用户名: 密码: 验证码:
碳纳米管和二氧化钛复合催化剂的制备、表征及其光催化还原氧化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光催化学科是化学、物理、材料和环境等多学科融合形成的一门新兴交叉学科。从发展现状看,光催化大致可分为能源光催化(光解水制氢,光催化可再生资源制氢)和环境光催化(环境污染治理高级氧化技术)两个主要研究领域。这两个研究领域都与社会和经济的可持续发展密切相关,因而具有广阔的应用前景和巨大的社会、经济效益。通过多种改性手段改善催化剂的活性,提高催化剂的太阳光利用率是将这一技术推向实际应用的重要环节。
     近年来,一些文献报道了用溶胶-凝胶法将碳纳米管(MWNTs)引入到二氧化钛光催化剂中,发现这种复合光催化剂有着很好的光催化氧化有机物活性。经过详细研究表明,认为是碳纳米管和二氧化钛之间的协同效应促使二氧化钛的光生电子转移到碳纳米管上,延长了光生电子-空穴对的寿命,同时还使该复合催化剂有可见光吸收能力。本文设想类似的碳纳米管和二氧化钛间的相互作用对于光解水制氢体系也同样有效。为了证实假设,本文首先考察了采用通常的溶胶-凝胶法来制备碳纳米管和二氧化钛复合催化剂,然后浸渍负载金属Ni,测量其光催化还原水制氢的活性。实验发现,碳纳米管掺杂会阻止TiO_2的相变和粒径长大;碳纳米管的掺杂量增加,催化剂的比表面积随之增大;当碳纳米管掺杂量为5%并负载1%的金属Ni时,复合催化剂的紫外光催化还原水制氢活性最大,达到122μmol/h,比未掺杂时提高了近一倍。而且掺杂碳纳米管后的TiO_2光催化活性普遍提高,说明碳纳米管与二氧化钛之间确实存在着某种相互作用直接影响了光催化反应的过程。因为这种相互作用是发生在两者的紧密连接处,所以我们推测尽量增加两者间的连接点应该有利于光催化活性的提高。
     在确定了研究方向后,本文进一步研究了自行设计的聚合络合法-化学气相沉积法来制备复合催化剂。之所以这样设计是巧妙利用Ni既可作为碳纳米管生长点,又可作为助催化剂生成氢气。选用聚合络合法能将Ni均匀地分散在TiO_2基体中,通过高温煅烧生成NiTiO_3,再用氢气可将其从体相中还原出来,到表面成细小的金属Ni作为碳纳米管生长点。由于常规的甲烷裂解化学气相沉积法主要是用来制备碳纳米管的,所以都采用一步生长法希望碳纳米管的产率能尽量高。但是按照前面的设计可以知道碳纳米管并不需要长太长,而是碳纳米管与二氧化钛的接触点应该尽量多些,增加二者的协同效应,提高光催化活性。为了达到该目的,本文研究了利用氢气甲烷化作用原位除去Ni表面的无定形碳,在TiO_2表面反复多次生长碳纳米管的可能性。SEM、Raman表征结果证明改进的化学气相沉积法能够在TiO_2表面生长出一层石墨化结构完整的,平均直径约为28 nm的多壁碳纳米管。在二次生长碳纳米管后,这种复合催化剂的紫外光和可见光催化还原水制氢活性达到最佳,分别高达2076μmol/h和38.1μmol/h。经过反复5次共20 h的稳定性测试,该复合催化剂的活性损失小于5%,无明显失活现象。结合XPS、UV-Vis DRS、PL等多种不同的表征手段,从半导体理论分析了复合催化剂活性高的原因,认为碳纳米管的生长能有效地转移TiO_2导带的光生电子,也使得复合催化剂的紫外光和可见光吸收能力大大增加,同时该制备方法中的氢还原步骤生成的Ti~(3+)也有利于光催化活性的提高。
     在上述研究的基础上,在本论文还试图从分子水平上解释Ni系复合催化剂光催化制氢反应的活化能变化及其表面氢气产生的微观反应过程。通过改变不同的反应温度,计算出紫外光激发下二次生长碳纳米管的复合催化剂表观反应活化能为18.7 KJ/mol,表观量子产率最高为4.8%。动力学实验表明,当用甲醇作为牺牲试剂时,Ni系复合催化剂的催化脱氢活性比以其它醇类作为牺牲试剂高得多,顺序为甲醇>乙醇>异丙醇=正丙醇>正丁醇。甲醇在催化剂表面的离解吸附是反应发生的第一步,与随后的被光生空穴氧化脱H步骤一起作为整个反应的速率控制步骤。同时,认为碳纳米管的生长从动力学上加快了甲醇离解吸附后的脱H步骤,使得复合催化剂的活性大大提高。
     根据半导体光催化剂的特点,光催化还原和氧化反应都是从一个侧面反映催化剂的性能,所以为了更全面地了解光催化剂的性能,有必要对复合催化剂的光催化还原和氧化两方面性能都进行研究。因此,本论文的后半部分着手从复合催化剂的氧化性能出发去考察其光催化氧化甲基橙活性。实验前必须先将Ni系复合催化剂中的金属Ni用酸洗去,因为金属Ni会与甲基橙抢夺光生的氧化自由基从而大大降低其光催化氧化活性。接下来,进一步的活性测试结果表明,同样二次生长碳纳米管的复合催化剂光催化甲基橙脱色率也是最高,1.5小时的紫外光脱色率达到100%,反应动力学常数k_a为0.066 min~(-1);3.5小时的可见光脱色率为99%,反应动力学常数k_a为0.017 min~(-1)。为了了解该光催化氧化过程的详细机理,即考察究竟是·O_2~-还是·OH引发反应,本文利用在反应体系中加入O_2、CCl_4、t-BuOH等添加剂,对比了它们对活性的影响。实验结果认为在可见光照射下复合催化剂是由碳纳米管作为光敏剂,受激传递光生电子给TiO_2导带,然后进一步生成·O_2~-主导可见光催化氧化甲基橙反应;在紫外光照射下复合催化剂是由TiO_2受激生成价带空穴和导带电子,价带空穴进一步生成·OH,导带电子进一步生成·O2~-,两者共同主导紫外光催化氧化甲基橙反应。
Photocatalysis science is a rising cross-disciplinary science,which integrates the multi-disciplinarity of chemistry,physics,materials,environment and so on.From the development status quo,photocatalysis can be broadly divided into two major research fields:one is energy photocatalysis(photocatalytic hydrogen production from splitting water,that is photocatalytic hydrogen production from renewable resources) and the other is environmental photocatalysis(advanced oxidation technology in environmental pollution field).These two research fields are so closely related to the sustainable development of society and economy that they have broad application prospects and enormous social and economic benefits.Through a variety of means to improve the photocatalytic activity and increase the utilization of sunlight is the important step to make this technology come true.
     In recent years,some papers reported multi-wall carbon nanotubes(MWNTs) and TiO_2 composite catalyst has a good photocatalytic activity for oxidation organic compounds.MWNTs introduced into TiO_2 matrix by Sol-gel method will produce the synergy effect between MWNTs and TiO_2.The effect is of great benefit to the photoelectron transfer from conduction band of TiO_2 to MWNTs,which can elong the life-span of e~--h~+ pair.In this paper,we supposed the synergy effect will be equally effective to photocatalytic hydrogen production from splitting water.In order to confirm that idea,we first investigated the photocatalytic activity of hydrogen production for MWNT-TiO_2 composite catalyst,which was prepared by same Sol-gel method as reported.It was found that doped MWNTs will stop phase transition and growing up of TiO_2;With increasing of MWNTs content in composite catalyst,their surface area are also increased;When the doped amount of MWNTs is 5%and co-load amount of metal Ni is 1%,under UV light irradiation,the photocatalytic activity reaches the maximum of 122μmol/h which is almost twice than the activity of raw TiO_2:Ni.Furthermore,the result that activities of MWNT-TiO_2:Ni series are generally increased by doped MWNTs shows there is a certain interaction between MWNTs and TiO_2 directly impacting on the photocatalytic reaction process of hydrogen production.So maximizing the joint between both should help to improve the photocatalytic activity.
