用户名: 密码: 验证码:
区域地球物理地球化学资料在浅覆盖区地质调查中的应用方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对浅覆盖区地质调查工作受景观条件影响的实际困难,在分析岩石的密度、磁化率和风化产物与基岩类型的关系以及布格重力异常、磁异常、元素分区与构造的关系的基础上,系统地研究了基岩反演和构造推断的地球物理、地球化学理论与方法。
     重、磁场能够穿透基岩上覆盖层,被地表仪器接收,反映从浅部到深部地质体的综合信息。由于场具有叠加性,拟提取的场异常信息受侧向或垂向其他场源影响,并且不同地质体可以表现出相同的场信息,使得重、磁异常的反演具有“多解性”。与重磁场不同,地球化学场虽不具备穿透性,但能直接反映地表物质成分。在东北浅覆盖区,风化产物水系沉积物的主要造岩氧化物(元素)组合关系相比基岩没有发生明显变化,且位移不大。这为利用水系沉积物的成分推断基岩类型提供了理论基础。
     在基岩反演方面,本文研究了区域地球物理数据处理和将地球物理信息转化为地质体类型信息的理论与方法,以及利用区域水系沉积物化学成分反演基岩和将地球化学信息转化为地质体类型信息的理论与方法。研究认为,基岩反演应当发挥物化探方法各自的优势,相互结合,互为补充。边界的确定应以地球物理推断为主,基岩类型的确定应以地球化学推断为主。在构造推断方面,本文对利用布格重力异常和航磁异常推断构造的理论进行了分析,并总结了推断构造的标志;同时提出了区域地球化学特征推断构造的理论和方法。研究认为,地球物理推断方法的精度高于地球化学方法;地球化学推断方法是一种有效的新方法,可以作为推断结果的验证和补充。
     本文以黑龙江塔河地区为应用实例,进行了方法试验。
Regional geological surveys are the basis and first step of geological exploration. The method is affected by geological landscape area. The coverage area without bedrock outcrop in our country accounts for about 1 / 3 of the mainland, a considerable part of which is shallow coverage area. Medium-scale geological mapping relies mainly on float, local scattered outcrops or limited project exposure. Deep geological conditions such as blind rocks, stratigraphy, tectonics, mineral(ize) cannot be directly observed. Prospecting techniques in geological research, can exert methods advantages, extract useful geological information, and meet the objective needs of development. In addition, our country has a national coverage of basic geophysical and geochemical data, which can provide useful basic information for the geological mapping of shallow coverage area or for the geological studies. That’s of great practical significance.
     In the aspect of rock inversion with regional geophysical data, the material magnetic, mineral magnetic and rock magnetic, as well as the determinant factors of the density of rock and classic rock density were analyzed in turn, and the magnetic field characteristics of rock mass with different types and the determinant factors of gravity anomalies with different levels were summarized. Then, the conventional treatments of gravity and magnetic data were divided into abnormal enhancement method and field separation method according to different purposes of data processing. Abnormal enhancement methods are mainly pole transform method, directional derivative method and extension method; Field separation method is mainly the matched filtering of wave number domain methods and the curve fitting of interpolation cutting methods. In order to carry out a comprehensive analysis of gravity and magnetic data, the correspondence analysis methods were discussed. In addition to analysis and comments of various data processing methods, a new idea that identifying shallow geological body with the magnetic distribution and difference of shallow rock based on an interpolation cutting method was tested.
     In the aspect of rock inversion with regional geophysical data, the elements content and combination change in the process of rock decaying to soil in north Greater Hinggan Mountain as well as the results of the analysis of influencing factors were first studied in the article. The results showed that elements experienced two different causes of "homogenization" in the process of rock decaying to soil and in the process of stream sediment forming, leading to information extraction and recognition difficult of bedrock. However, there was no significant change in the combinations of main rock-forming oxides (elements), which provided a theoretical foundation for geochemical bedrock data inversion. The results also showed that the grain size and organic matter had a certain impact on the results of the analysis. In the above foundation, geochemical bedrock inversion methods were studied. Two bedrock inversion methods using regional geochemical data, namely "inversion method without standard rock samples to monitor" and "inversion method with standard rock samples to monitor ", were respectively put forward under the two circumstances that there are regional rock data and regional stream sediment data and there are typical geological body and its corresponding chemical composition of stream sediment.
     Through the summation of geophysical and geochemical bedrock inversion theories and methods, it’s considered that the two methods should display their own strengths, combine with each other, and complement each other. The types of geologic body should mainly determined by geochemical interpretation inference. The geological boundaries were synthetically determined by the change band of geophysical field characteristics, the boundaries of geochemistry zoning and the types of petrochemistry.
