用户名: 密码: 验证码:
高氮含量宝石级金刚石的合成
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氮是金刚石中最主要的杂质元素,天然金刚石含氮量约为2×103ppm,多为无色(Ia型):而人工合成金刚石的含量仅仅约为300ppm,为黄色(Ib型)。两种金刚石在氮浓度及存在形式上有很大差异,导致了两种金刚石的诸多性质不同。合成具有完整晶型的高氮含量金刚石能提供一种人工合成类“天然”金刚石和“硼皮氮芯”金刚石的开创性技术。更为重要的是这一突破能使人们对天然金刚石的形成机制有一个更新的认识。本实验室前期已经通过添加NaN3使用粉末触媒合成出了氮含量与天然金刚石相当的工业级金刚石。然而,工业级金刚石颗粒毕竟尺寸有限,一般粒径只有O.5mm左右,这与天然金刚石颗粒还是有着相当大的距离的。此外由于粒径较小,也限制了高氮金刚石在诸多方面的应用。因此在此基础上对高温高压条件下合成高氮含量的大尺寸宝石级金刚石进行研究有着十分重要的意义。
     本文使用国产六面项压机,首次用不同触媒(FeNiMnCo、FeNiCo)+C+不同比例的添加剂NaN3合成出具有完整晶型的优质深绿色高氮含量宝石级金刚石单晶,研究了NaN3对宝石级金刚石中氮含量及生长行为的影响。
     为了进一步考察NaN3的添加对于晶体生长的影响,我们借助扫描电镜的手段对晶体的形貌进行了研究。随着NaN3的加入,晶体逐渐向富{111}晶面形态转变,此时晶体表面也逐渐趋于平滑,很少出现熔坑等缺陷。当NaN3的添加比例进一步提高时,晶体表面开始出现一系列的相互平行的凹槽。当NaN3的添加比例提高到0.6wt%时,晶体表面出现了不规则分布的三角形凹坑,以及大量不规则形状的凸台。
     综上所述,本文通过对高氮含量宝石级金刚石合成的研究,找到了生长优质高氮晶体的有效手段。并首次合成出了含氮量达1707ppm的宝石级金刚石单晶。合成出尺寸达3.2mm含氮量达1520ppm的优质晶体。
It is well known that nitrogen is one of the most common impurities in industry and natural diamond. In natural diamond the concentration of nitrogen is commonly about 2×103 ppm, mostly colorless (type Ia), but the synthetic diamond is only about 300ppm, yellow (type Ib). There are so significant differences in nitrogen concentration and form between the two type diamond. It cause a lot of differences in properties. Syntheses of diamond with a high concentration of nitrogen in laboratory provide a means for fabricating diamond with nitrogen concentration and form similar to those of the natural diamond and for fabricating diamond with "boron skin and nitrogen core". Furthermore, these can provide new knowledge of mechanisms for natural diamond nucleation and growth. It should be helpful for future study toward the understanding of how nitrogen atoms accommodate themselves in the synthetic diamond, and how high concentrations of nitrogen eventually become platelets or tetrahedron in the natural diamond. In our previous studies, using powder catalyst and NaN3 as an addition, we have already synthesized industrial diamond with a considerable nitrogen content of natural diamond. However, industrial-grade diamond particulate's size is limited, and the general size is only about 0.5mm. There is still a distance with natural diamonds. In addition due to the smaller size also limits the applications of high nitrogen content diamonds. Therefore, it is very important to study on high nitrogen content diamond synthesis in HPHT condition.
     In this study, we use a cubic anvil HPHT apparatus. Using catalysts (FeNiMnCo, FeNiCo), graphite and addition of NaN3, large green single crystal diamond with high nitrogen concentration is firstly synthesized by temperature gradient method. We have studied the NaN3 effect on the nitrogen contents and growth of gem diamond.
     In order to further study the impact of the addition of NaN3 to crystal growth, we used SEM to study the surface morphology of crystals. With the addition of NaN3, crystal gradually changed to (111) crystal plane rich patterns, at the same time the crystal surface became more and more smooth, rarely occurred defects such as melt pit. When the addition of NaN3 further improved, the crystal surface began to appear a series of parallel grooves. As the addition of NaN3 reached 0.6wt%, the crystal surface was irregularly distributed lots of triangular pits and irregular-shaped steps.
