugimura, H., Inoue, Y., Takai, O. and Takano, A., Ultra-Water-Repellent Poly(ethylene terephthalate) Substrates. Langmuir, 2003. 19(25): p. 10624-10627.
    [135] Washo, B., Highly nonwettable surfaces via plasma polymer vapor deposition. Org. Coat. Appl. Polym. Sci. Proc., 1982. 47: p. 69.
    [136] Zhang, Y., Kang, E., Neoh, K., Huang, W., Huan, A., Zhang, H., and Lamb, R., Surface modification of polyimide films via plasma polymerization and deposition of allylpentafluorobenzene. Polymer, 2002. 43(26): p. 7279-7288.
    [137] Teshima, K., Sugimura, H., Inoue, Y., Takai, O. and Takano, A., Transparent ultra water-repellent poly (ethylene terephthalate) substrates fabricated by oxygen plasma treatment and subsequent hydrophobic coating. Applied Surface Science, 2005. 244(1-4): p. 619-622.
    [138] Guo, Z.G., Zhou, F., Hao, J. C., Liu, W. M., Effects of system parameters on making aluminum alloy lotus. Journal of Colloid and Interface Science, 2006. 303(1): p. 298-305.
    [139] Song, X., Zhai, J., Wang, Y. and Jiang, L., Fabrication of Superhydrophobic Surfaces by Self-Assembly and Their Water-Adhesion Properties. The Journal of Physical Chemistry B, 2005. 109(9): p. 4048-4052.
    [140] Martines, E., Seunarine, K., Morgan, H., Gadegaard, N., Wilkinson, C., Riehle, M., Superhydrophobicity and Superhydrophilicity of Regular Nanopatterns. Nano Lett, 2005. 5(10): p. 2097-2103.
    [141] Notsu, H., Kubo, W., Shitanda, I. and Tatsuma, T., Super-hydrophobic/super-hydrophilic patterning of gold surfaces by photocatalytic lithography. Journal of Materials Chemistry, 2005. 15(15): p. 1523-1527.
    [142] Park, K.-H. and Marshall, W.J., Remarkably Volatile Copper(II) Complexes of N,N-Unsymmetrically Substituted 1,3-Diketimines as Precursors for Cu Metal Deposition via CVD or ALD. Journal of the American Chemical Society, 2005. 127(26): p. 9330-9331.
    [143] Lourie, O., Jones, C., Bartlett, B., Gibbons, P.,Ruoff, R.,Buhro, W . CVD Growth of Boron Nitride Nanotubes. Chemistry of Materials, 2000. 12(7): p. 1808-1810.
    [144] Zheng, B., Lu, C., Gu, G., Makarovski, A., Finkelstein, G., and Liu, J., Efficient CVD Growth of Single-Walled Carbon Nanotubes on Surfaces Using Carbon Monoxide Precursor. Nano Letters, 2002. 2(8): p. 895-898.
    [145] Ding, Z., Hu, Xijun, Lu, Gao Q.,Yue, Po-Lock, Greenfield, Paul F., Novel Silica Gel Supported TiO2 Photocatalyst Synthesized by CVD Method. Langmuir, 2000. 16(15): p. 6216-6222.
    [146] Lau, K., Bico, J., Teo, K., Chhowalla, M., Amaratunga, G., Milne, W., McKinley, G., Gleason, K., Superhydrophobic Carbon Nanotube Forests. Nano Lett., 2003. 3(12): p. 1701-1705.
    [147] Huang, L., Lau, S. P., Yang, H. Y., Leong, E. S. P., Yu, S. F., Prawer, S., Stable Superhydrophobic Surface via Carbon Nanotubes Coated with a ZnO Thin Film. The Journal of Physical Chemistry B, 2005. 109(16): p. 7746-7748.
    [148] Lieberman, H.F., Davey, R. J., Newsham, D. M. T., Br…Br and Br…H Interactions in Action:Polymorphism, Hopping, and Twinning in1,2,4,5-Tetrabromobenzene. Chemistry of Materials, 2000. 12(2): p. 490-494.
    [149] Shirtcliffe, N.J., McHale, G., Newton, M.I. and Perry, C.C., Intrinsically Superhydrophobic Organosilica Sol−Gel Foams. Langmuir, 2003. 19(14): p. 5626-5631.
    [150] Rao, A.V., Hegde, N.D. and Hirashima, H., Absorption and desorption of organic liquids in elastic superhydrophobic silica aerogels. Journal of Colloid and Interface Science, 2007. 305(1): p. 124-132.
    [151] Wu, X., Zheng, L. and Wu, D., Fabrication of Superhydrophobic Surfaces from Microstructured ZnO-Based Surfaces via a Wet-Chemical Route. Langmuir, 2005. 21(7): p. 2665-2667.
    [152] Tadanaga, K., Morinaga, J., Matsuda, A. and Minami, T., Superhydrophobic/Superhydrophilic Micropatterning on Flowerlike Alumina Coating Film by the Sol-Gel Method. Chemistry of Materials, 2000. 12(3): p. 590-592.
    [153] Zhang, X., Shi, F., Yu, X., Liu, H., Fu, Y., Wang, Z., Jiang, L., and Li, X., Polyelectrolyte multilayer as matrix for electrochemical deposition of gold clusters: toward super-hydrophobic surface. Journal of the American Chemical Society, 2004. 126(10): p. 3064-3065.
    [154] Yu, X., Wang, Z., Jiang, Y. and Zhang, X., Surface gradient material: From superhydrophobicity to superhydrophilicity. Langmuir, 2006. 22(10): p. 4483-4486.
    [155] Li, M., Zhai, J., Liu, H., Song, Y., Jiang, L., Zhu, D., Electrochemical Deposition of Conductive Superhydrophobic Zinc Oxide Thin Films. The Journal of Physical Chemistry B, 2003. 107(37): p. 9954-9957.
    [156] Shirtcliffe, N., McHale, G., Newton, M., Perry, C. and Roach, P., Porous materials show superhydrophobic to superhydrophilic switching. Chemical Communications, 2005. 2005(25): p. 3135-3137.