     In the aspect of structure Inference, the theory of regional geochemical methods is that geologic bodies on both sides of faults move horizontally or vertically as a result of crustal movement, resulting in differences in both sides of the rock to form the chemical composition differences. Based on this, two methods were proposed. Using the geometrical shape of contact border of geochemical zoning and the spatial distribution patterns of mineralizer elements (As, Sb, Hg, etc.) combinations to determine fracture, and using the boundary shapes of different units and their mutual relationship to identify faults. However, due to restrictions on the sampling density, the plane location of the fault inferred and interpreted by regional geochemical methods has a great error, and it reflects only the surface information. Differently, there are mature theoretical approaches of identifying structure with gravity and magnetic methods, with big sampling density and high precision. Therefore, this paper argues that the identification of construction should first use gravity and magnetic methods, and combine geochemical exploration properly as supplement and validation.
     Taking Tahe area, Heilongjiang province as an example, the methods were tested.
     The characteristics of rock density, rock magnetic, gravity field and magnetic field of the study area were analyzed detailedly. Then, the geophysical field in the area was explained. The Results show that a simple gravity method is difficult to distinguish between intrusive rocks, volcanic rocks, metamorphic rocks and sedimentary rocks which have the same rock density and different chemical composition, but it can reflect deep information well. Magnetic methods can give out a clear explanation of shallow information. But the same-magnetic body is not geological mapping unit. When different geologic bodies have the same or similar magnetic properties, it need for other information to support due to the "multiple solutions". Geochemical information can be processed to have a very good reflection on the main geologic bodies. Practice has proved that the geochemical method can effectively determine rock types, but the inference accuracy of rock boundaries is restricted by the sampling density of rock, and it need to refer to the interpretation results of geophysical information.
引文
[1]刘树臣,张丽君,谭永杰,等.当代地质调查工作发展态势及我国对策[M].北京:地质出版社, 2003.
    [2]李超岭,于庆文.数字区域地质调查基本理论与技术方法[M].北京:地质出版社, 2003.
    [3]康继武,杨梅忠,房庆华,等.地质填图实习指南[M].徐州:中国矿业大学出版社, 1995.
    [4]杜其良.中国区域地质调查史之探议[J].成都理工学院学报. 1997, 24(4): 116-118.
    [5]国土资源部.全国地质勘查规划[N].地质勘查导报.
    [6] http://www.ngac.cn/Gallery_New/Default.aspx?tab=last&type=image&node=543& id=511[Z].
    [7] http://www.ngac.cn/Gallery_New/Default.aspx?tab=last&type=image&node=545& id=511[Z].
    [8]马晓阳.我国东北森林沼泽浅区化探异常查证方法技术研究[D].北京:中国地质大学, 2006.
    [9]蔡丽艳,周兆喜.实施天然林保护工程的意义存在问题及对策[J].林业资源管理. 1999(1): 1-4.
    [10]林言.保护天然林:中国生态环境建设的重大战略[J].林业经济. 1999(3): 1-12.
    [11]张佩昌.试论天然林保护工程[J].林业科学. 1999, 35(2): 124-131.
    [12] http://www.ngac.cn/Gallery_New/Default.aspx?tab=last&type=image&node=567& id=511[Z].
    [13] http://www.ngac.cn/Gallery_New/Default.aspx?tab=last&type=image&node=561& id=511[Z].
    [14] http://www.ngac.cn/Gallery_New/Default.aspx?tab=last&type=image&node=552& id=511[Z].
    [15]地矿部勘查技术司.地矿部物探发展四十年[J].物探与化探. 1992, 16(5): 321-332.
    [16]管志宁.中国磁法勘探的研究与发展[J].地球物理学报. 1997, 40(增刊): 299-307.
    [17]王懋基.中国重力勘探的发展与展望[J].地球物理学报. 1997, 40(增刊): 192-298.
    [18]年宗元.我国勘查地球物理的若干进展[J].物探与化探. 1996, 20: 401-418.
    [19]刘士毅,吴海成.物探为找矿事业立下汗马功劳[C]. 2007.
    [20]地矿部勘查技术司.地矿部化探发展四十年[J].物探与化探. 1992, 16(5): 334-344.
    [21]孙文珂.十年来物探化探遥感工作的进展与今后工作的进展[J].物探与化探. 1992, 16(1): 3-13.
    [22]牟旭赞.区域化探工作进展和今后任务[J].中国地质. 1997(1): 16-17.