     After determining the research interest,the paper further studied the photocatalytic activity of composite catalyst made by self-designed PCM-CVD method.The role of metal Ni in catalyst is not only as the growing point of MWNTs but also as a cocatalyst for hydrogen generation.The adoptive PCM can make Ni evenly dispersed in TiO_2 matrix and then reduced into fine granules on the surface by hydrogen.On next step,the way of mutli-growth of MWNTs was taken in order to reach our purpose for increasing the joints as more as possible.During each growth period,hydrogen was used to get rid of amorphous carbon by methanation.SEM and Raman results show MWNTs with the average diameter of ca.28 nm and good graphite structure can be grown on the surface of TiO_2 by modified CVD method. After second growth period of MWNTs,the photocatalytic activities of composite catalyst reached the maximum,2076μmol/h and 38.1μmol/h under UV light and visible light irradiation respectively.At the same time,the composite catalyst did not lost much activity after 20 h repeat test.Combined with a lot of means of XPS, UV-Vis DRS and PL,a systematical investigation was conducted to analyse the reason of high activity of MWNT-TiO_2 composite catalyst.The key contributions of grown MWNTs are to transfer photoelectron and increase the photo absorbance.Ti~(3+) appearance in the preparation process is good for improving photoactivity as well.
     On the basis of above study,this paper further attempts to explain the reaction process of hydrogen production according to kinetic regulation.When methanol acts as sacrifice reagent the activity of composite catalyst is higher than other alcohol's. The activity sequence of alcohols is methanol>ethanol>i-propanol = n-propanol>butanol.Methanol dissociation adsorption on the catalyst surface is the first step of whole photoreaction.Along with the subsequent oxidation step it control the whole reaction speed.Furthermore,MWNTs growth speeds up the desorpion step of H from methanol dissociation adsorption,which greatly enhances the photocatalytic activity.
     In the second part of this paper,we took methyl orange(MO) as a model for azo dye and discussed about photocatalytic oxidation performance of MO by composite catalyst.Before the test,metal Ni should be rinsed out by diluted acid because it would snatch the life of free radicals so as to reduce the photocatalytic oxidation activity.Finally,the kinetics constants ka is 0.066 min-1 under UV light irradiation and 0.017 min~(-1) under visible light irradiation repectively.Through investigating the effects of dissolved oxygen,CCl_4,t-butyl alcohol on the decolorization of MO,the mechanisms are proposed that the superoxides(·O_2~-) mediated oxidation pathways are dominant for cleavage of azo bond of MO under visible light irradiation,whereas both of·O_2 and·OH mediated oxidation pathways are dominant under UV light irradiation. In the end,charge transfer process on MWNT-TiO_2 composite catalyst and the implication to photocatalytic reaction pathway were discussed.
引文
[1]Fujishima A.,Honda K.,Electrochemical photolysis of water at semi-conductor electrode [J].Nature 1972,37:238-245.
    [2]Cary J.H.,Herrmann J.M.,Disder J.,In situ photoconductivity of study of TiO_2 during oxidation of isobutene into acetone[J].Bull.Environ.Contain.Toxicol.1976,16:697-701.
    [3]Frank S.N.,Bard A.J.,Heterogeneous photocatalytic oxidation of cyanide ion in aqueous solutions at titanium dioxide powder[J].J.Am.Chem.Soc.1977,99:303-304.
    [4]Frank S.N.,Bard A.J.,Heterogeneous photocatalytic oxidation of cyanide and sulfite in aqueous solutions at semiconductor powders[J].J.Phys.Chem.1977,81:1484-1488.
    [5]朱永法.前景光明的纳米光催化剂[J].动态视点2001,9:28-30.
    [6]刘守新.光催化及光电催化基础与应用[M].北京:化学工业出版社,2006.
    [7]张金龙.光催化[M].上海:华东理工大学出版社,2004.
    [8]Kudo A.,Photocatalyst materials for water splitting[J].Catal.Surv.Asia 2003,7:31-38.
    [9]Fujishima A.,Rao T.N.,Tryk D.A.,Titanium dioxide photocatalysis[J].J.Photochem.Photobiol.C - Photochem.Rev.2000,1:1-21.
    [10]Tryk D.A.,Fujishima A.,Honda K.,Recent topics in photoelectrochemistry:achievements and future prospects[J].Electrochim.Acta.2000,45:2363-2376.
    [11]Hagfeldt A.,Gr(a|¨)tzel M.,Light-induced redox reactions in nanocrystalline systems[J].Chem.Rev.1995,95:49-68.
    [12]Linsebigler A.L.,Lu G.,Yates J.T.,Photocatalysis on TiO_2 surfaces:Principles,mechanisms,and selected results[J].Chem.Rev.1995,95:735-758.
    [13]Mills A.,Le Hunte S.,An overview of semiconductor photocatalysis[J].J.Photochem.Photobiol.A-Chem.1997,108:1-35.
    [14]Hoffmann M.R.,Martin S.T.,Choi W.,Bahnemann D.W.,Environmental applications of semiconductor photocatalysis[J].Chem.Rev.1995,95:69-96.
    [15]Fox M.A.,Dulay M.T.,Heterogeneous photocatalysis[J].Chem.Rev.1993,93:341-357.
    [16]Chen X.,Mao S.S.,Titanium dioxide nanomaterials:synthesis,properties,modifications,and applications[J].Chem.Rev.2007,107:2891-2959.
    [17]高濂,郑珊,张青红.纳米氧化钛光催化材料及应用[M].北京:化学工业出版社,2002.
    [18]Pierre A.C.,Pajonk G,M.,Chemistry of aerogels and their applications[J].Chem.Rev.2002,102:4243-4266.
    [19]Lu Z.L.,Lindner E.,Mayer H.A.Applications of sol-gel-processed interphase catalysts[J].Chem.Rev.2002,102:3543-3578.
    [20]Schwarz J.A.,Contescu C.,Contescu A.,Methods for preparation of catalytic materials[J].Chem.Rev.1995,95:477-510.
    [21]Oskam G.,Nellore A.,Penn R.L.,Searson P.C.,The growth kinetics of TiO_2 nanoparticles from titanium(Ⅳ) alkoxide at high water/titanium ratio[J].J.Phys.Chem.B 2003,107:1734-1738.
    [22]Barringer E.A.,Bowen H.K.,High-purity,monodisperse TiO_2 powders by hydrolysis of titanium tetraethoxide.1.Synthesis and physical properties[J].Langmuir 1985,1:414-420.
    [23]Look J.L.,Zukoski C.F.,Colloidal stability and titania precipitate morphology:Influence of short range repulsions[J].J.Am.Ceram.Soc.1995,78:21-32.
    [24] O'Regan B., Gratzel ML, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO_2 films [J]. Nature 1991, 353: 737-740.
    [25] Vorkapic D., Matsoukas T., Reversible agglomeration: A kinetic model for the peptization of titania nanocolloids [J]. J. Colloid Interface Sci. 1999, 214: 283-291.
    [26] Chemseddine A., Moritz T., Nanostructuring titania: Control over nanocrystal structure, size, shape, and organization [J]. Eur. J. Inorg Chem. 1999,235-245.
    [27] Sugimoto T., Zhou X., Muramatsu A., Synthesis of uniform anatase TiO_2 nanoparticles by gel-sol method: 4. Shape control [J]. J. Colloid Interface Sci. 2003,259: 53-61.
    [28] Sugimoto T., Zhou X., Muramatsu A., Synthesis of uniform anatase TiO_2 nanoparticles by gel-sol method: 1. Solution chemistry of Ti(OH)_n~(4-n)~+ complexes [J]. J. Colloid Interface Sci. 2002, 252: 339-346.
    [29] Moritz T., Reiss J., Diesner K., Su D., Chemseddine A., Nanostructured crystalline TiO_2 through growth control and stabilization of intermediate structural building units [J]. J. Phys. Chem. B 1997, 101: 8052-8053.
    [30] Miao L., Tanemura S., Toh S., Kaneko K., Tanemura M., Fabrication, characterization and Raman study of anatase TiO_2 nanorods by a heating-sol-gel template process [J]. J. Cryst. Growth 2004, 264: 246-252.
    [31] Lin Y., Wu G. S., Yuan X. Y, Xie T., Zhang L. D., Fabrication and optical properties of TiO_2 nanowire arrays made by sol-gel electrophoresis deposition into anodic alumina membranes [J]. J. Phys.: Condens. Matter 2003,15: 2917-2922.
    [32] Liu S. M., Gan L. M., Liu L. H., Zhang W. D., Zeng H. C, Synthesis of single-crystalline TiO_2 nanotubes [J]. Chem. Mater. 2002, 14: 1391-1397.
    [33] Vijayakumar M., Inaguma Y, Mashiko W., Crosnier-Lopez M. -P., Bohnke C, Synthesis of fine powders of Li_(3x)La_(2/3-x)TiO_3 perovskite by a polymerizable precursor method [J]. Chem. Mater. 2004,16:2719-2724.
    [34] Ikeda S., Hara M., Kondo J. N., Domen K., Preparation of K_2La_2Ti_3O_(10) by polymerized complex method and photocatalytic decomposition of water [J]. Chem. Mater. 1998, 10: 72-77.