    [157] Zhao, N., Weng, L., Zhang, X., Xie, Q. and Xu, J., A lotus-leaf-like superhydrophobic surface prepared by solvent-induced crystallization. Chemphyschem, 2006. 7(4).
    [158] Han, J., Xu, X., Cho, K., Diverse Access to Artificial SuperhydrophobicSurfaces Using Block Copolymers. Langmuir, 2005. 21(15): p. 6662-6665.
    [159] Han, J., Lee, DH, Ryu, CY, Cho, K, Fabrication of superhydrophobic surface from a supramolecular organosilane with quadruple hydrogen bonding. J. Am. Chem. Soc, 2004. 126(15): p. 4796-4797.
    [160] Wnek, G.E., Carr, M.E., Simpson, D.G. and Bowlin, G.L., Electrospinning of Nanofiber Fibrinogen Structures. Nano Letters, 2003. 3(2): p. 213-216.
    [161] Salalha, W., Dror, Y., Khalfin, R.L., Cohen, Y., Yarin, A.L., and Zussman, E., Single-Walled Carbon Nanotubes Embedded in Oriented Polymeric Nanofibers by Electrospinning. Langmuir, 2004. 20(22): p. 9852-9855.
    [162] Kim, G., Wutzler, A., Radusch, H., Michler, G.,Simon, P., Sperling, R., Parak, W., One-Dimensional Arrangement of Gold Nanoparticles by Electrospinning. Chemistry of Materials, 2005. 17(20): p. 4949-4957.
    [163] Li, D., Wang, Y.,Xia, Y., Electrospinning of Polymeric and Ceramic Nanofibers as Uniaxially Aligned Arrays. Nano Letters, 2003. 3(8): p. 1167-1171.
    [164] Li, J., He, A., Zheng, J., Han, C., Gelatin and Gelatin-Hyaluronic Acid Nanofibrous Membranes Produced by Electrospinning of Their Aqueous Solutions. Biomacromolecules, 2006. 7(7): p. 2243-2247.
    [165] Erbil, H.Y., Demirel, A. L., Avci, Y. ,Mert, O., Transformation of a simple plastic into a superhydrophobic surface. Science, 2003. 299(5611): p. 1377-1380.
    [166] Jiang, L., Zhao, Y, Zhai, J, A lotus-leaf-like superhydrophobic surface: a porous microsphere/nanofiber composite film prepared by electrohydrodynamics. Angewandte Chemie (International ed. in English), 2004. 43(33): p. 4338-4341.
    [167] Kazim Acatay, Eren Simsek, ,Cleva Ow-Yang, Yusuf Z. Menceloglu, Tunable, Superhydrophobically Stable Polymeric Surfaces by Electrospinning13. Angewandte Chemie International Edition, 2004. 43(39): p. 5210-5213.
    [168] Ming, W., Wu, D, Van Benthem, R, Superhydrophobic films from raspberry-like particles. Nano Lett, 2005. 5(11): p. 2298-2301.
    [169] Iler, R.K., Multilayers of Colloidal Particles. Journal of Colloid and Interface Science, 1966. 21(6): p. 569-&.
    [170]沈家骢等,超分子层状结构—组装与功能. 2004,北京:科学出版社.
    [171] Chen, W., McCarthy, TJ, Layer-by-layer deposition: A tool for polymer surface modification. Macromolecules, 1997. 30(1): p. 78-86.
    [172] Hsieh, M., Farris, RJ, McCarthy, TJ, Surface“priming”for layer-by-layer deposition: Polyelectrolyte multilayer formation on allylamine plasma-modified poly (tetrafluoroethylene). Macromolecules, 1997. 30(26): p. 8453-8458.
    [173] Wang, L., Wang, Z. , Zhang, X., Shen, J., Chi, L., Fuchs, H. , A new approach for the fabrication of an alternating multilayer film of poly(4-vinylpyridine) and poly(acrylic acid) based on hydrogen bonding. Macromolecular Rapid Communications, 1997. 18(6): p. 509-514.
    [174] Mallouk, T.E., Gavin, Julia A., Molecular Recognition in Lamellar Solids and Thin Films. Accounts of Chemical Research, 1998. 31(5): p. 209-217.
    [175] Shimazaki, Y., Mitsuishi, M., Ito, S. and Yamamoto, M., Preparation of the Layer-by-Layer Deposited Ultrathin Film Based on the Charge-Transfer Interaction. Langmuir, 1997. 13(6): p. 1385-1387.
    [176] Ichinose, I., Senzu, H., Kunitake, T., A Surface Sol-Gel Process of TiO2 and Other Metal Oxide Films with Molecular Precision. Chemistry of Materials, 1997. 9(6): p. 1296-1298.
    [1] Miyauchi, M., Nakajima, A., Hashimoto, K. and Watanabe, T., A Highly Hydrophilic Thin Film Under 1uW/cm2 UV Illumination. Adv. Mater, 2000. 12(24): p. 1923-1927.
    [2] Wang, R., Hashimoto, K., Fujishima, A., Chikuni, M., Kojima, E., Kitamura, A., Shimohigoshi, M., and Watanabe, T., Light-induced amphiphilic surfaces. Nature, 1997. 388(6641): p. 431-432.
    [3] Sonawane, R., Hegde, S. and Dongare, M., Preparation of titanium (IV) oxide thin film photocatalyst by sol–gel dip coating. Materials Chemistry & Physics, 2003. 77(3): p. 744-750.
    [4] Sonawane, R., Kale, B. and Dongare, M., Preparation and photo-catalytic activity of Fe-TiO2 thin films prepared by sol–gel dip coating. Materials Chemistry & Physics, 2004. 85(1): p. 52-57.
    [5] Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K. and Taga, Y., Visible-light photocatalysis in nitrogen-doped titanium oxides. 2001. p. 269-271.
    [6] Han, J., Zheng, Y., Cho, J., Xu, X. and Cho, K., Stable Superhydrophobic Organic/ Inorganic Hybrid Films by Electrostatic Self-Assembly. J. Phys. Chem. B, 2005. 109(44): p. 20773-20778.