    [23]利特文著,周超凡,张怀素译.深部地质填图(1:50000地质测量方法参考书)[M].北京:地质出版社, 1984.
    [24]吴承栋. 80年代苏联固体矿产预测工作的现状的动向[J].地质科技参考资料. 1990(3).
    [25]钟清.区域重力资料在地质填图中的边界定位问题研究[D].北京:中国地质大学, 2006.
    [26]范正国,方迎尧,王懋基,等.航空物探技术在1∶25万区域地质调查中的应用[J].物探与化探. 2007, 31(6): 504-509.
    [27]陆克.国外航空物探重要进展[J].国外地质勘探技术. 1994, 20(5): 1-4.
    [28]石宏仁.澳大利亚新一代地质填图工作模式[J].中国地质. 1998, 25(1): 34-35.
    [29]田刚,郝立波,刘菁华,等.综合方法技术在1∶25万浅覆盖区区域地质调查中的应用[M].长春:吉林科学技术出版社, 2008.
    [30]孙文珂,丁鹏飞.地质填图和成矿预测的综合方法[M].北京:地质出版社, 1994.
    [31]吉林省地矿局物探大队.大功率激电在吉林大黑山地区地质填图和间接找矿中的作用[J].物探与化探. 1984, 8(2): 105-115.
    [32] Saunders,方励译J H G F.根据航空伽马测量特征进行岩石分类[J].国外铀矿地质. 1987, 20(1): 42-52.
    [33]魏彪,刘登忠,贾文彭.地面y能谱测量在区域地质调查中的应用[J].成都理工学院学报. 1996, 23(2): 104-108.
    [34]刘菁华,王祝文.地面综合物探方法在浅覆盖区地质填图单元的划分研究[J].中国地质. 2005, 32(1): 162-167.
    [35]刘菁华,王祝文,田钢,等.地面伽马能谱测量应用于浅覆盖区地质填图数据预处理[J].吉林大学学报(地球科学版). 2003, 33(1): 101-105.
    [36]刘菁华,王祝文,田钢,等.地面伽马能谱测量在浅覆盖区地质填图中的应用[J].地质与勘探. 2003, 39(2): 61-64.
    [37]时艳香,纪宏金,郝立波,等.利用水系沉积物地球化学数据判别浅覆盖区岩性与构造—欧式距离法[J].物探化探计算技术. 2004, 26(3): 243-246.
    [38]郝立波,陆继龙,马力,等.浅覆盖区土壤化学成分与基岩化学成分的关系及其意义[J].中国地质. 2005, 32(3): 476-481.
    [39]王保林,翁士明,汤正江,等.应用多元素背景判别法在浅覆盖区进行1∶20万地质填图的尝试[J].安徽地质. 2005, 15(4): 294-297.
    [40]陈世悦.矿物岩石学[M].东营:石油大学出版社, 2002.
    [41]刘英俊.矿物学基础知识[M].南京:江苏人民出版社, 1958.
    [42]孙建国.岩石物理学基础[M].北京:地质出版社, 2006.
    [43]臧绍先.地球内部结构的地震学研究[J].地震学报. 1993, 15(3): 366-374.
    [44]王妙月.固体地球内部几何结构成像和物性结构成像[J].地球物理学进展. 2007, 22(4): 1126-1129.
    [45]王春镛.地球内部构造和动力学的地震学研究[J].地学前缘(中国地质大学,北京). 1998, 5(1-2): 91-98.
    [46]臧绍先,宁杰远.地球内部物质组成及其性质的研究[J].地球物理学报. 1993, 8(2): 1-12.
    [47]陈胜早.地球内部物理和演化的几个核心论题:Ⅰ.地球内部结构和物理性质[J].高校地质学报. 1997, 3(3): 349-362.
    [48]侯渭,欧阳自远,谢鸿森,等.球粒陨石的熔融分异过程和地球的初期演化[J].中国科学B辑. 1992, 22(4): 414-420.
    [49]周文戈,谢鸿森,赵志丹,等.高温、高压下粗面玄武岩相变对其纵波速度影响的研究[J].科学通报. 1999, 44(4): 424-427.
    [50]宋茂双,谢鸿森,郑海飞,等.高温高压下主要上地幔矿物的波速测量及地质意义[J].中国科学D辑. 1996, 26(2): 173-178.
    [51]侯渭,谢鸿森,张月明,等.含水上地幔的模拟实验研究[J].地球化学. 1985, 14(4): 337-343.