    [35] Hwang D. W., Kim H. G., Lee J. S., Kim J., Li W., Oh S. H., Photocatalytic hydrogen production from water over M-doped La_2Ti_2O_7 (M = Cr, Fe) under visible light irradiation (λ>420 nm) [J]. J. Phys. Chem. B 2004, 109:2093-2102.
    [36] Sato T., Yoshida K., Yamashita Y, Yashima M., Yoshimura M., Highly active BaTi_4O_9/RuO_2 photocatalyst by polymerized complex method [J]. Appl. Phys. Lett. 1996, 69: 2053-2055.
    [37] Yamashita Y, Tada M., Kakihana M., Osada M., Yoshida K., Synthesis of RuO_2-loaded BaTi_nO_(2n+1) (n = 1,2 and 5) using a polymerizable complex method and its photocatalytic activity for the decomposition of water [J]. J. Mater. Chem. 2002, 12: 1782-1786.
    [38] Pechini M. P., Method of preparing lead and alkaline-earth titanates and niobates and coating method using the same to form a capacitor. U. S. Patent No. 3330697, 1967.
    [39] Bacsa R. R., Gratzel M., Rutile formation in hydrothermally crystallized nanosized titania [J]. J. Am. Ceram. Soc. 1996, 79: 2185-2188.
    [40] Cheng H. M., Ma J. M., Zhao Z. G., Qi L. M., Hydrothermal Preparation of Uniform Nanosize Rutile and Anatase Particles [J]. Chem. Mater. 1995, 7: 663-671.
    [41] Zhang Y X., Li G. H., Jin Y X., Zhang Y, Zhang J., Zhang L. D., Hydrothermal synthesis and photoluminescence of TiO_2 nanowires [J]. Chem. Phys. Lett. 2002,365:300-304.
    [42] Wei M., Konishi Y., Zhou H., Sugihara H., Arakawa H., A simple method to synthesize nanowires titanium dioxide from layered titanate particles [J]. Chem. Phys. Lett. 2004, 400: 231-234.
    [43] Kasuga T., Hiramatsu M., Hoson A., Sekino T., Niihara K., Formation of titanium oxide nanotube [J]. Langmuir 1998,14:3160-3163.
    [44] Yao B. D., Chan Y. R, Zhang X. Y, Zhang W. R, Yang Z. Y, Wang N., Formation mechanism of TiO_2 nanotubes [J]. Appl. Phys. Lett. 2003,82:281-283.
    [45] Li X. L, Peng Q., Yi J. X., Wang X., Li Y. D., Near monodisperse TiO_2 nanoparticles and nanorods [J]. Chem. -Eur. J. 2006, 12:2383-2391.
    [46] Kim C. S., Moon B. K., Park J. H., Choi B. C, Seo H. J., Solvothermal synthesis of nanocrystalline TiO_2 in toluene with surfactant [J]. J. Cryst. Growth 2003, 257: 309-314.
    [47] Wen B., Liu C, Liu Y, Solvothermal synthesis of ultralong single-crystalline TiO_2 nanowires [J]. New J. Chem. 2005, 29: 969-971.
    [48] Wen B., Liu C, Liu Y, Depositional characteristics of metal coating on single-crystal TiO_2 nanowires [J]. J. Phys. Chem. B 2005,109: 12372-12375.
    [49] Hong S. S., Lee M. S., Park S. S., Lee G D., Synthesis of nanosized TiO_2/SiO_2 particles in the microemulsion and their photocatalytic activity on the decomposition of p-nitrophenol [J]. Catal. Today 2003, 87: 99-105.
    [50] Kim K. D., Kim S. H., Kim H. T., Applying the Taguchi method to the optimization for the synthesis of TiO_2 nanoparticles by hydrolysis of TEOT in micelles [J]. Colloids Surf. A 2005,254:99-105.
    [51] Lin J., Lin Y, Liu P., Meziani M. J., Allard L. R, Sun Y. P., Hot-Fluid Annealing for crystalline titanium dioxide nanoparticles in stable suspension [J]. J. Am. Chem. Soc. 2002, 124:11514-11518.
    [52] Lim K. T., Hwang H. S., Ryoo W., Johnston K. P., Synthesis of TiO_2 nanoparticles utilizing hydrated reverse micelles in CO_2 [J]. Langmuir 2004, 20: 2466-2471.
    [53] Zhang D., Qi L., Ma J., Cheng H., Formation of crystalline nanosized titania in reverse micelles at room temperature [J]. J. Mater. Chem. 2002,12: 3677-3680.
    [54] Wu J. M., Low-temperature preparation of titania nanorods through direct oxidation of titanium with hydrogen peroxide [J]. J. Cryst. Growth 2004,269: 347-355.
    [55] Wu J. M., Zhang T. W., Zeng Y. W, Hayakawa S., Tsuru K., Osaka A., Large-scale preparation of ordered titania nanorods with enhanced photocatalytic activity [J]. Langmuir 2005,21:6995.
    [56] Wu J. M., Zhang T. W., Photodegradation of rhodamine B in water assisted by titania films prepared through a novel procedure [J]. J. Photochem. Photobiol. A - Chem. 2004, 162: 171-177.
    [57] Peng X., Chen A., Aligned TiO_2 nanorod arrays synthesized by oxidizing titanium with acetone [J]. J. Mater. Chem. 2004, 14: 2542-2548.
    [58] Varghese O. K., Gong D., Paulose M., Grimes C. A., Dickey E. C., Crystallization and high-temperature structural stability of titanium oxide nanotube arrays [J]. J. Mater. Res. 2003, 18:156-165.
    [59] Varghese O. K., Gong D., Paulose M., Ong K. G., Dickey E. C., Grimes C. A., Extreme changes in the electrical resistance of titania nanotubes with hydrogen exposure [J]. Adv. Mater. 2003,15: 624-627.
    [60] Bauer S., Kleber S., Schmuki P., TiO_2 nanotubes: Tailoring the geometry in H_3PO_4/HF electrolytes [J]. Electrochem. Commun. 2006, 8: 1321-1325.
    [61] Wu J. J., Yu C. C., Aligned TiO_2 nanorods and nanowalls [J]. J. Phys. Chem. B 2004, 108: 3377-3379.
    [62] Yu J. C., Yu J., Ho W., Zhang L., Preparation of highly photocatalytic active nano-sized TiO_2 particles via ultrasonic irradiation [J]. Chem. Commun. 2001,1942-1943.
    [63] Huang W., Tang X., Wang Y., Koltypin Y, Gedanken A., Selective synthesis of anatase and rutile via ultrasound irradiation [J]. Chem. Commun. 2000, 1415-1416.
    [64] Xia H., Wang Q., Ultrasonic irradiation: A novel approach to prepare conductive polyaniline/nanocrystalline titanium oxide composites [J]. Chem. Mater. 2002, 14: 2158-2165.
    [65] Yu J. C., Zhang L., Yu J., Direct Sonochemical preparation and characterization of highly active mesoporous TiO_2 with a bicrystalline framework [J]. Chem. Mater. 2002, 14: 4647-4653.
    [66] Yu J. C., Yu J., Zhang L., Ho W, Enhancing effects of water content and ultrasonic irradiation on the photocatalytic activity of nano-sized TiO_2 powders [J]. J. Photochem. Photobiol. A-Chem. 2002, 148: 263-271.
    [67] Yu J. C., Zhang L., Li Q., Kwong K. W., Xu A. W., Lin J., Sonochemical preparation of nanoporous composites of titanium oxide and size-tunable strontium titanate crystals [J]. Langmuir 2003, 19:7673.
    [68] Zhu Y., Li H., Koltypin Y., Hacohen Y. R., Gedanken A., Sonochemical synthesis of titania whiskers and nanotubes [J]. Chem. Commun. 2001, 2616-2617.
    [69] Ohno T, Tanigawa F., Fujihara K., Izumi S., Matsumura M., Photocatalytic oxidation of water on TiO_2-coated WO_3 particles by visible light using Iron(III) ions as electron acceptor [J]. J. Photochem. Photobiol. A-Chem. 1998, 118: 41-44.
    [70] Hara K., Sayama K., Arakawa H., Photocatalytic hydrogen and oxygen formation over SiO_2-supported RuS_2 in the presence of sacrificial donor and acceptor [J]. Appl. Catal. A - Gen. 1999, 189: 127-137.
    [71] Hirai T, Watanabe T., Komasawa I., Preparation of semiconductor nanoparticle-polyurea composites using reverse micellar systems via an in situ diisocyanate polymerization [J]. J. Phys. Chem. B 1999, 103: 10120-10126.