     Above all, through the research on high nitrogen content gem diamond synthesis, we found a effective means to synthesize high-quality high-nitrogen diamond. synthetic crystals reached the maximum nitrogen content 1707ppm.
引文
[1] H. Kanda and T. Ohsawa. Effect of solvent metals upon the morphology of synthetic diamonds [J].Journal of Crystal Growth,1989,94:115-124.
    [2] I. Sunagawa. Growth and morphology of diamond crystals under stable and metastable conditions [J].Journal of Crystal Growth,1990,99: 1156-1161.
    [3] L.J. Giling and W.J.P. Van Enckevort. On the influence of surface reconstruction on crystal growth processes [J],Surface Science,1985, 161:567-583.
    [4] H. Kanda, T. Ohsawa, O. Fukunaga and I. Sunagawa. Morphology and Growth unit of Crystals[M], Ed. I. Sunagawa , Terra, Tokyo, 1984.
    [5] M. Moore and A.R. Lang. On the origin of the rounded dodecahedral habit of natural diamond[J], J. Crystal Growth,1974,26:133-139.
    [6] A.R. Lang. Glimpses into the growth history of natural diamonds[J].J. Crystal Growth,1974,24/25:108-115.
    [7] S.Yamaoka, H. Komatsu, H. Kanda and N. Setaka. Growth of diamond with rhombic dodecahedral faces[J].J. Crystal Growth,1977,37:349-352.
    [8] A.T. Collins, The color of diamond and how it may be changed[J],Journal of Gemmology,2001,Vol.27,No.6:341-359.
    [9] A.T. Collins, Colour cetres in diamond[J],Journal of Gemmology,1982, Vol.18,No.1:37-75
    [10] R.C. DeVries, A comparison of diamonds and diamond-making by nature and man[J],GE Res. Rep.,1985,85CRD177
    [11] Appendix B, Properties of Natural and Synthetic Diamond[M], Ed. J.E. Field, Academic Press, London, 1992:669.
    [12] S. Vagarali, M. Lee and R.C. Devries. Progress of large diamond growth technology and future prospects[C],The Fourth International Conference on theScience of Hard Materials,Madeira,Portugal,10-15,November, 1991,:233-245.
    [13] G. Davies. The optical properties of diamond, Phys. Chem. Carbon[M], Vol13,1977.
    [14] W. Kaiser and W.L. Bond, Nitrogen, a Major Impurity in common type I diamond[J],Phys. Rev.,1959,115:857.
    [15] H. Sumiya, S. Satoh, Y. Nishibayashi, Y. Goda,“Development of high-purity synthetic diamonds”, Sumitomo Electric Technical Review, number 39, January (1995) 69
    [16] S. Satoh, H. Sumiya, K. Tsuji, Y. Gouda. Process for the synthesis of diamond: U.S,6129900[P].2000-10-10.
    [17] H.M. Strong, R.M. Chrenko, R.E. Tuft, Annealing type Ib or mixed type Ib-Ia Natural diamond crystal, U.S,4124690[P].1978-11-07.
    [18] R.M. Chrenko, R.E. Tuft, H.M. Strong. Transformation of the state of nitrogen in diamond[J], Nature,1977,270:141-144.
    [19] A.A. Chepurov, J.M. Dereppe, I.I. Fedorov, A.I. Chepurov. The change of Fe-Ni alloy inclusions in synthetic diamond crystals due to annealing[J], Diamond and Related Materials,2000,9:1374-1379.
    [20] H. Kanda, X. Jia. Change of luminescence character of Ib diamonds with HPHT treatment[I], Diamond and Related Materials[J],2001,10: 1665-1669.
    [21] I. Kiflawi, H. Kanda, D. Fisher, S.C. Lawson. The aggregation of nitrogen and the formation of A centers in diamonds[J], Diamond and Related Materials,1997,6:1643-1649.