    [7] Zhang, X., Sato, O., Taguchi, M., Einaga, Y., Murakami, T., and Fujishima, A., Self-cleaning particle coating with antireflection properties. Chem. Mater, 2005. 17(3): p. 696-700.
    [8] Lim, H., Han, J., Kwak, D., Jin, M. and Cho, K., Photoreversibly switchable superhydrophobic surface with erasable and rewritable pattern. J. Am. Chem. Soc, 2006. 128(45): p. 14458-14459.
    [9] Zhang, G., Wang, D., Gu, Z. and Mohwald, H., Fabrication of superhydrophobic surfaces from binary colloidal assembly. Langmuir, 2005. 21(20): p. 9143-9148.
    [10] Zhang, L., Chen, H., Sun, J. and Shen, J., Layer-by-Layer Deposition of Poly (diallyldimethylammonium chloride) and Sodium Silicate Multilayers onSilica-Sphere-Coated Substrate—Facile Method to Prepare a Superhydrophobic Surface. Chem. Mater, 2007. 19(4): p. 948-953.
    [11] Zhai, L., Cebeci, F., Cohen, R. and Rubner, M., Stable superhydrophobic coatings from polyelectrolyte multilayers. Nano Lett, 2004. 4(7): p. 1349-1353.
    [12] Zhai, L., Berg, M., Cebeci, F., Kim, Y., Milwid, J., Rubner, M., and Cohen, R., Patterned superhydrophobic surfaces: toward a synthetic mimic of the namib desert beetle. Nano Lett, 2006. 6(6): p. 1213-1217.
    [13] Zhang, X., Shi, F., Yu, X., Liu, H., Fu, Y., Wang, Z., Jiang, L., and Li, X., Polyelectrolyte multilayer as matrix for electrochemical deposition of gold clusters: toward super-hydrophobic surface. Journal of the American Chemical Society, 2004. 126(10): p. 3064-3065.
    [14] Yu, X., Wang, Z., Jiang, Y. and Zhang, X., Surface gradient material: From superhydrophobicity to superhydrophilicity. Langmuir, 2006. 22(10): p. 4483-4486.
    [15] Shirtcliffe, N., McHale, G., Newton, M., Perry, C. and Roach, P., Porous materials show superhydrophobic to superhydrophilic switching. Chemical Communications, 2005. 2005(25): p. 3135-3137.
    [16] Zhao, N., Xie, Q., Weng, L., Wang, S., Zhang, X., and Xu, J., Superhydrophobic surface from vapor-induced phase separation of copolymer micellar solution. Macromolecules, 2005. 38(22): p. 8996-8999.
    [17] Han, J.T., Xu, X.R. and Cho, K.W., Diverse access to artificial superhydrophobic surfaces using block copolymers. Langmuir, 2005. 21(15): p. 6662-6665.
    [18] Han, J., Lee, D., Ryu, C. and Cho, K., Fabrication of superhydrophobic surface from a supramolecular organosilane with quadruple hydrogen bonding. J. Am. Chem. Soc, 2004. 126(15): p. 4796-4797.
    [19] Minko, S., Muller, M., Motornov, M., Nitschke, M., Grundke, K., and Stamm, M., Two-level structured self-adaptive surfaces with reversibly tunable properties. J. Am. Chem. Soc, 2003. 125(13): p. 3896-3900. 56
    [20] Oner, D. and McCarthy, T., Ultrahydrophobic surfaces. Effects of topography length scales on wettability. Langmuir, 2000. 16(20): p. 7777-7782.
    [21] Ming, W., Wu, D. and Van Benthem, R., Superhydrophobic films from raspberry-like particles. Nano Lett, 2005. 5(11): p. 2298-2301.
    [22] Cebeci, F., Wu, Z., Zhai, L., Cohen, R. and Rubner, M., Nanoporosity-driven superhydrophilicity: A means to create multifunctional antifogging coatings. Langmuir, 2006. 22(6): p. 2856-2862.
    [23] Stober, W., Fink, A. and Bohn, E., Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci, 1968. 26(1): p. 62-69.
    [24] Cai, Q., Luo, Z., Pang, W., Fan, Y., Chen, X., and Cui, F., Dilute Solution Routes to Various Controllable Morphologies of MCM-41 Silica with a Basic Medium? Chem. Mater, 2001. 13(2): p. 258-263.
    [25] Wenzel, R.N., Resistance of solid surfaces to wetting by water. Industrial and Engineering Chemistry, 1936. 28: p. 988-994.
    [1] Lindstrom, H., Rensmo, H., Sodergren, S., Solbrand, A. and Lindquist, S.E., Electron transport properties in dye-sensitized nanoporous-nanocrystalline TiO2 films. Journal of Physical Chemistry, 1996. 100(8): p. 3084-3088.
    [2] Matsushita, S.I., Miwa, T., Tryk, D.A. and Fujishima, A., New mesostructured porous TiO2 surface prepared using a two-dimensional array-based template of silica particles. Langmuir, 1998. 14(22): p. 6441-6447.
    [3] Wang, Z.B., Mitra, A.P., Wang, H.T., Huang, L.M. and Yan, Y.S., Pure silica zeolite films as low-k dielectrics by spin-on of nanoparticle suspensions. Advanced Materials, 2001. 13(19): p. 1463-1466.
    [4] Wang, Z.B., Wang, H.T., Mitra, A., Huang, L.M. and Yan, Y.S., Pure-silica zeolite low-k dielectric thin films. Advanced Materials, 2001. 13(10): p. 746-749.
    [5] Walheim, S., Schaffer, E., Mlynek, J. and Steiner, U., Nanophase-separated polymer films as high-performance antireflection coatings. Science, 1999. 283(5401): p. 520-522.
    [6] Sharma, A. and Borovik, A., Design, Synthesis, and Characterization of Templated Metal Sites in Porous Organic Hosts: Application to Reversible Dioxygen Binding. Journal of American Chemical Society, 2000. 122(37): p. 8946-8955.
    [7] Li, Y., Cunin, F., Link, J., Gao, T., Betts, R., Reiver, S., Chin, V., Bhatia, S., and Sailor, M., Polymer Replicas of Photonic Porous Silicon for Sensing and Drug Delivery Applications. 2003. p. 2045-2047.