    [72] Tsuji I., Kato H., Kobayashi H., Kudo A., Photocatalytic H_2 evolution reaction from aqueous solutions over band structure-controlled (AgIn)_xZn_(2(1-x))S_2 solid solution photocatalysts with visible-light response and their surface nanostructures [J]. J. Am. Chem. Soc. 2004, 126: 13406-13413.
    [73] Kudo A., Sekizawa M., Photocatalytic H_2 evolution under visible light irradiation on Zn_(1-x)Cu_xS solid solution [J]. Catal. Lett. 1999, 58: 241-243.
    [74] Maeda K., Takata T, Hara M., Saito N., Inoue Y, Kobayashi H., Domen, K., GaN:ZnO solid solution as a photocatalyst for visible-light-driven overall water splitting [J]. J. Am. Chem. Soc. 2005, 127: 8286-8287.
    [75] Maeda K., Teramura K., Takata T, Hara M., Saito N., Toda K., Inoue Y, Kobayashi H., Domen K., Overall water splitting on (Ga_(1-x)Zn_x)(N_(1-x)O_x) solid solution photocatalyst: relationship between physical properties and photocatalytic activity [J]. J. Phys. Chem. B 2005,109:20504-20510.
    [76] Gopidas K. R., Bohorguze M., Kamat P. V., Photophysical and photochemical aspects of coupled semiconductors: charge-transfer processes in colloidal CdS-TiO_2-AgI system [J]. J. Phys. Chem. 1990, 94: 6435-6440.
    [77] Fujii H., Ohtaki M., Preparation and photocatalytic activities of a semiconductor composite of CdS embedded in TiO_2 gel as a stable oxidesemiconducting matrix [J]. J. Mol. Catal. A - Chem. 1998,129:61-68.
    [78] Koca A., Sahin M., Photocatalytic hydrogen production by direct sun light from sulfide/sulfite solution [J]. Int. J. Hydrogen Energy 2002,27: 363-367.
    [79] Asahi R., Morikawa T. Ohwaki K., Taga Y., Visible-light photocatalysis in nitrogen-doped titanium oxides [J]. Science 2001, 293:269-271.
    [80] Khan S. U. M., Al-Shahry M., Ingler Jr W. B. Efficient photochemical water splitting by a chemically modified n-TiO_2 [J]. Science 2002, 297: 2243-2245.
    [81] Ishikawa A., Takata T., Kondo J. N., Hara M, Kobayashi H., Domen K., Oxysulfide Sm_2Ti_2S_2O_5 as a stable photocatalyst for water oxidation and reduction under visible light irradiation (λ<650nm) [J]. J. Am. Chem. Soc. 2002,124: 13547-13553.
    [82] Ishikawa A., Yamada Y, Takata T., Kondo J. N., Hara M., Kobayashi H., Domen K., Novel synthesis and photocatalytic activity of oxysulfide Sm_2Ti_2S_2O_5 [J]. Chem. Mater. 2003, 15: 4442-4446.
    [83] Karakitsou K. E., Verykio X. E., Effects of altervalent cation doping of titania on its performance as a photocatalyst for water clevage [J]. J. Phys. Chem. 1993, 97: 1184-1189.
    [84] Kudo A., Domen K., Tanaka A., Maruya K., Aika K., Onishi T., Photocatalytic decomposition of water over NiO-K_4Nb_6O_(17) catalyst [J]. J. Catal. 1988, 111: 67-76.
    [85] Kudo A., Sayama K., Tanaka A., Asakura K., Domen K., Maruya K., Onishi T., Nickel-loaded K_4Nb_6O_(17) photocatalyst in the decomposition of H_2O into H_2 and O_2: Structure and reaction mechanism [J]. J. Catal. 1989, 120: 337-352.
    [86] Sayama K., Tanaka A., Domen K., Maruya K., Onishi T., Photocatalytic decomposition of water over platinum-intercalated K_4Nb_6O_(17) [J]. J. Phys. Chem. 1991, 95: 1345-1348.
    [87] Sayama K., Yase K., Arakawa H., Asakura K., Tanaka A., Domen K., Onishi T., Photocatalytic activity and reaction mechanism of Pt-intercalated K_4Nb_6O_(17) catalyst on the water splitting in carbonates salt aquous solution [J]. J. Photochem. Photobiol. A - Chem. 1998,114: 125-135.
    [88] Wu J. H., Yin S., Lin Y, Lin J. M., Huang M. L., Sato T., Hydrothermal synthesis of HNbWO_6/MO series nanocomposites and their photocatalytic properties [J]. J. Mater. Sci. 2001,36:3055-3059.
    [89] Wu J. H., Uchida S., Fujishiro Y, Yin S., Sato T., Synthesis and photocatalytic properties of HNbWO_6/TiO_2 and HNbWO_6/Fe_2O_3 nanocomposites [J]. J. Photochem. Photobiol. A - Chem. 1999,128: 129-133.
    [90] Wu J. H., Lin J. M., Yin S., Sato T., Synthesis and photocatalytic properties of layered HNbWO_6/(Pt, Cd_(0.8)Zn_(0.2)S) nanocomposites [J]. J. Mater. Chem. 2001, 11: 3343-3347.
    [91] Yin S., Wu J. H., Aki M., Sato T., Photocatalytic hydrogen evolution with fibrous titania prepared by the solvothermal reactions of protonic layered tetratitanate (H_2Ti_4O_9) [J]. Int. J. Inorg. Mater. 2000, 2: 325-331.
    [92] Kakihana M., Arima M., Highly active BaTi_4O_9/RuO_2 photocatalyst by polymerized complex method [J]. Appl. Phys. Lett. 1996,69: 2053-2055.
    [93] Inoue Y., Kubokawa T., Sato K., Photocatalytic activity of alkali-metal titanates combined with ruthenium in the decomposition of water [J]. J. Phys. Chem. 1991, 95: 4059-4063.
    [94] Shangguan W. F., Yoshida A., Influence of catalyst structure and modification on the photocatalytic production of hydrogen from water on mixed metal oxides [J]. Int. J. Hydrogen Energy 1999, 24:425-431.
    [95] Ogura S., Kohno M., Sato k., Inoue Y, Photocatalytic activity for water decomposition of RuO_2-combined M_2Ti_6O_(13) (M = Na, K, Rb, Cs) [J]. Appl. Surf. Sci. 1997, 121/122: 521-524.
    [96] Ciambelli P., Cimino S., Lasorella G., Lisi L., De Rossi S., Faticanti M., Minelli G., Porta P., AMnO_3 (A = La, Nd, Sm) and Sm_(1-x)Sr_xMnO_3 perovskites as combustion catalysts: structural, redox and catalytic properties [J]. Appl Catal. B - Environ. 2000,24:243-253.
    [97] Kato H., Kobayashi H., Kudo A., Role of Ag~+ Ions for Band Structure and Photocatalytic Properties of AgMO_3 (M: Ta and Nb) with the Perovskite Structure [J]. J. Phys. Chem. B 2002, 106:12441-12447.
    [98] Mizoguchi H., Uedo K., Orita M., Moon S. C, Kajihara K., Hirano M., Hosono H., Decomposition of water by a CaTiO_3 photocatalyst under UV light irradiation [J]. Mater. Res. Bull. 2002, 37: 2401-2406.
    [99] Ishii T., Kato H., Kudo A., H_2 evolution from an aqueous methanol solution on SrTiO_3 photocatalysts codoped with chromium and tantalum ions under visible light irradiation [J]. J. Photochem. Photobiol. A - Chem. 2004, 163: 181-186.
    [100] Ko Y. G., Lee W. Y., Effects of nickel-loading method on the water-splitting activity of a layered NiO_x/Sr_4Ti_3O_(10) photocatalyst [J]. Catal. Lett. 2002, 83: 157-160.
    [101] Takata T., Shinohara K., Tanaka A., Hara M., Kondo J. N., Domen K., A highly active photocatalyst for overall water splitting with a hydrated layered perovskite structure [J]. J. Photochem. Photobiol. A-Chem. 1997, 106: 45-49.
    [102] Kato H., Asakara K., Kudo A., Highly efficient water splitting into H_2 and O_2 over lanthanum-doped NaTaO_3 photocatalysts with high crystallinity and surface nanostructure [J]. J. Am. Chem. Soc. 2003, 125: 3082.
    [103] Yin J., Zou Z., Ye J., Photophysical and photocatalytic properties of MIn_(0.5)Nb_(0.5)O_3 (M = Ca, Sr, and Ba) [J]. J. Phys. Chem. B 2003, 107: 61-65.