    [22] I. Kiflawi, J. Bruley. The nitrogen aggregation sequence and the formation of voidites in diamond[J], Diamond and Related Materials, 2000,9:87-93
    [23] T. Evans. Aggregation of Nitrogen in Diamond, Properties of Natural and Synthetic Diamond[M], Ed. J.E. Field, Academic Press, London, 1992: 259.
    [24] H. Kanda, T. Ohsawa and S. Yamaoka, Proceedings of the First InternationalConference on New Diamond Science and Technology[M], Tokyo, Japan, 1990:339-344.
    [25] C.D. Clark, A.T. Collins, G.S. Woods, Absorption and lumines- cence spectroscopy, Properties of Natural and Synthetic Diamond[M], Academic Press, London, 1992:259.
    [26] M.N.Yoder, Diamond and Diamond-Like Films and Coatings[M], Plenum Press, New York, 1991:1-16
    [27] Chris Owers and Philip Bex.工业金刚石的应用、效益与展望[J],超硬材料与工程,2000,1:2.
    [28] W. Tillmann. Trends and market perspectives for diamond tools in the construction industry[J], International Journal of Refractory Metals& Hard Materials, 2000,8:301-306.
    [29] C.M. Sung. Brazed diamond grid: a revolutionary design for diamond saws[J], Diamond and Related Materials,1999,8:1540-1543.
    [30]贾晓鹏,宝石级金刚石的合成[C],香山会议,北京,2000.
    [31] A.K. Freund, J. Hoszowska, J.P.F. Sellschop, R.C. Burns, M. Rebak. Recent developments of high-quality synthetic diamond single crystals for synchrotron X-ray monochromators[J],Nuclear Instruments and Methods in Physics Research A,2001,467-468:384-387.
    [32] R.J. Tapper. Diamond detectors in particle physics[J], Rep. Prog. Phys., 2000,63:1273
    [33] H. Sumiya, Super-hard diamond indenter prepared from high- purity synthetic diamond crystal[J], Review of Scientific Instruments,2005, 76:1-3
    [34] T. Tanaka, J. Kaneko, D. Takeuchi, H. Sumiya et al. Diamond radiation detector made of an ultrahigh-purity type IIa diamond crystal grown by high-pressure and high-temperature synthesis[J], Review of Scientific Instruments,2001, Vol. 76, Num. 2:1406-1410.
    [35] P.W. May. Diamond thin films: a 21st-century material[J], Phil. Trans. R. Soc. Lond. A,2000,358: 473-495.
    [36] C.H. Desch. The problem of artificial production of diamond[J], Nature, 1928,121:799.
    [37] Lord Reyleigh. J.B. Hanay and the artificial production of diamond[J], Nature,1943,152:597.
    [38] F.D. Rossini and R.S. Jessup. Heat and free energy of formation of CO2 and the transition between graphite and diamond[J], J. Res. Nat. Bur. Stand. Sect. C, 1938,21:491.
    [39] P.W. Bridgman. An experimental contribution to the problem of diamond synthesis[J], J. Chem. Phys,1947,15:92.
    [40] C. Guy Suits. Man-Made Diamonds-a Progress Report[J], Proc. Am. Philos. Soc.,1964,108:443.
    [41] S. Ferro. Synthesis of diamond[J], J. Mater. Chem., 2002,12:2843–2855
    [42] H.M. Strong. Early diamond making at General Electric[J], Am. J. Phys.,1989,57:794
    [43] H.T. Hall. The synthesis of diamond[J], Journal of Chemical Education, 1961,38:484-491.
    [44] F. P. Bundy, H. T. Hall, H. M. Strong and R.H. Wentorf. Man-made diamonds[J],Nature,1955,176:51.
    [45] H.P. Bovenkerk, F.P. Bundy, H.T. Hall, H.M. Strong, and R.H. Wentorf. Preparation of diamond, Nature,1959,184:1094.
    [46] H.M. Strong. Diamond synthesis with Ferrous metal alloys,U.S,2947609 [P]. 1958-01-06
    [47] H.T. Hall, H.M. Strong, and R.H. Wentorf. Method of making diamonds, U.S,2047610[P],1958-01-06.