    [8]李晓芬,何静,马润宇等,青霉素酰化酶在介孔分子筛MCM-41上的固定化研究[J].化学学报, 2000. 58: p. 167 -171.
    [9] Keis, K., Lindgren, J., Sten-Eric, L. and Hagfeldt, A., Studies of the Adsorption Process of Ru Complexes in Nanoporous ZnO Electrodes. Langmuir, 2000. 16(10): p. 4688-4694.
    [10] Cebeci, F., Wu, Z., Zhai, L., Cohen, R. and Rubner, M., Nanoporosity-Driven Superhydrophilicity: A Means to Create Multifunctional Antifogging Coatings. Langmuir, 2006. 22(6): p. 2856-2862.
    [11] Lee, D., Rubner, M. and Cohen, R., All-Nanoparticle Thin-Film Coatings. Nano Lett, 2006. 6(10): p. 2305-2312.
    [12] Zhang, X., Sato, O., Taguchi, M., Einaga, Y., Murakami, T., and Fujishima, A., Self-cleaning particle coating with antireflection properties. Chemistry of Materials, 2005. 17(3): p. 696-700.
    [13] Zhai, L., Berg, M., Cebeci, F., Kim, Y., Milwid, J., Rubner, M., and Cohen, R., Patterned Superhydrophobic Surfaces: Toward a Synthetic Mimic of the Namib Desert Beetle. Nano Lett, 2006. 6(6): p. 1213-1217.
    [14] Zhai, L., Cebeci, F., Cohen, R. and Rubner, M., Stable Superhydrophobic Coatings from Polyelectrolyte Multilayers. Nano Lett, 2004. 4: p. 1349-1354.
    [15] Huang, L., Wang, Z., Sun, J., Miao, L., Li, Q., Yan, Y., and Zhao, D., Fabrication of Ordered Porous Structures by Self-Assembly of Zeolite Nanocrystals. Journal of American Chemical Society, 2000. 122(14): p. 3530-3531.
    [16] Info, S., Rhodes, K., Davis, S., Caruso, F., Zhang, B., Mann, S., Nano, A., Progress, B., Pharmaceutics, M., and Letters, N., Hierarchical Assembly of Zeolite Nanoparticles into Ordered Macroporous Monoliths Using Core/ Shell Building Blocks. Chem. Mater, 2000. 12(10): p. 2832-2834.
    [17] Minko, S., Muller, M., Motornov, M., Nitschke, M., Grundke, K., and Stamm, M., Two-Level Structured Self-Adaptive Surfaces with Reversibly Tunable Properties. Journal of American Chemical Society, 2003. 125(13): p. 3896-3900.
    [18] Oner, D. and McCarthy, T., Ultrahydrophobic Surfaces. Effects of Topography Length Scales on Wettability. Langmuir, 2000. 16(20): p. 7777-7782.
    [19] Valtchev, V., Silicalite-1 Hollow Spheres and Bodies with a Regular System of Macrocavities. Chemistry of Materials, 2002. 14(10): p. 4371-4377.
    [20] Wang, Y. and Caruso, F., Macroporous Zeolitic Membrane Bioreactors.Advanced Functional Materials, 2004. 14(10): p. 1012-1018.
    [21] V. Valtchev, S.S., H. Kessler, Zeolite beta ordered macroporous structures with improved mechanical strength and controlled mesoporosity. Stud. Surf. Sci. Catal., 2001. 135: p. 299-231.
    [22] He, J., Fujikawa, S., Kunitake, T. and Nakao, A., Preparation of Porous and Nonporous Silica Nanofilms from Aqueous Sodium Silicate. Chemistry of Materials, 2003. 15(17): p. 3308-3313.
    [23] He, J., Ichinose, I., Fujikawa, S., Kunitake, T. and Nakao, A., A General, Efficient Method of Incorporation of Metal Ions into Ultrathin TiO~ 2 Films. Chemistry of Materials, 2002. 14(8): p. 3493-3500.
    [24] He, J. and Kunitake, T., Formation of silver nanoparticles and nanocraters on silicon wafers. Langmuir, 2006. 22(18): p. 7881-7884.
    [25] He, J., Kunitake, T. and Watanabe, T., Porous and nonporous Ag nanostructures fabricated using cellulose fiber as a template. Chemical Communications, 2005. 2005(6): p. 795-796.
    [26] Holland, B., Blanford, C. and Stein, A., Synthesis of Macroporous Minerals with Highly Ordered Three-Dimensional Arrays of Spheroidal Voids. Science, 1998. 281(5376): p. 538.
    [27] Raman, N., Anderson, M. and Brinker, C., Template-Based Approaches to the Preparation of Amorphous, Nanoporous Silicas. Chemistry of Materials, 1996. 8: p. 1682-1701.
    [28] Velev, O., Jede, T., Lobo, R. and Lenhoff, A., Porous silica via colloidal crystallization. Nature, 1997: p. 447-447.
    [29] Velev, O. and Kaler, E., Structured Porous Materials via Colloidal Crystal Templating: From Inorganic Oxides to Metals. Advanced Materials, 2000. 12(7): p. 531-534.
    [30] Blanco, A., Chomski, E., Grabtchak, S., Ibisate, M., John, S., Leonard, S., Lopez, C., Meseguer, F., Miguez, H., and Mondia, J., Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres. Nature, 2000. 405(6785): p. 437-440.
    [31] Braun, P. and Wiltzius, P., Microporous materialsElectrochemically grown photonic crystals. Nature, 1999. 402(6762): p. 603-604.
    [32] Wijnhoven, J., Zevenhuizen, S., Hendriks, M., Vanmaekelbergh, D., Kelly, J., and Vos, W., Electrochemical Assembly of Ordered Macropores in Gold. Advanced Materials, 2000. 12(12): p. 888-890.
    [33] Fujihara, S., Hosono, E. and Kimura, T., Fabrication of Porous Metal Oxide Semiconductor Films by a Self-Template Method Using Layered Hydroxide Metal Acetates. Journal of Sol-Gel Science and Technology, 2004. 31(1): p. 165-168.