    [104] Yin J., Zou Z. G., Ye J. H., Photophysical and photocatalytic activities of a novel photocatalyst BaZn_(1/3)Nb_(2/3)O_3 [J]. J. Phys. Chem. B 2004, 108: 12790-12794.
    [105] Sato J., Kobayashi H., Ikarashi K., Saito N., Nishiyama H., Inoue Y., Photocatalytic activity for water decomposition of RuO_2-dispersed Zn_2GeO_4 with d~(10) configuration [J]. J. Phys. Chem. B 2004, 108: 4369-4375.
    
    [106] Sato J., Saito N., Nishiyama H., Inoue Y, Photocatalytic activity for water decomposition of indates with octahedrally coordinated d~(10) configuration. I . Influences of preparation conditions on activity [J]. J. Phys. Chem. B 2003, 107: 7965-7969.
    [107] Sato J., Kobayashi H., Inoue Y, Photocatalytic activity for water decomposition of indates with octahedrally coordinated d~(10) configuration. II. Roles of geometric and electronic structures [J]. J. Phys. Chem. B 2003, 107: 7970-7975.
    [108] Ikeda S., Tanaka A., Hosono H., Kawazoe H., Hara M., Kondo J. N., Domen K., Overall water splitting on Cu(I)-containing oxides, CuMO_2 (M = Fe, Ga, Al) with delafossite structure [J]. Stud. Surf. Sci. Catal. 1999, 121: 301-304.
    [109] Lei Z. B., You W. S., Liu M. Y., Zhou G. H., Takata T., Hara M., Domen K., Li C., Photocatalytic water reduction under visible light on a novel ZnIn_2S_4 catalyst synthesized by hydrothermal method [J]. Chem. Commun. 2003, 2142-2143.
    [110] Lei Z. B., Ma G. J., Liu M. Y., You W. S., Yan H. J., Wu G. P., Takata T., Hara M., Domen K., Li C., Sulfur-substituted and zinc-doped In(OH)_3: A new class of catalyst for photocatalytic H_2 production from water under visible light illumination [J]. J. Catal. 2006, 237: 322-329.
    [111] Liu M. Y., You W. S., Lei Z. B., Zhou G. H., Yang J. J., Wu G. P., Ma G. J., Luan G. Y., Takata T., Hara M., Domen K., Li C., Water reduction and oxidation on Pt-Ru/Y_2Ta_2O_5N_2 catalyst under visible light irradiation [J]. Chem. Commun. 2004, 2192-2193.
    [112] Sato J., Kobayashi H., Ikarashi K., Saito N., Nishiyama H., Inoue Y, Photocatalytic activity for water decomposition of RuO_2-dispersed Zn_2GeO_4 with d~(10) configuration [J]. J. Phys. Chem. B 2004, 108: 4369-4375.
    [113] Zou Z. G., Arakawa H., Direct water splitting into H_2 and O_2 under visible light irradiation with a new series of mixed oxide semiconductor photocatalysts [J]. J. Photochem. Photobiol. A-Chem. 2003, 158: 145-162.
    [114] Zou Z. G., Ye J. H., Sayama K., Arakawa H., Photocatalytic and photophysical properties of a novel series of solid photocatalysts: BiTa_(1-x)Nb_xO_4 (0< x < 1) [J]. Chem. Phys. Lett. 2001, 343:303-308.
    [115] Zou Z. G., Ye J. H., Arakawa H., Photocatalytic and photophysical properties of a novel series of solid photocatalysts: Bi_2MNbO_7 (M = Al~(3+), Ga~(3+) and In~(3+)) [J]. Chem. Phys. Lett. 2001,333:57-62.
    [116] Zou Z. G., Ye J. H., Sayama K., Arakawa H., Direct splitting of water under visible light irradiation with an oxide semiconductor [J]. Nature 2001, 414: 625-627.
    [117] Zou Z. G., Ye J. H., Arakawa H., Substitution effects of In~(3+) by Fe~(3+) on photocatalytic and structural properties of Bi_2InNbO_7 photocatalysts [J]. J. Mol. Catal. A - Chem. 2001, 168: 289-297.
    [118] Zou Z. G., Ye J. H., Arakawa H., Role of R in Bi_2RNbO_7 (R = Y, Rare earth): Effect on band structure and photocatalytic properties [J]. J. Phys. Chem. B 2002, 106: 517-520.
    [119] Zou Z. G., Ye J. H., Arakawa H., Substitution effects of In~(3+) by Al~(3+) and Ga~(3+) on the photocatalytic and structure properties of the Bi_2InNbO_7 photocatalyst [J]. Chem. Mater. 2001, 13:1765-1769.
    [120] Ye J. H., Zou Z. G., Arakawa H., Oshikiri M., Shimoda M., Matsushita A., Shishito T., Correlation of crystal and electronic structure with photophysical properties of water splitting photocatalysts InMO_4 (M = V~(5+), Nb~(5+), Ta~(5+)) [J]. J. Photochem. Photobiol. A - Chem. 2002, 148:79-83.
    [121] Ye. J. H., Zou Z. G., Oshikiri M., Matsushita A., Shimoda M., Imai M., Shishido T, A novel hydrogen-evolving photocatalyst InVO_4 active under visible light irradiation [J]. Chem. Phys. Lett. 2002, 356: 221-226.
    [122] Zou Z. G., Ye J. H., Arakawa H., Optical and structural properties of the BiTa_(1-x)Nb_xO_4 (0 < x < 1) compounds [J]. Solid State Commun. 2001, 119: 471-475.
    [123] Zou Z. G., Ye J. H., Arakawa H., Photophysical and photocatalytic properties of InMO_4 (M = Nb~(5+), Ta~(5+_) under visible light irradiation [J]. Mater. Res. Bull. 2001, 36: 1185-1193.
    [124] 田蒙奎. 光解水制氢半导体光催化材料的研究进展[J].功能材料 2005, 10: 1489-1500.
    [125] Bulatov A. V., Khidekel M. L., Izv. Akad. Nauk SSSR, Ser. Khim., 1976, 1902-1903.
    [126] Arai N., Saito N., Nishiyama H., Inoue Y., Domen K., Sato K., Overall water splitting by RuO_2-dispersed divalent-ion-doped GaN photocatalysts with d~(10) electronic configuration [J]. Chem. Lett., 2006, 35, 796-797.
    [127] Chen T., Feng Z. C., Wu G. P., Shi J.Y., Ma G. J., Ying P. L., Li C., Mechanistic studies of photocatalytic reaction of methanol for hydrogen production on Pt/TiO_2 by in situ fourier transform IR and time-resolved IR spectroscopy [J]. J. Phys. Chem. C 2007, 111: 8005-8014.
    [128] Anpo M., Takeuchi M., The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation [J]. J. Catal. 2003, 216: 505-516.
    [129] Bamwenda G. R., Tsubota S., Nakamura T., Haruta M., Photoassisted hydrogen production from a water ethanol solution: a comparison of activities of Au-TiO_2 and Pt-TiO_2 [J]. J. Photochem. Photobiol. A - Chem. 1995, 89: 177-189.
    [130] St. John M. R., Furgala A. J., Sammells A. F., Hydrogen generation by photocatalytic oxidation of glucose by platinized n-titania powder [J]. J. Phys. Chem. 1983, 87: 801-805.
    [131] Yin J., Zou Z., Ye J., Photophysical and photocatalytic properties of MIn_(0.5)Nb_(0.5)O_3 (M = Ca, Sr, and Ba) [J]. J. Phys. Chem. B 2003, 107: 61-65.
    [132] Galinska A., Walendziewski J., Photocatalytic water splitting over Pt-TiO_2 in the presence of sacrificial reagents [J]. Energy Fuels 2005, 19: 1143-1147.
    [133] Bowker M., James D., Stone P., Bennett R., Perkins N., Millard L., Greaves J., Dickinson A., Catalysis at the metal-support interface: exemplified by the photocatalytic reforming of methanol on Pd/TiO_2 [J]. J. Catal. 2003, 217: 427-433.
    [134] Lee S. G., Lee S., Lee H. I., Photocatalytic production of hydrogen from aqueous solution containing CN" as a hole scavenger [J]. Appl. Catal. A - Gen. 2001, 207: 173-181.
    [135] Kato H., Kudo A., Photocatalytic water splitting into H_2 and O_2 over various tantalate photocatalysts [J]. Catal. Today 2003, 78: 561-569.
    [136] Ou Y, Lin J. D., Fang S. M., Liao D. W., MWNT-TiO_2: Ni composite catalyst: A new class of catalyst for photocatalytic H_2 evolution from water under visible light illumination [J]. Chem. Phys. Lett. 2006,429: 199-203.