    [48] H.M. Strong. Catalytic effects in the transformation graphite to diamond[J], J.Phys. Chem.,1963,39:2057.
    [49] H.T. Hall. Diamond synthesis, U.S,2947608[P].1958-01-06
    [50] H.M. Strong and R.H. Wentorf, Jr. The growth of large diamond crystals[J], Naturwissenschaften,1972,59:1-7.
    [51] R.H. Wentorf, Jr. Some studies of diamond growth rates[J],J. Phys. Chem.,1971,75:1833.
    [52] H.M. Strong and R.M. Chrenko. Further studies on diamond growth rates and physical properties of laboratory-made diamond[J],J. Phys. Chem.,1971,75:1838
    [53] H.M. Strong. Manufacture of diamond products,U.S,4082185[P] 1976-07-15.
    [54] H.M. Strong. Method and high pressure reaction vessel for quality control of diamond growth on diamond seed,U.S,4034066[P]. 1973-11-02.
    [55] A. Hara. Seimitsukikai[C],1985,51:1497.
    [56] J.E. Shigley, E. Fritsch, C.M. Stockton, J.I. Koivula, C.W. Fryer and R.E. Kane. Gems & Gemology, 1986,22(4):192.
    [57] S. Satoh and H. Sumiya, The Review of High Pressure Science and Technology[C], 1993,2:315.
    [58] R.C. Burns, S. Kessler, M. Sibanda, C.M. Welbourn, D.L. Welch. Large synthetic diamonds[C], Proc. 3rd NIRIM Int. Symp. Advanced Materials, 1996:105-111.
    [59] H. Kanda. Large diamonds grown at high pressure conditions[J], Brazilian Journal of Physics, 2000,30(3):482-489.
    [60] J.E. Shigley, R. Abbaschian, C. Clarke. Gemesis laboratory- created diamonds[J], Gems & Gemology, 2002,38(2):301-309.
    [61] J.E. Shigley, S.F. McClure, C.M. Breeding, A.H. Shen. S.M. Muhlmeister[J], Gems & Gemology, 2004,40(2):128-145.
    [62] J.E. Shigley, E. Fritsch, J.I. Koivula, N.V. Sobolev, I.Y. Malinovsky, Y. Palyanov. The gemological properties of Russian gem-quality synthetic diamonds[J], Gems & Gemology, 1993,29(4): 228-248.
    [63] T.R. Anthony, W.F. Banholzer, J.F. Fleischer, L.Wei, P.K. Kuo, R.L. Thomas and R.W. Pryor. Thermal diffusivity of isotopically enriched 12C diamond [J], Phys. Rev. B,1990,42:1104.
    [64] H. Sumiya, S. Satoh. High-pressure synthesis of high-purity diamond crystal[J], Diamond Rel. Mater.,1996,5:1359.
    [65] H. Sumiya, N. Toda, Y. Nishibayashi, S. Satoh. Crystalline perfection of high purity synthetic diamond crystal[J], J. Crystal Growth,1997,178: 485.
    [66] H. Sumiya, N. Toda, S. Satoh. Growth rate of high-quality large diamond crystals[J], Journal of Crystal Growth, 2002,237-239:1281.
    [67] R.C. De Vries. Synthesis of diamond under metastable condition[J], Ann. Rev. Mater. Sci., 1987,17:161.
    [68] Amanda Yarnell. The many facets of man-made diamonds, Cenear[J], 2004,82(5):26.
    [69] C.S. Yan, Y.C. Chen, S.S. Ho, H.K. Mao and R.J. Hemley. Large single crystal CVD diamonds at rapid growth rates, The 10th International Conference on New Diamond Science and Technology, May 11-14, 2005[C],AIST, Tsukuba, Japan.
    [70] C.S. Yan, Y.C. Chen, S.S. Ho, H.K. Mao and R.J. Hemley. Large single crystal CVD diamonds at rapid growth rates, 8th Applied Diamond Conference, NanoCarbon 2005, May 15-19, 2005[C], Argonne National Laboratory, Argonne, Illinois.