    [34] Hosono, E., Fujihara, S., Honma, I. and Zhou, H., The Fabrication of an Upright-Standing Zinc Oxide Nanosheet for Use in Dye-Sensitized Solar Cells. Advanced Materials, 2005. 17: p. 2091-2094.
    [35] Hosono, E., Fujihara, S. and Kimura, T., Fabrication of Nanoparticulate Porous LaOF Films through Film Growth and Thermal Decomposition of Ion-Modified Lanthanum Diacetate Hydroxide. Langmuir, 2004. 20(9): p. 3769-3774.
    [36] Hosono, E., Fujihara, S., Kimura, T. and Imai, H., Growth of layered basic zinc acetate in methanolic solutions and its pyrolytic transformation into porous zinc oxide films. Journal of Colloid And Interface Science, 2004. 272(2): p. 391-398.
    [37] Hosono, E., Matsuda, H., Honma, I., Ichihara, M. and Zhou, H., Synthesis of a Perpendicular TiO2 Nanosheet Film with the Superhydrophilic Property without UV Irradiation. Langmuir, 2007. 23(14): p. 7447-7450.
    [38] Velev, O., Tessier, P., Lenhoff, A. and Kaler, E., A class of porous metallic nanostructures. Nature, 1999. 401(6753): p. 548.
    [39] Decher, G., Fuzzy Nanoassemblies: Toward Layered Polymeric Multicomposites. Science, 1997. 277(5330): p. 1232.
    [40] Hua, F., Cui, T. and Lvov, Y., Ultrathin Cantilevers Based on Polymer-Ceramic Nanocomposite Assembled through Layer-by-Layer Adsorption. Nano Lett, 2004. 4(5): p. 823-826.
    [41] Niu, J., Shi, F., Liu, Z., Wang, Z. and Zhang, X., Reversible Disulfide Cross-Linking in Layer-by-Layer Films: Preassembly Enhanced Loading and pH/Reductant Dually Controllable Release. Langmuir, 2007. 23(11): p. 6377-6384.
    [42] Shen, J., Zhang, X. and Sun, Y., Molecular deposition films. Progress in Nature and Science, 1996. 6: p. 651-659.
    [43] Sun, J., Wu, T., Liu, F., Wang, Z., Zhang, X., and Shen, J., Covalently Attached Multilayer Assemblies by Sequential Adsorption of Polycationic Diazo-Resins and Polyanionic Poly (acrylic acid). Langmuir, 2000. 16(10): p. 4620-4624.
    [44] Wei, H., Ma, N., Shi, F., Wang, Z. and Zhang, X., Artificial Nacre by Alternating Preparation of Layer-by-Layer Polymer Films and CaCO 3 Strata. Chemistry of Materials, 2007. 19(8): p. 1974-1978.
    [45] Wang, L., Fu, Y., Wang, Z., Fan, Y. and Zhang, X., Investigation into an alternating multilayer film of poly (4-vinylpyridine) and poly (acrylic acid) based on hydrogen bonding. Langmuir, 1999. 15(4): p. 1360-1363.
    [46] Wang, L., Fu, Y., Wang, Z., Wang, Y., Sun, C., Fan, Y., and Zhang, X., Multilayer assemblies of poly (4-vinylpyridine) bearing an osmium complex and poly (acrylic acid) via hydrogen bonding. Macromol. Chem. Phys, 1999. 200: p. 1523-1527.
    [47] Wang, L., Wang, Z., Zhang, X., Shen, J., Chi, L., and Fuchs, H., A new approach for the fabrication of an alternating multilayer film of poly (4-vinylpyridine) and poly (acrylic acid) based on hydrogen bonding. Macromolecular rapid communications, 1997. 18(6): p. 509-514.
    [48] Mallouk, T. and Gavin, J., Molecular Recognition in Lamellar Solids and Thin Films. Accounts of chemical research, 1998. 31(5): p. 209-217.
    [49] Xiong, H., Cheng, M., Zhou, Z., Zhang, X. and Shen, J., A New Approach to the Fabrication of a Self-Organizing Film of Heterostructured Polymer/Cu. Adv. Mater, 1998. 10(7): p. 529-532.
    [50] Zhang, Y. and Cao, W., Stable Self-Assembled Multilayer Films of Diazo Resin and Poly (maleic anhydride-co-styrene) Based on Charge-Transfer Interaction.Langmuir, 2001. 17(16): p. 5021-5024.
    [51] Ariga, K., Lvov, Y. and Kunitake, T., Assembling Alternate Dye-Polyion Molecular Films by Electrostatic Layer-by-Layer Adsorption. Journal of American Chemical Society, 1997. 119: p. 2224-2231.
    [52] Ma, N., Zhang, H., Song, B., Wang, Z. and Zhang, X., Polymer Micelles as Building Blocks for Layer-by-Layer Assembly: An Approach for Incorporation and Controlled Release of Water-Insoluble Dyes. Chem. Mater, 2005. 17(20): p. 5065-5069.
    [53] Liu, H., Rusling, J. and Hu, N., Electroactive Core-Shell Nanocluster Films of Heme Proteins, Polyelectrolytes, and Silica Nanoparticles. Langmuir, 2004. 20: p. 10700-10705.
    [54] Lvov, Y., Ariga, K., Ichinose, I. and Kunitake, T., Assembly of Multicomponent Protein Films by Means of Electrostatic Layer-by-Layer Adsorption. Journal of the American Chemical Society, 1995. 117(22): p. 6117-6123.
    [55] Kong, W., Wang, L., Gao, M., Zhou, H., Zhang, X., Li, W., and Shen, J., Immobilized bilayer glucose isomerase in porous trimethylamine polystyrene based on molecular deposition. Journal of the Chemical Society, Chemical Communications, 1994. 1994(11): p. 1297-1298.
    [56] Shi, X., Sanedrin, R. and Zhou, F., Structural Characterization of Multilayered DNA and Polylysine Composite Films: Influence of Ionic Strength of DNA Solutions on the Extent of DNA Incorporation. Jounal of Physical Chemistry B, 2002. 106(6): p. 1173-1180.