    [137] Fang S. M., Ou Y, Lin J. D., Liao D. W., Prepar ation of Cu/Sr_3Ti_2O_7 and its photocatalytic act ivity of water -splitting for hydrogen evolut ion [J]. Acta Phys. -Chim. Sin. 2007, 23: 601-604.
    [138] Wu N. L., Lee M. S., Enhanced TiO_2 photocatalysis by Cu in hydrogen production from aqueous methanol solution [J]. Int. J. Hydrogen Energy 2004, 29: 1601-1605.
    [139] Nada A. A., Barakat M. H., Hamed H. A., Mohamed N. R., Veziroglu T. N., Studies on the photocatalytic hydrogen production using suspended modified TiO_2 photocatalysts [J]. Int. J. Hydrogen Energy 2005, 30: 687-691.
    [140] Zhuang Q. X., Wu Y. N., Su J. R., Yang S. B., Structural effect and activity sequence of photocatalytic dehydrogenation of alcohols in aqueous solution [J]. J. Mol. Catal. (China) 1991,5:257-262.
    [141] Bamwenda G. R., Arakawa H., The photoinduced evolution of suspension O_2 and H_2 from WO_3 aqueous suspension in the presence of Ce~(4+)/Ce~(3+) [J]. Sol. Energy Mater. Sol. Cells 2001,70: 1-14.
    [142]Abe R.,Sayama K.,Domen K.,Arakawa H.,A new type of water splitting system composed of two different TO_2 photocatalysts(anatase,rutile) and a IO_3~-/I~- shuttle redox mediator[J].Chem.Phys.Lett.2001,344:339-344.
    [143]Sayama K.,Mukasa K.,Abe R.,Abe Y.,Arakawa H.,A new photocatalytic water splitting system under visible light irradiation mimicking a Z-scheme mechanism in photosynthesis [J].J.Photochem.Photobiol.A-Chem.2002,148:71-77.
    [144]Lee K.Nam W.S.,Han G.Y.,Photocatalytic water-splitting in alkaline solution using redox mediator.1:parameter study[J].Int.J.Hydrogen Energy 2004,29:1343-1347.
    [145]Sayama K.,Arakawa H.,Significant effect of carbonate addition on stoichiometric photodecomposition of liquid water into hydrogen and oxygen from platinum-titanium(Ⅳ)oxide suspension[J].Chem.Commun.1992,2:150-152.
    [146]Sayama K.,Arakawa H.,Effect of Na_2CO_3 addition on photocatalytic decomposition of liquid water over various semiconductors catalysis[J].J.Photochem.Photobiol.A-Chem.1994,77:243-247.
    [147]Zhao J.C.,Chen C.C.,Ma W.H.,Photocatalytic degradation of organic pollutants under visible light irradiation[J].Top.Catal.2005,35:269-278.
    [148]Blount M.C.,Buchholz J.A.,Falconer J.L.,Photocatalytic decomposition of aliphatic alcohols,acids,and esters[J].J.Catal.2001,197:303-314.
    [149]Kabra K.,Chaudhary R.,Sawhney R..L.Treatment of hazardous organic and inorganic compounds through aqueous-phase photocatalysis:A review[J].Ind.Eng.Chem.Res.2004,43:7683-7696.
    [150]Bhatkhande D.S.,Pangarkar V.G.,Beenackers A.A.,Photocatalytic degradation for environmental applications-a review[J].J.Chem.Technol.Biotechnol.2001,77:102-116.
    [151]Zhao J.,Yang X.D.,Photocatalytic oxidation for indoor air purification:A literature review [J].Building Environ.2003,38:645-654.
    [152]李芳柏,古国榜,李亲军,万洪富.WO_3/TiO_2纳米材料的制备及光催化性能[J].物理化学学报2000,16:997-1002.
    [153]Vinodgopal K.,Kamt P.V.,Enhanced rates of photocataytic degradation ofan azo dye use SnO_2/TiO_2 coupled semiconductor thin films[J].Environ.Sci.Technol.1995,29:841-845.
    [154]Fu X.Z.,Clerk L.A.,Yaang Q.Enhanced photocatalytic performance of titania-based binary metal oxides:TiO_2/SnO_2 and TiO_2/ZrO_2[J].Environ.Sci.Technol.1996,30:647-653.
    [155]Masakazu A.,Takafumi K.,Sukeya K.,Photocatalysis on Ti-Al binary oxides:Enhanced of the photocatalytic activity of TiO_2[J].J.Phys.Chem.1988,92:438-440.
    [156]潘海波.TiO_2基纳米氧敏材料及复合光催化材料的制备、结构与性能研究:[博士学位论文].福州大学2006
    [157]Desilvestro J.,Gr(a|¨)etzel M.,Kaven L.,Moser J.,Augustynski J.,Hightly efficiency sensitization of titanium dioxide[J].J.Am.Chem.Soc.1985,107:2988-2990.
    [158]Vlachopoulos N.,Liska P.,Augustynski J.,Gr(a|¨)etzel M.,Very efficient visible light energy harvesting and covnersion by spectral sensitization of high surface area polycrystalline TiO_2films[J].J.Am.Chem.Soc.1988,110:1216-1220.
    [159]Nazerruddin M.K.,Kay A.,Rodicio I.Mueller E.,Gr(a|¨)etzel M.,Conversion of TiO_2 by Cis-X_2 Bis(2,2'-bipyridine-4,4'-dicarboxylate)Ruthenium(Ⅱ) charge-transfer sensitized on nanocrystalline TiO_2 electrodes.[J].J.Am.Chem.Soc.1993,115:6382-6390.
    [160]Iliev V.,Mihaylova A.,Bilyarska L.,Photooxidation of phenols in aqueous solution,catalyzed by mononuclear and polynuclear methal phthalocyanine complexes[J].J.Mol.Catal.A - Chem.2002,184:121-130.
    [161]Iliev V.,Phthalocyanine modified titania-catalyst for photooxidation of phenols by irradiation with visible light[J].J.Photochem.Photobiol.A- Chem.2002,151:195-199.
    [162]Do Y.R.,Lee W.,Dwight K.,Wold A.,The effect of WO_3 on the photocatalytic activity of TiO_2[J].J.Solid State Chem.1994,108:198-201.
    [163]Alemany L.J.,Lietti L.,Ferlazzo N.,Reactivity and physicochemical characterization of V_2O_5-WO_3/TiO_2 deNO_x catalysts[J].J.Catal.1995,155:117-130.
    [164]Oosawa Y.,Gr(a|¨)itzel M.,Effect of surface hydroxyl density on photocatalytic oxygen generation in aqueous TiO_2 suspensions[J].J.Chem.Soc.,Faraday Trans.1988,84:197-206.
    [165]Papp J.,Soled S.,Dwight K.,Wold A.,Surface acidity and photocatalytic activity of TiO_2,WO_3/TiO_2 and MoO_3/TiO_2 photocatalysts[J].Chem.Mater.1994,6:496-500.
    [166]Fu X.Z.,Walter A.Zeltner,Marc A.Anderson,The gas-phase photocatalytic mineralization of benzene on porous titania-based catalysts[J].Appl.Catal.B - Environ.1995,6:209-224.
    [167]苏文悦,陈亦琳,付贤智,魏可镁.SO_4~(2-)/TiO_2固体酸催化剂的酸强度及其光催化性能[J].催化学报2001,22:175-176.
    [168]李旦振,郑宜,付贤智,刘平.微波法制备SO_4~(2-)/TiO_2催化剂及其光催化氧化性能[J].物理化学学报2001,17:270-273.
    [169]Ollis D.F.,Pelizzetti E.,Serpone N.,Heterogeneous photocatalysis in the environment:application to water purification,photocatalysis,fundamentals and application[M].New York:John Wiley & Sons,1989.
    [170]Chen D.,Ray A.K.,Removal of toxic metal ions from wastewater by semiconductor photocatalysis[J].Chem.Eng.Sci.2001,56:1561-1570.
    [171]Lin Y.M.,Tseng Y.H.,Huang J.H.,Photocatalytic activity for degradation of nitrogen oxides over visible light responsive titania-based photocatalysts[J].Environ.Sci.Technol.2006,40:1616-1621.
    [172]Toma F.L.,Bertrand G.,Klein D.,Coddet C.,Photocatalytic removal of nitrogen oxides via titanium dioxide[J].Environ.Chem.Lett.2004,2:117-121.
    [173]Reddy B.M.,Khan A.,Recent advances on TiO_2-ZrO_2 mixed oxides as catalysts and catalyst supports[J].Catal.Rev.- Sci.Eng.2005,47:257-296.