    [52]谢鸿森,徐惠刚,张月明.地球深部物质演化的实验研究[J].地质地球化学. 1986, 14(11): 34-39.
    [53]滕吉文.固体地球物理学[M].北京:地震出版社, 2003.
    [54]《重力勘探资料解释手册》编写组.重力勘探资料解释手册[M].北京:地质出版社, 1983.
    [55] V. B. Baranov G A L K. Calculation of the boundary layer on a dielectric flat plate in a flow of incompressible anisotropically-conducting fluid, in the presence of a uniform magnetic field [J]. Journal of Applied Mathematics and Mechanics. 1963, 27(3): 757-776.
    [56] Joao B C S. Reduction to the Pole as an Inverse Problem and its an Application to Lowlatitude Auomalies [J]. Geophysics. 1986, 51(2): 369-382.
    [57] Fernando G, Beatriz I. A sparse spectrum technique for gridding and separating potential field anomalies[J]. Geophysics. 2000, 65(4): 1154-1161.
    [58] Gijs C F, Christian F W H. Fast structural interpretation with structure-oriented filtering[J]. Geophysics. 2003, 68(4): 1286-1293.
    [59] Goldstein N E, Ward S H. The separation of Remanent from induced Magnetism in Situ[J]. Geophysics. 1966, 31(4): 770-790.
    [60] Grauch V J S, Cambrey S J. Gradient window method:A simple way to separate regional from local horizontal gradients in gridded potential-field data[Z]. Salt Lake City,Utah: 20026-11.
    [61] Gupta V K, Ramani N. Some aspects of regional-residual separation of gravity anomalies in aPrecambrian trrrain[J]. Geophysics. 1980, 45(9): 1412-1416.
    [62] Joachim W, Hanno S. A Scheme for Coherence-Enhancing Diffusion Filtering with Optimized Rotation Invariance[J]. Journal of Visual Communation and Image Representation. 2002, 13(2): 103-118.
    [63] Pawlowski R S, Hansen R O. Gravity anomaly separation bu Wiener filtering[J]. Geophysics. 1990, 55(5): 539-548.
    [64] Pilkington M, Cowan D R. Model-based separation filtering of magnetic data[J]. Geophysics. 2006, 71(2): 17-23.
    [65] Richard S S, Michael D O. Interpolation and gridding of aliased geophysical data usingconstrained anisotropic diffusion to enhance trends[J]. Geophysics. 2005, 70(5): 121-127.
    [66] Yaoguo L, Douglas W O. Separation of regional and residual magnetic field data[J]. Geophysics. 1998, 63(2): 431-439.
    [67]刘东甲,程方道.划分重力区域场与局部场的多次切割法[J].物探化探计算技术. 1997, 19(3): 31-35.
    [68]秦葆瑚.用分层切割法研究复杂磁异常[J].物探化探计算技术. 1994, 16(2): 96-101.
    [69]文百红,程方道.用于划分磁异常的新方法-插值切割法[J].中南矿冶学院学报. 1990, 21(3): 229-234.
    [70] Spector A. Comments and Errata to Classic Papers[J]. Geophysics. 1985, 50(11): 2278.
    [71]曾昭发,吴燕冈,郝立波,等.基于泊松定理的重磁异常分析方法及应用[J].吉林大学学报(地球科学版). 2006, 36(2): 279-283.
    [72]刘沈衡.重磁异常对应分析及应用[J].物探与化探技术. 1993, 15(3): 232-237.
    [73]刘沈红,朱春生.重磁异常对应分析应用实例[J].有色金属矿产与勘查. 1998, 7(3): 160-163.
    [74]郝立波,马力,赵海滨.岩石风化成土过程中元素均一化作用及机理:以大兴安岭北部火山岩区为例[J].地球化学. 2004, 33(2): 131-138.
    [75]邱家骧.碱度在火山岩岩石学及地质学上的意义[J].地质与勘探. 1982(7): 1-10.
    [76]邱家骧.碱度在火山岩岩石学及地质学上的意义(续)[J].地质与勘探. 1982(8): 1-9.
    [77]苏金明,张莲花,刘波. MATLAB工具箱应用[M].北京:电子工业出版社, 2004.
    [78]阳明盛,熊西文,林建华. MATLAB基础及数学软件[M].大连:大连理工大学出版社, 2003.
    [79]邓聚龙.灰色系统基本方法[M].武汉:华中理工大学出版社, 1987.
    [80]徐忠祥,吴国平.灰色系统理论与灰色矿床预测[M].武汉:中国地质大学出版社, 1993.