    [71] C.S. Yan, Y.C. Chen, S.S. Ho, H.K. Mao and R.J. Hemley. Characterization of single-crystal diamonds grown by high growth rate chemical vapor deposition, 8th Applied Diamond Conference, NanoCarbon 2005, May 15-19, 2005[C],Argonne National Laboratory, Argonne, Illinois.
    [72] Y.C. Chen, C.S. Yan, H.K. Mao and R.J. Hemley. Characte- rization of gem-quality diamond single crystals using chemical vapor deposition at very high growth rate, First Annual SSAAP Symposium March 29-31, 2004[C],Albuquerque,NM.
    [73] C.S. Yan, H.K. Mao, W. Li, J. Qian, Y. Zhao, and R.J. Hemley. Ultrahard diamond single crystals from chemical vapor deposition[J], Physica Status Solidi a,2004,201:R24-R27.
    [74]郝兆印,邹广田等,人工合成金刚石[M],长春:吉林大学出版社,1996.
    [75]望贤成,优质IIa型宝石级金刚石单晶的合成[D],长春:吉林大学原子与分子物理研究所,2005.
    [76]芶清泉,吉林大学学报[J],1974,2:62.
    [77]芶清泉,人造金刚石合成机理研究[M],成都:成都科技大学出版社,1986.
    [78]贾晓鹏,金刚石合成的溶剂理论及当今行业热点问题的探讨[C],全国超硬材料及制品研讨会,2001:1.
    [79] F.P. Bundy. Pressure-temperature phase diagram of elemental carbon[J], Physica A, 1989,156:169.
    [80] H. M. Strong and R. E. Hanneman. Crystallization of diamond and graphite[J], J. Chem. Phys., 1967,46:3668.
    [81] F.P. Bundy, H.P. Bovenkerk, H.M. Strong, and R.H. Wentorf, Jr. Diamond-graphite equilibrium line from growth and graphitization of diamond[J], J. Chem. Phys., 1961,35: 383.
    [82] M. Wakatsuki and K. Takano. Suppression of spontaneous nucleation and seeded growth of diamond[M], High-Pressure Research in Mineral Physics, edited by M.H. Manghnani and Y. Syono, 1987: 203.
    [83] M. Wakatsuki and K. Ichinose. A wedge-type cubic anvil high-pressure apparatus and its application to material synthesis research[M], High-Pressure Research in Geophysics, edited by S. Akimoto and M.H. Manghnani, 1982:13.
    [84] H.T. Hall. Guided high pressure presses,U.S,5744170[P]1996-11-18.
    [85] H.T. Hall. Ultra-high-pressure, high temperature apparatus: The‘belt’[J], Rev. Sci. Instrum., 1960,31:125.
    [86] F.P. Bundy. Direct conversion of graphite to diamond in static pressure apparatus[J], J. Chem. Phys.,1963,38:631.
    [87] S. Naka, K. Horii, Y. Takeda, T. Hanawa. Direct conversion of graphite to diamond under static pressure[J], Nature,1976,259:38.
    [88] R. C. Burns, J. O. Hansen, R. A. Spits, M. Sibanda, C.M. Welbourn, D.L. Welch. Growth of high purity large synthetic diamond crystals[J], Diamond Relat. Mater.,1999,8:1433.
    [89] H. Sumiya, N. Toda, S. Satoh. Development of high-purity large-size synthetic diamond crystals[J], Sumitomo Electric Technical Review, 2005,60:10
    [90] F.P. Bundy, H.M. Strong, R.H. Wentorf, Jr.. Methods and mechanisms of synthetic diamond growth[J], Phys. Chem. Carbon, 1973,10:213.
    [91] H.Sumiya. Synthetic of high-purity and high-quality diamond crystal and its characterization[D].
    [92] R.C. Burns, G.J. Davies. Growth of synthetic diamond[D], Properties of Natural and Synthetic Diamond, Academic Press, London, 1992:395
    [93] H. Kanda, Temperature effect on impurities in high pressure synthetic diamonds[C], Proc. 3rd NIRIM International Symposium on Advanced Materials, Japan, 1996:113.