    [57] Lvov, Y., Haas, H., Decher, G., Moehwald, H., Mikhailov, A., Mtchedlishvily, B., Morgunova, E., and Vainshtein, B., Successive Deposition of Alternate Layers of Polyelectrolytes and a Charged Virus. Langmuir, 1994. 10(11): p. 4232-4236.
    [58] Tsukruk, V., Rinderspacher, F. and Bliznyuk, V., Self-Assembled Multilayer Films from Dendrimers. Langmuir, 1997. 13(8): p. 2171-2176.
    [59] Keller, S., Kim, H. and Mallouk, T., Layer-by-Layer Assembly of Intercalation Compounds and Heterostructures on Surfaces: Toward Molecular" Beaker"Epitaxy. Journal of the American Chemical Society, 1994. 116(19): p. 8817-8818.
    [60] Kleinfeld, E. and Ferguson, G., Stepwise Formation of Multilayered Nanostructural Films from Macromolecular Precursors. Science, 1994. 265(5170): p. 370-373.
    [61] Furusawa, K., Norde, W. and Lyklema, J., . Kolloid ZZ Polym, 1972. 250: p. 908-909.
    [62] Goodwin, J., Hearn, J., Ho, C. and Ottewill, R., Studies on the preparation and characterisation of monodisperse polystyrene laticee. Colloid & Polymer Science, 1974. 252(6): p. 464-471.
    [63] Paine, A., Luymes, W. and McNulty, J., Dispersion polymerization of styrene in polar solvents. 6. Influence of reaction parameters on particle size and molecular weight in poly (N-vinylpyrrolidone)-stabilized reactions. Macromolecules, 1990. 23(12): p. 3104-3109.
    [64] Sharifi-Sanjani, N., Soltan-Dehghan, M., Naderi, N. and Ranji, A., Emulsifier-Free Emulsion Polymerization of Styrene. Journal of Applied Polymer Science, 2004. 94(5): p. 1898-1904.
    [65] Wang, P., Chen, D. and Tang, F., Preparation of titania-coated polystyrene particles in mixed solvents by ammonia catalysis. Langmuir, 2006. 22(10): p. 4832-4835.
    [66]康凯,刘德山,等,无皂乳液聚合理论及动力学模型. [J].合成橡胶工业, 2003. 26(6): p. 333~338.
    [67]王玉霞,张芳,王艳军.,无皂乳液聚合进展[J].化学工业与工程, 2003. 20(1): p. 15~19.
    [68]张文敏,吴奇,魏涛,高浓度窄分步无皂高分子纳米粒子胶乳的制备. [J].物理化学学报, 2000. 16(2): p. 116~120.
    [69] Stober, W., Fink, A. and Bohn, E., Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci, 1968. 26(1): p. 62-69.
    [70] Smith, J., Meadows, J. and Williams, P., Adsorption of Polyvinylpyrrolidoneonto Polystyrene Latices and the Effect on Colloid Stability. Langmuir, 1996. 12: p. 3773-3778.
    [71] Bico, J., Marzolin, C. and Quere, D., 80-Interdisciplinary physics and related areas of science and technology-Pearl drops (Erratum). Europhysics Letters, 1999. 47(6): p. 743-744.
    [72] Bico, J., Thiele, U. and Quéré, D., Wetting of textured surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002. 206(1-3): p. 41-46.
    [73] Bico, J., Tordeux, C. and Quere, D., Rough wetting. Europhysics Letters, 2001. 55(2): p. 214-220.
    [74] Wenzel, R., Resistance of Solid Surfaces to Wetting by Water. Industrial & Engineering Chemistry, 1936. 28(8): p. 988-994.
    [75] Wang, R., Hashimoto, K., Fujishima, A., Chikuni, M., Kojima, E., Kitamura, A., Shimohigoshi, M., and Watanabe, T., Light-induced amphiphilic surfaces. Nature, 1997: p. 431-431.
    [76] M. Miyauchi, A.N., K. Hashimoto, T. Watanabe,, A Highly Hydrophilic Thin Film Under 1 lW/cm2 UV Illumination. Advanced Materials, 2000. 12(24): p. 1923-1927.
    [77] Irie, H., Washizuka, S., Yoshino, N. and Hashimoto, K., Visible-light induced hydrophilicity on nitrogen-substituted titanium dioxide films. Chemical Communications, 2003(11): p. 1298-1299.
    [1] Gao, X.,Yan,X., Yao, X., Xu, L., Zhang, K., Zhang, J., Yang, B., and Jiang, L.,The dry-style antifogging properties of mosquito compound eyes and artificialanalogues prepared by soft lithography. Adv Mater, 2007. 19(17): p.2213-2217.
    [2] Cebeci, F., Wu, Z., Zhai, L., Cohen, R. and Rubner, M., Nanoporosity-DrivenSuperhydrophilicity: A Means to Create Multifunctional Antifogging Coatings.Langmuir, 2006. 22(6): p. 2856-2862.
    [3] Lee, D., Rubner, M. and Cohen, R., All-Nanoparticle Thin-Film Coatings.Nano Lett, 2006. 6(10): p. 2305-2312.
    [4] Liu, X., Du, X. and He, J., Hierarchically structured porous films of silicahollow spheres via layer-by-layer assembly and their superhydrophilic andantifogging properties. Chemphyschem, 2008. 9(2): p. 305-309.
    [5] Liu, X. and He, J., Hierarchically structured superhydrophilic coatingsfabricated by self-assembling raspberry-like silica nanospheres. J. ColloidInterface Sci., 2007. 314(1): p. 341-345.
    [6]刘付胜聪,李玉平,自清洁防雾玻璃.全国性建材科技期刊——(玻璃),2002(3): p. 16-19.
    [7] Irie, H., Washizuka, S., Yoshino, N. and Hashimoto, K., Visible-light inducedhydrophilicity on nitrogen-substituted titanium dioxide films. ChemicalCommunications, 2003(11): p. 1298-1299.
    [8] Miyauchi, M., Nakajima, A., Hashimoto, K. and Watanabe, T., A HighlyHydrophilic Thin Film Under 1uW/cm2 UV Illumination. Adv. Mater, 2000.12(24): p. 1923-1927.