    [174]Ao C.H.,Lee S.C.,Zou S.C.,Mak C.L.,Inhibition effect of SO_2 on NO_x and VOCs during the photodegradation of synchronous indoor air pollutants at parts per billion(ppb)level by TiO_2[J].Appl.Catal.B - Environ.2004,49:187-193.
    [175]尚静,徐自力,杜尧国,郭海忱.超细粉TiO_2光催化氧化SO_2的研究[J].高等学校化学学报2000,21:1299-1230.
    [176]徐安武,刘汉钦,李玉光.NO_x气相光催化氧化降解研究[J].高等学校化学学报2000,21:1252-1256.
    [177]Fujishima A.,Hashimoto K.,Watanabe T.,TiO_2 photocatalysis:Fundamentals and applications[M].Tokyo:BKC,1999.
    [178]Wang R.,Hashimoto K.,Fujishima A.,Chikuni M.,Kojima E.,Kitamura A.,Shimohigoshi M.,Watanabe T.,Photogeneration of highly amphiphilic TiO_2 surfaces[J].Adv.Mater.1998,10:135-138.
    [179]孙孝仁.光催化剂及其应用[J].科技情报开发与经济2006,11:40-41.
    [180]Peigney A.,Laurent C.,Rousset A.,Synthesis and characterization of alumina matrix nanocomposites containing carbon nanotubes[J].Key Eng.Mater.1997,743-746:132-136.
    [181]Chen P.,Zhang H.B.,Lin G.D.,Hong Q.,Tsai K.R.,Growth of carbon nanotubes by catalytic decomposition of CH_4 or CO on a Ni-MgO Catalyst[J].Carbon 1997,35:1495-1501.
    [182]陈萍,张鸿斌,林国栋,蔡启瑞.过渡金属催化剂及用于制备均匀管径碳纳米管的方法[P].中国专利:ZL96110252.7,2000.
    [183]Rul S.,Laurent C.,Peigney A.,Rousset A.,Carbon nanotubes prepared in situ in acellular ceramic by the gelcasting foam method[J].J.Eur.Ceram.Soc.2003,23:1233-1241.
    [184]Rul S.,Lefevre-schlick F.,Capria E.,Laurent C.,Peigney A.,Percolation of single-walled carbon nanotubes in ceramic matrix nanocomposites[J].Acta Mater.2004,52:1061-1067.
    [185]Sun J.,Gao L.,Development of a dispersion process for carbon nanotubes in ceramic matrix by heterocoagulation[J].Carbon 2003,41:1063-1068.
    [186]Yu Y.,Yu J.C.,Yu J.G.,Kwok Y.C.,Che Y.K.,Zhao J.C.,Ding L.,Ge W.K.,Wong P.K.,Enhancement of photocatalytic activity of mesoporous TiO_2 by using carbon nanotubes[J].Appl.Catal.A- Gen.2005,289:186-196.
    [187]Wang W.,Serp P.,Kalck P.,Faria J.L.,Photocatalytic degradation of phenol on MWNT and titania composite catalysts prepared by a modified sol-gel method[J].Appl.Catal.B-Environ.2005,56:305-312.
    [188]Wang W.,Serp P.,Kalck P.,Faria J.L.,Visible light photodegradation of phenol on MWNT-TiO_2 composite catalysts prepared by a modified sol-gel method[J].J.Mol.Catal.A- Chem.2005,235:194-199.
    [189]陈金媛.负载型纳米TiO_2复合催化剂的合成及应用研究:[博士学位论文].浙江大学2005
    [190]曹春华.碳纳米管的化学修饰及碳纳米短管改性二氧化钛光催化剂:[硕士学位论文].华中师范大学2004
    [191]Guo D.Z.,Zhang G.M.,Zhang Z.X.,Xue Z.Q.,Gu Z.N.,Visible-light-induced water-splitting in channels of carbon nanotubes[J].J.Phys.Chem.B 2006,110:1571-1575.
    [1]Wang W.,Serp P.,Kalck P.,Faria J.L.,Photocatalytic degradation of phenol on MWNT and titania composite catalysts prepared by a modified sol-gel method[J].Appl.Catal.B-Environ.2005,56:305-312.
    [2]Wang W.,Serp P.,Kalck P.,Faria J.L.,Visible light photodegradation of phenol on MWNT-TiO_2 composite catalysts prepared by a modified sol-gel method[J].J.Mol.Catal.A- Chem.2005,235:194-199.
    [3]Kakihana M.,Arima M.,Highly active BaTi_4O_9/RuO_2 photocatalyst by polymerized complox method[J].Appl.Phys.Lett.1996,69:2053-2055.
    [4]Ikeda S.,Hara M.,Kondo J.N.,Domen K.,Preparation of K_2La_2Ti_3O_(10) by polymerized complex method and photocatalytic decomposition of water[J].Chem.Mater.1998,10:72-77.
    [5]Hwang D.W.,Kim H.G.,Lee J.S.,Kim J.,Li W.,Oh S.H.,Photocatalytic hydrogen production from water over M-doped La2Ti207(M = Cr,Fe) under visible light irradiation (λ> 420 nm)[J].J.Phys.Chem.B 2005,109:2093-2102.
    [6]He M.,Duan X.,Wang X.,Zhang J.,Liu Z.,Robinson C.,Iron catalysts reactivation for effcient CVD growth of SWNT with base-growth mode on surface[J].J.Phys.Chem.B 2004,108:12665-12668.
    [7]Lei Z.,Ma G.,Liu M.,You W.,Yah H.,Wu G.,Takata T.,Hara M.,Domen K.,Li C.,Sulfur-substitued and zinc-doped In(OH)_3:A new class of catalyst for photocatalytic H_2production from water under visible light illumination[J].J.Catal.2006,237:322-329.
    [8]梁栋材.X射线晶体学基础[M].北京:科学出版社,1991.
    [9]白春礼.扫描隧道显微技术及其应用[M].上海:上海科学技术出版社,1992.
    [10]刘世宏.X-射线光电子能谱分析[M].北京:科学出版社,1988.
    [11]Hirakawa T.,Nosaka Y.,Properties of·O_2~- and ·OH formed in TiO_2 aqueous suspensions by photocatalytic reaction and the influence of H_2O_2 and some ions[J].Langmuir 2002,18:3247-3254.
    [1] Yu Y., Yu J. C., Yu J. G., Kwok Y. C., Che Y. K., Zhao J. C, Ding L., Ge W. K., Wong P. K., Enhancement of photocatalytic activity of mesoporous TiO_2 by using carbon nanotubes [J]. Appl. Catal. A-Gen. 2005, 289: 186-196.
    [2] Wang W., Serp P., Kalck P., Faria J. L., Photocatalytic degradation of phenol on MWNT and titania composite catalysts prepared by a modified sol-gel method [J]. Appl. Catal. B -Environ. 2005, 56: 305-312.
    [3] Wang W, Serp P., Kalck P., Faria J. L., Visible light photodegradation of phenol on MWNT-TiO_2 composite catalysts prepared by a modified sol-gel method [J]. J. Mol. Catal. A-Chem.2005,235: 194-199.
    [4] Luo Y. S., Liu J. P., Xia X. H., Li X. Q., Fang T., Li S. Q., Ren Q. F., Li J. L., Jia Z. J., Fabrication and characterization of TiO_2/short MWNTs with enhanced photocatalytic activity [J]. Mater. Lett. 2007, 61: 2467-2472.
    [5] Lettmann C., Hildenbrand K., Kisch H., Macyk W., Maier F. W, Visible light photodegradation of 4-chlorophenol with a coke-containing titanium dioxide photocatalyst [J]. Appl. Catal. B - Environ. 2001, 32: 215-227.
    [6] Matos J., Laine J., Herrmann J. M., Synergy effect in the photocatalytic degradation of phenol on a suspended mixture of titania and activated carbon [J]. Appl. Catal. B - Environ. 1998,18:281-291.
    [7] Xu C, Killmeyer R., Gray M. L., Khan S. U. M., Photocatalytic effect of carbon-modified n-TiO_2 nanoparticles under visible light illumination [J]. Appl. Catal. B - Environ. 2006, 64: 312-317.
    [8] Cong Y, Chen F., Zhang J. L., Anpo ML, Carbon and nitrogen-codoped TiO_2 with high visible light photocatalytic activity [J]. Chem. Lett. 2006, 35: 800-801.
    [9] Lin L., Zhou Y, Zhu Y X., Xie Y C, Effect of carbon content on photocatalytic activity of C/TiO_2 composite [J]. Front. Chem. in China 2007, 2: 64-69.
    
    [10] Kakihana M., Arima M., Highly active BaTi_4O_9/RuO_2 photocatalyst by polymerized complex method [J]. Appl. Phys. Lett. 1996, 69: 2053-2055.