    [94] Xiaopeng Jia and M. Wakatsuki. Growth of diamond single crystal at stabilized condition for the growth[C], Proc. 3rd NIRIM International Symposium on Advanced Materials, Japan, 1996:267.
    [95] Teukam Z.,et al. Shallow donors with high n-type electrical conductivity in homoepitaxial deuterated boron-doped diamond layers[J], Nature Mater., 2003,2:482.
    [96] E.A. Ekimov, V.A. sidorov, E.D. Bauer, N.N. Mel’nik, N.J. Curro, J.D. Thompson, S.M. Stishov. Superconductivity in diamond[J], Nature, 2004,428:542.
    [97] K.De Corte, P.Cartigny, V.S.Shatsky, P. De Paepe, N.V. Sobolev, M.Javoy,Proceedings of the Seventh International Kimberlite Conference[M], South Africa, 1999:174.
    [98] Kanda H, Akaishi M, Yamoka S. Synthesis of diamond with the highest nitrogen concentration[J], Diamond Rel. Mater., 1999,8:1441.
    [99] Borzdov Y, Pal’yanov Y, Kupriyano I, Gusev V, Khokhryakov A, Sokol A, et al. HPHT synthesis of diamond with high nitrogen content from an Fe3N-C system[J], Diamond Rel. Mater.,2 002,11:1863.
    [100]梁中翥, Fe/Ni基触媒+NaN3合成高氮含量金刚石及其表征[D],长春吉林大学原子与分子物理研究所,2005.
    [101] I.Kiflawi, A.E. Mayer, P.M. Spear, J.A. van Wyk and G.S. Woods. Infrared absorption by the single nitrogen and A defect centers in diamond[J], Phil. Mag. B, 1994,69:1141.
    [102] G.S. Woods, Infrared absorption studies of the annealing of irradiated diamonds[J], Phil. Mag. B,1984,50:673.
    [103] Kalish R, Doping of diamond[J], Carbon,1999,37:781.
    [104] G. Davies, The A nitrogen aggregate in diamond-its symmetry and possible structure[J], J. Phys. C,1976,9:L537.
    [105] P.J. Fallon, L.M. Brown, J.C. Barry and J. Bruley, Nitrogen determination and characterization in natural diamond platelets[J], Phil. Mag. A,1995,72:21.
    [106] W.V. Smith, P.P. Sorokin, I.L. Gelles and G.J. Lasher, Electron-Spin Resonance of Nitrogen Donors in Diamond[J], Phys. Rev. 1959,115:1548.
    [107] H.B. Dyer and L. du Preez, Irradiation damage in type I diamond[J],J. Chem. Phys.,1965,42:1898.
    [108] H. Sumiya, H. Toda and S. Satoh, High-quality large diamond crysals[J], New Diamond and Frontier Carbon Technonogy, 2000,10:233.
    [109] R.G. Blossey, R.D. Pehlke, The solubility of nitrogen in liquid Fe-Ni-Co alloys[J], AIME MET SOC TRANS,1966,236(4):566..
    [110] A.T. Collins, S.C. Lawson, Spectrosopic studies of a thermochromic centre in synthetic diamonds grown by the temperature gradient method[J], Phil. Mag. Lett., 1989,60:117.
    [111] G.S. Woods, G.C. Purser, A.S.S. Mtimkulu and A.T. Collins. The nitrogen content of type Ia natural diamonds[J], J.Phys. Chem. Solids, 1990,51:1191.
    [112] J.P.F. Sellschop, The Properties of Natural and Synthetic Diamond[M], J.F. Field,Academic, London, 1992:91.
    [113] W.V. Smith, P.P. Sorokin, I.L. Gelles and G.J. Lasher, Electron-Spin Resonance of Nitrogen Donors in Diamond[J], Phys. Rev. 1959,115:1548.
    [114] G.S. Woods, J.A. van Wyk and A.T. Collins. The nitrogen content of type Ib synthetic diamond[J], Phil. Mag. B, 1990,62:589.