    [81]赵云胜,赵钦球.灰色系统理论在地学中的应用研究[M].武汉:华中理工大学出版社, 1997.
    [82]鄢明才,迟清华.中国东部地壳与岩石的化学组成[M].北京:科学出版社, 1997.
    [83]黎彤.中国陆壳及其沉积层和上陆壳的化学元素丰度[J].地球化学. 1994, 23(2): 140-144.
    [84]黎彤,倪守斌.中国大陆岩石圈的化学元素丰度[J].地质与勘探. 1997, 33(1): 31-37.
    [85]黎彤,袁怀雨,吴胜昔,等.中国大陆壳体的区域元素丰度[J].大地构造与成矿学. 1983, 23(2): 101-107.
    [86]陈治.使用SPSS软件进行因子分析和聚类分析的方法[J].市场研究. 2006(6): 45-48.
    [87]方开泰.实用多元统计分析[M].上海:华东师范大学出版社, 1989.
    [88]董焕成.重磁勘探教程[M].北京:地质出版社, 1993.
    [89]史謌.地球物理学基础[M].北京:北京大学出版社, 2002.
    [90]曲国胜,王绳祖.中国大陆及邻近海域航磁-大地构造解释及分区[J].地质科学. 1997, 32(4): 454-464.
    [91] Johnson P R, Stewart I C F. Magnetic inferred basement structure in central Suadi Arabia [J]. Tectonophysics. 1995, 245: 37-52.
    [92] Wu G, Xiao X, Li T. The Yadong-Golmud geoscience transect in the Qinghai-Tibet Plateau[J]. Acta Geologica Sinica. 1990, 3(2): 115-127.
    [93]张永军,张开均.根据航磁数据探讨阿尔金断裂带的结构及构造演化[J].物探与化探. 2007, 31(6): 489-494.
    [94]姚正熙,周伏洪,薛典军,等.青藏高原中西部板块缝合带航磁特征[J].物探与化探. 2002, 26(3): 165.
    [95]林长松,管志宁.东海磁源重力异常、重力异常的对比和深部地质构造研究[J].海洋学报. 1992, 14(5): 75-85.
    [96] Wang L W. Origin and evolution of the East China Sea Basin[J]. Acta Oceanologica. 1984, 3(4): 527-538.
    [97]张德润.塔里木地台的东部边界问题[J].地质论评. 1992, 38(1): 28-32.
    [98]吴功建,高锐.论区域航磁异常与我国东部深部地质构造的关系[J].中国区域地质. 1983, 5: 97-111.
    [99]杨恬,吴世敏,刘海龄.南海西北部重磁场及深部构造特征[J].大地构造与成矿学. 2005, 29(3): 363-370.
    [100]涂广红,江为为,朱东英,等.中国东北地区剩余重磁异常特征与地质构造及成矿带的关系[J].地球物理学进展. 2006, 21(3): 746-755.
    [101]江为为,涂广红,朱东英.东北地区重磁场与地壳结构特征[J].地球物理学进展. 2006, 21(3): 730-738.
    [102]朱学礼.浅谈华北地台北界中段划分问题[J].铀矿地质. 1991(1).
    [103]孙岩,徐士进,刘德良,等.断裂构造地球化学导论[M].北京:科学出版社, 1998.
    [104]黄汲清,任纪舜,蒋春发,等.中国大地构造及其演化[M].北京:科学出版社, 1980.
    [105]赵春荆.吉黑东部构造格架及地壳演化[M].沈阳:辽宁大学出版社, 1996.
    [106]黑龙江省地质矿产局编. 1∶20万依西肯、十八站、兴华、鸥浦幅区域地质调查报告[R].黑龙江省地质矿产局, 1985.
    [107]黑龙江省地质矿产局编. 1∶20万开库康幅区域地质调查报告[R].黑龙江省地质矿产局, 1985.
    [108]黑龙江省地质矿产局编. 1∶20万塔河区幅区域地质调查报告[R].黑龙江省地质矿产局, 1985.
    [109]黑龙江省地质矿产局编. 1∶5万古鲁干幅区域地质调查报告[R].黑龙江省地质矿产局, 1989.
    [110]黑龙江省地质矿产局编.黑龙江省区域地质志[M].北京:地质出版社, 1991.
    [111]黑龙江省地质矿产局编.黑龙江省岩石地层[M].武汉:中国地质大学出版社, 1997.
    [112]隋振民.大兴安岭东北部花岗岩类锆石U-Pb年龄、岩石成因及地壳演化[D].吉林大学, 2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700