    [9] Wang, R., Hashimoto, K., Fujishima, A., Chikuni, M., Kojima, E., Kitamura,A., Shimohigoshi, M., and Watanabe, T., Light-induced amphiphilic surfaces.Nature, 1997. 388(6641): p. 431-431.
    [10] Zhang, X., Sato, O., Taguchi, M., Einaga, Y., Murakami, T., and Fujishima, A.,Self-cleaning particle coating with antireflection properties. Chemistry ofMaterials, 2005. 17(3): p. 696-700.
    [11]Shirtcliffe, N., McHale, G., Newton, M., Perry, C. and Roach, P., Porous materials show superhydrophobic to superhydrophilic switching. Chemical Communications, 2005. 2005(25): p. 3135-3137.
    [12]Decher,G,Fuzzy Nanoassemblies: Toward Layered Polymeric Multicomposites. Science, 1997. 277(5330): p. 1232.
    [13]Stober, W., Fink, A. and Bohn, E., Controlled growth of monodisperse silica spheres in the micron size range.J.Colloid Interface Sci, 1968. 26(1): p.62-69.
    [14]Yancey, S.E., Zhong, W., Heflin, J.R.and Ritter, A.L., The influence of void space on antireflection coatings of silica nanoparticle self-assembled films.Journal of Applied Physics, 2006. 99(3): p. 034313-1-034313-10.
    [15]Yoldas, B.E., Investigations of Porous Oxides as an Anti-Reflective Coating for Glass Surfaces. Applied Optics, 1980. 19(9): p. 1425-1429.
    [16]Wenzel, R., Resistance of Solid Surfaces to Wetting by Water. Industrial &Engineering Chemistry, 1936. 28(8): p.988-994.
    [17]Bico, J., Marzolin, C. and Quere, D., 80-Interdisciplinary physics and relatedareas of science and technology-Pearl drops (Erratum). Europhysics Letters,1999. 47(6): p. 743-744.
    [18]Bico, J., Tordeux, C. and Quere, D., Rough wetting. Europhysics Letters, 2001.55(2): p. 214-220.
    [1] Lindstroem, H., Rensmo, H., Soedergren, S., Solbrand, A. and Lindquist, S., Electron Transport Properties in Dye-Sensitized Nanoporous-Nanocrystalline TiO2 Films. J. Phys. Chem., 1996. 100(8): p. 3084-3088.
    [2] Matsushita, S., Miwa, T., Tryk, D. and Fujishima, A., New Mesostructured Porous TiO2 Surface Prepared Using a Two-Dimensional Array-Based Template of Silica Particles. Langmuir, 1998. 14(22): p. 6441-6447.
    [3] Walheim, S., Schaffer, E., Mlynek, J. and Steiner, U., Nanophase-separated polymer films as high-performance antireflection coatings. Science, 1999. 283(5401): p. 520-522.
    [4] Ho, W., Yu, J. and Yu, J., Photocatalytic TiO2 /Glass nanoflake array films. Langmuir, 2005. 21(8): p. 3486-3492.
    [5] Sharma, A. and Borovik, A., Design, Synthesis, and Characterization of Templated Metal Sites in Porous Organic Hosts: Application to Reversible Dioxygen Binding. J. Am. Chem. Soc, 2000. 122(37): p. 8946-8955.
    [6] Li, Y., Cunin, F., Link, J., Gao, T., Betts, R., Reiver, S., Chin, V., Bhatia, S., and Sailor, M., Polymer Replicas of Photonic Porous Silicon for Sensing and Drug Delivery Applications. Science, 2003. 299(5615): p. 2045-2047.
    [7] Keis, K., Lindgren, J., Sten-Eric, L. and Hagfeldt, A., Studies of the Adsorption Process of Ru Complexes in Nanoporous ZnO Electrodes. Langmuir, 2000. 16(10): p. 4688-4694.
    [8] Feng, L., Li, S., Li, Y., Li, H., Zhang, L., Zhai, J., Song, Y., Liu, B., Jiang, L., and Zhu, D., Super-Hydrophobic Surfaces: From Natural to Artificial. Adv. Mater., 2002. 14(24): p. 1857-1860.
    [9] Feng, L., Yang, Z., Zhai, J., Song, Y., Liu, B., Ma, Y., Jiang, L., and Zhu, D., Superhydrophobicity of Nanostructured Carbon Films in a Wide Range of pH Values. Angew. Chem. Int. Ed, 2003. 42(35): p. 4217-4220.
    [10] Feng, L., Zhang, Z., Mai, Z., Ma, Y., Liu, B., Jiang, L., and Zhu, D., A Super-Hydrophobic and Super-Oleophilic Coating Mesh Film for theSeparation of Oil and Water. Angew. Chem. Int. Ed, 2004. 43(15): p. 2012-2014.
    [11] Gao, X. and Jiang, L., Biophysics: Water-repellent legs of water striders. Nature, 2004. 432(7013): p. 36-36.
    [12] Zhang, X., Shi, F., Yu, X., Liu, H., Fu, Y., Wang, Z., Jiang, L., and Li, X., Polyelectrolyte Multilayer as Matrix for Electrochemical Deposition of Gold Clusters: Toward Super-Hydrophobic Surface. J. Am. Chem. Soc, 2004. 126(10): p. 3064-3065.
    [13] Kustandi, T., Samper, V., Yi, D., Ng, W., Neuzil, P., and Sun, W., Self-Assembled Nanoparticles Based Fabrication of Gecko Foot-Hair-Inspired Polymer Nanofibers. Adv. Mater., 2007. 17(13): p. 2211-2218.
    [14] Sun, T., Feng, L., Gao, X. and Jiang, L., Bioinspired surfaces with special wettability. Acc. Chem. Res, 2005. 38(8): p. 644-652.
    [15] Shi, F., Chen, X., Wang, L., Niu, J., Yu, J., Wang, Z., and Zhang, X., Roselike Microstructures Formed by Direct In Situ Hydrothermal Synthesis: From Superhydrophilicity to Superhydrophobicity. Chem. Mater, 2005. 17(24): p. 6177-6180.