    [115] A.R. Lang, M. Moore, A.P.W. Makepeace, W. Wierzchowski, C.M. Welbourn. On the dilatation of synthetic type Ib diamond by substitutional nitrogen impurity[J], Phil. Trans. R. Soc. Lond. A, 1991,337:497.
    [116] A.R. Lang, G. Pang. On the dilatation of diamond by nitrogen impurity Aggregated in A defects[J], Phil. Trans. R. Soc. Lond. A, 1998,356:1397.
    [117] R.M. Chrenko, H.M. Strong and R.E. Tuft. Dispersed paramagnetic nitrogen content of large laboratory diamons[J], Phil. Mag., 1971,23:313.
    [118] A.T. Collins. Diffusion and aggregation of point defects in diamond[J],J. Phys. C,198013:2641.
    [119] S.R. Boyd, I. Kiflawi and G.S. Woods. The relationship between absorption and the A defect concentration in diamond[J], Phil. Mag. B,1994,69:1149.
    [120] S.R. Boyd, I. Kiflawi and G.S. Woods. Infrared absorption by the B aggregate in diamond[J], Phil. Mag. B,1995,72:351.
    [121] C.D. Clark and S.T. Davey, One-phonon infrared absorption in diamond[J], J. Phys. C, 1984,17:1127.
    [122]陈立学,高温高压合成条件稳定性的研究以及宝石级金刚石单晶的合成[D],长春:吉林大学原子与分子物理研究所,2003
    [123]贾晓鹏,优质金刚石的合成及内部杂质分析[D],筑波:筑波大学,1996.
    [124]周东晨,赵国权,金刚石合成工艺[M],机械工业出版社,1998.
    [125] Z.Z. Liang and X. Jia. Synthesis of HPHT diamond containing high concentrations of nitrogen impurities using NaN3 as dopant in metal-carbon system[J], Diamond & Related Materials, 2005,14:1932.
    [126]化工大百科全书[M],化学工业出版社,2:951.
    [127] Hisao Kanda, Shinobu Yamaoka. Inhomogeneous distribution of nitrogen impurities in {111} growth sectors of high pressure synthetic diamond[J], Diamond and Related Materials, 1993,2:1420.
    [128] Leon R.M. Daniels, John J. Gurney, Ben Harte. A crustal mineral in mantle diamond[J], Nature,1996,379:153.
    [129] Karen M. Mcnamara, Aggregate nitrogen in synthetic diamond[J], Applied Physics Letters, 2003,83:1325.
    [130] Marcus Schrauder, Oded Navon, Solid carbon dioxide in a natural diamond[J], Nature, 1993,365:42.
    [131] H. Kanda, T. Ohsawa, S. Yamaoka. Formation of nitrogen pairs in synthetic diamond during growth, Science and technology of new diamond[M], S. Saito, O Fukunaga, M. Yoshikawa, 339.
    [132] H. Kanda, S.C. Lawson. Growth temperature effects of impurities in HP/HT diamonds[J], Industial Diamond Rev.,1995,2(95):56.
    [133] R.C. Burns, V. Cvetkovic, C.N. Dodge, D.J.F. Evans, T. Rooney, P.M. Spear, C.M. Welbourn. Growth-sector dependence of optical features in large synthetic diamonds[J], Jounal of Crystal Growth, 1990,104:257.
    [134] H. Kanda T. Ohsawa, O. Fukunaga, I. Sunagawa. Effect of solvent metals upon the morghology of synthetic diamonds[J], Journal of Crystal Growth, 1989,94:115.
    [135] I. Kiflawi, H. Kanda, S.C. Lawson. The effect of the growth rate on theconcentration of nitrogen and trasition metal impurities in HPHT synthetic diamonds[J], Diamond and Related Materials, 2002,11:204.
    [136] H. Kanda, N. Setaka, T. Ohsawa, O. Fukunaga. Impurity effect on morpholoy of synthetic diamond[J], Mat. Res. Soc. Symp. Proc, 1984,22:209.
    [137] Amanda Yarnell. The many facets of man-made diamonds[J], Cenear, 82 2004,82:26.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700