    [16] Shi, F., Niu, J., Liu, J., Liu, F., Wang, Z., Feng, X., and Zhang, X., Towards Understanding Why a Superhydrophobic Coating Is Needed by Water Striders. Adv. Mater., 2007. 19(17): p. 2257-2257.
    [17] Zhao, N., Shi, F., Wang, Z. and Zhang, X., Combining layer-by-layer assembly with electrodeposition of silver aggregates for fabricating superhydrophobic surfaces. Langmuir, 2005. 21(10): p. 4713-4716.
    [18] Zhang, L., Chen, H., Sun, J. and Shen, J., Layer-by-Layer Deposition of Poly (diallyldimethylammonium chloride) and Sodium Silicate Multilayers on Silica-Sphere-Coated Substrate-Facile Method to Prepare a Superhydrophobic Surface. Chem. Mater, 2007. 19(4): p. 948-953.
    [19] Zhang, L., Li, Y., Sun, J. and Shen, J., Layer-by-layer fabrication of broad-band superhydrophobic antireflection coatings in near-infrared region. J. Colloid Interface Sci., 2007. 319: p. 302-308.
    [20] Zhang, L., Li, Y., Sun, J. and Shen, J., Mechanically Stable Antireflection and Antifogging Coatings Fabricated by the Layer-by-Layer Deposition Process and Postcalcination. Langmuir, 2008. 24(19): p. 10851-10857.
    [21] Cebeci, F., Wu, Z., Zhai, L., Cohen, R. and Rubner, M., Nanoporosity-Driven Superhydrophilicity: A Means to Create Multifunctional Antifogging Coatings. Langmuir, 2006. 22(6): p. 2856-2862.
    [22] Lee, D., Rubner, M. and Cohen, R., All-Nanoparticle Thin-Film Coatings. Nano Lett, 2006. 6(10): p. 2305-2312.
    [23] Zhai, L., Berg, M., Cebeci, F., Kim, Y., Milwid, J., Rubner, M., and Cohen, R., Patterned Superhydrophobic Surfaces: Toward a Synthetic Mimic of the Namib Desert Beetle. Nano Lett, 2006. 6(6): p. 1213-1217.
    [24] Zhai, L., Cebeci, F., Cohen, R. and Rubner, M., Stable Superhydrophobic Coatings from Polyelectrolyte Multilayers. Nano Lett, 2004. 4: p. 1349-1354.
    [25] Liu, X., Du, X. and He, J., Hierarchically structured porous films of silica hollow spheres via layer-by-layer assembly and their superhydrophilic and antifogging properties. Chemphyschem, 2008. 9(2): p. 305-309.
    [26] Liu, X. and He, J., Hierarchically structured superhydrophilic coatings fabricated by self-assembling raspberry-like silica nanospheres. J. Colloid Interface Sci., 2007. 314(1): p. 341-345.
    [27] Liu, X. and He, J., Superhydrophilic and Antireflective Properties of Silica Nanoparticle Coatings Fabricated via Layer-by-Layer Assembly and Postcalcination. J. Phys. Chem. C, 2009. 113(1): p. 148-152.
    [28] Barthlott, W. and Neinhuis, C., Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta, 1997. 202(1): p. 1-8.
    [29] Shi, F., Niu, J., Liu, J., Liu, F., Wang, Z., Feng, X., and Zhang, X., Towards Understanding Why a Superhydrophobic Coating Is Needed by Water Striders. Adv. Mater., 2007. 19(17): p. 2257-2257.
    [30] Shirtcliffe, N., McHale, G., Newton, M., Perry, C. and Roach, P., Porous materials show superhydrophobic to superhydrophilic switching. Chemical Communications, 2005. 2005(25): p. 3135-3137.
    [31] Zhao, N., Weng, L., Zhang, X., Xie, Q. and Xu, J., A Lotus-Leaf-Like Superhydrophobic Surface Preparedby Solvent-Induced Crystallization. Chemphyschem, 2006. 7: p. 824-827.
    [32] Zhao, N., Xie, Q., Weng, L., Wang, S., Zhang, X., and Xu, J., Superhydrophobic surface from vapor-induced phase separation of copolymer micellar solution. Macromolecules, 2005. 38(22): p. 8996-8999.
    [33] Minko, S., Muller, M., Motornov, M., Nitschke, M., Grundke, K., and Stamm, M., Two-Level Structured Self-Adaptive Surfaces with Reversibly Tunable Properties. J. Am. Chem. Soc, 2003. 125(13): p. 3896-3900.
    [34] Oner, D. and McCarthy, T., Ultrahydrophobic Surfaces. Effects of Topography Length Scales on Wettability. Langmuir, 2000. 16(20): 7777
    [35] Ming, W., Wu, D., van Benthem, R. and de Wirth, G., Superhydrophobic Films from Raspberry-like Particles. Nano Lett, 2005. 5(11): p. 2298-2301.
    [36] Li, Y., Li, C., Wang, H., Li, L. and Qian, Y., Preparation of nickel ultrafine powder and crystalline film by chemical control reduction. Mater. Chem. Phys., 1999. 59(1): p. 88-90.
    [37] Qian, X., Zhang, X., Wang, C., Xie, Y. and Qian, Y., The Preparation and Phase Transformation of Nanocrystalline Cobalt Sulfides via a Toluene Thermal Process. Inorg. Chem., 1999. 38: p. 2621-2623.
    [38] Cassie, A. and Baxter, S., Wettability of porous surfaces. Transactions of the Faraday Society, 1944. 40: p. 546-551.
    [39] Cheng, Y., Rodak, D., Wong, C. and Hayden, C., Effects of micro-and nano-structures on the self-cleaning behaviour of lotus leaves. Nanotechnology, 2006. 17(5): p. 1359-1362.
    [40] Holland, L., The Properties of Glass Surfaces. Chapman and Hall,London, 1964: p. 3.
    [41] Tomozawa, M. and Capella, S., Microstructure in Hydrated Silicate-Glasses. Journal of the American Ceramic Society, 1983. 66(2): p. C24-C25.
    [42] Franck, E.U., Fluids at High-Pressures and Temperatures. Pure and Applied Chemistry, 1987. 59(1): p. 25.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700