    [11] Ikeda S., Hara M., Kondo J. N., Domen K., Preparation of K_2La_2Ti_3O_(10) by polymerized complex method and photocatalytic decomposition of water [J]. Chem. Mater. 1998, 10: 72-77.
    [12] Yamashita Y., Tada M., Kakihana M., Osada M., Yoshida K., Synthesis of RuO_2-loaded BaTi_nO_(2n+1) (n = 1, 2 and 5) using a polymerizable complex method and its photocatalytic activity for the decomposition of water [J]. J. Mater. Chem. 2002,12: 1782-1786.
    [13] Hwang D. W., Kim H. G., Lee J. S., Kim J., Li W., Oh S. H., Photocatalytic hydrogen production from water over M-doped La_2Ti_2O_7 (M = Cr, Fe) under visible light irradiation (λ>420 nm) [J]. J. Phys. Chem. B 2004, 109: 2093-2102.
    [14] Vijayakumar M., Inaguma Y, Mashiko W., Crosnier-Lopez M. -P., Bohnke C, Synthesis of fine powders of Li_(3x)La_(2/3-x)TiO_3 perovskite by a polymerizable precursor method [J]. Chem. Mater. 2004,16:2719-2724.
    [15] Szanics J., Okubo T., Kakihana M. Preparation of LiTaO3 powders at reduced temperatures by a polymerized complex method [J]. J. Alloys Compd. 1998, 281: 206-210.
    [16] Kumar S., Messing G. L., White W., Metal organic resin derived barium titanate: I. formation of barium titanate oxycarbonate intermediate[J].J.Am.Ceram.Soc.1993,76:617-624.
    [17]张鸿斌,林国栋,蔡启瑞.碳纳米管的催化合成、结构表征及应用研究[J].厦门大学学报(自然科学版)2001,40:387-397.
    [18]He M.,Duan X.,Wang X.,Zhang J.,Liu Z.,Robinson C.,Iron catalysts reactivation for effcient CVD growth of SWNT with base-growth mode on surface[J].J.Phys.Chem.B 2004,108:12665-12668.
    [19]Chen C.M.,Dai Y.M.,Huang J.G.,Jehng J.M.,Intermetallic catalyst for carbon nanotubes (CNTs) growth by thermal chemical vapor deposition method[J].Carbon 2006,44:1808-1820.
    [20]Ebbesen T.W.,Lezee H.J.,Hiura H.,Neentt J.W.,Ghaemi H.F.,Thio T.,Electrical conductivity of individual carbon nanotubes[J].Nature 1996,382:54-56.
    [21]Harris L.A.,Schumacher R.,The influence of preparation on semiconductor rutile(TiO_2)[J].J.Electrochem.Soc.,Solid State Sci.Technol.1980,27:1186-1188.
    [22]刘鸿,吴合进,孙福侠,姚永禄,吴鸣,李文钊.氢还原二氧化钛光催化降解磺基水杨酸的研究[J].分子催化200l,15:47-50.
    [23]刘鸿,吴鸣,吴合进,孙福侠,郑云,李文钊.氢处理二氧化钛的光催化性能及电化学阻抗谱[J].物理化学学报2001,17:286-288.
    [24]Ulrike D.,The surface science of titanium dioxide[J].Surf.Sci.Rep.2003,48:53-64.
    [25]Fujihara K.,Izumi S.,Ohno T.,Matsumura M.,Time-resolved photoluminescence of particulate TiO_2 photocatalysts suspended in aqueous solutions.[J].J.Photochem.Photobiol.-A 2000,132:99-104.
    [26]Reztsova T.,Chang C.-H.,Koresh J.,Idriss H.,Dark- and photoreactions of ethanol and acetaldehyde over TiO_2/carbon molecular sieve fibers[J].J.Catal.1999,185:223-235.
    [27]Dickinson A.,James D.,Perkins N.,Cassidy T.,Bowker M.,The photocatalytic reforming of mehtanol[J].J.Mol.Catal.A- Chem.1999,146:211-221.
    [28]Yang Y.Z.,Chang C.-H.,Idriss H.,Photo-catalytic production of hydrogen from ethanol over M/TiO_2 catalysts(M = Pd,Pt or Rh)[J].Appl.Catal.B - Environ.2006,67:217-222.
    [29]Lucking A.,Yang R.T.,Hydrogen spillover from a metal oxide catalyst onto carbon nanotubes-implications for hydrogen storage[J].J.Catal.2002,206:165-168.
    [30]Zhuang Q.X.,Wu Y.N.,Su J.R.,Yang S.B.,Structural effect and activity sequence of photocatalytic dehydrogenation of alcohols in aqueous solution[J].J.Mol.Catal.(China)1991,5:257-262.
    [31]Zhuang Q.X.,Chen.J.,Wang Z.H.,Wang S.S.,Dehydrogenation and activation energy of the photocatalytic reaction of ethanol[J].Acta Energy Sol.Sinica 1990,11:354-360.
    [32]庄启星,陈健,王康平.乙醇水溶液可见光催化脱氢的研究[J].厦门大学学报(自然科学版)1988,27:414-420.
    [33]Pichat P.,Herrman J.M.,Didier J.,Courbon H.,Mozzanega M.N.,Photocatalytic hydrogen production from aliphatic alcohols over a bifunctional platinum on titanium dioxide catalyst [J].Nouv.J.Chim.1981,5:627-636.
    [34]Marcus Y.,The properties of organic liquids that are relevant to their use as solvating solvents [J].Chem.Soc.Rev.1993,22:409-416.
    [35]Martin M.E.,Sáchez M.L.,Olivares del Valle F.J.,Aguilar M.A.,A theoretical study of liquid alcohols using averaged solvent electrostatic potentials obtained from molecular dynamics simulations:Methanol,ethanol and propanol[J].J.Chem.Phys.2002,116: 1613-1620.
    [36] Kawai T., Sakata T., Photocatalytic hydrogen production from liquid methanol and water [J]. J. Chem. Soc, Chem. Commun. 1980, 694-695.
    [37] Sakata T., Kawai T., Hetergeneous photocatalytic production of hydrogen and methane from ethanol and water [J]. Chem. Phys. Lett. 1981, 80: 341-344.
    [38] Kudo A., Domen K., Maruya K., Onishi T., Photocatalytic activities of TiO_2 loaded with NiO [J]. Chem. Phys. Lett. 1987,133: 517-519.
    [1] Yu Y., Yu J. C., Yu J. G., Kwok Y. C., Che Y. K., Zhao J. C., Ding L., Ge W. K., Wong P. K., Enhancement of photocatalytic activity of mesoporous TiO_2 by using carbon nanotubes [J]. Appl. Catal. A- Gen. 2005,289:186-196.
    [2] Wang W, Serp P., Kalck P., Faria J. L., Photocatalytic degradation of phenol on MWNT and titania composite catalysts prepared by a modified sol-gel method [J]. Appl. Catal. B - Environ. 2005, 56: 305-312.
    [3] Wang W, Serp P., Kalck P., Faria J. L, Visible light photodegradation of phenol on MWNT-TiO_2 composite catalysts prepared by a modified sol-gel method [J]. J. Mol. Catal. A-Chem. 2005,235:194-199.
    [4] Luo Y. S., Liu J. P., Xia X. H., Li X. Q., Fang T., Li S. Q., Ren Q. F., Li J. L., Jia Z. J., Fabrication and characterization of TiO_2/short MWNTs with enhanced photocatalytic activity [J]. Mater. Lett. 2007, 61: 2467-2472.
    [5] Lettmann C., Hildenbrand K., Kisch H., Macyk W., Maier F. W, Visible light photodegradation of 4-chlorophenol with a coke-containing titanium dioxide photocatalyst [J]. Appl. Catal. B - Environ. 2001, 32: 215-227.
    [6] Matos J., Laine J., Herrmann J. M., Synergy effect in the photocatalytic degradation of phenol on a suspended mixture of titania and activated carbon [J]. Appl. Catal. B - Environ. 1998,18:281-291.
    [7] Kamat P. V., Das S., Thomas K. G., George M. V., Ultrafast photochemical events associated with the photosensitization properties of a squaraine dye [J]. Chem. Phys. Lett. 1991, 178: 75-79.
    [8] Wu T., Liu G., Zhao J., Hidaka H., Serpone N., Evidence for H_2O_2 generation during the TiO_2-assisted photodegradation of dyes in aqueous dispersions under visible light illumination [J]. J. Phys. Chem. B 1999, 103: 4862-4867.
    [9] Prevot A. B., Basso A., Baiocchi C., Pazzi M., Marci G., Augugliaro V, Palmisano L., Pramauro E., Analytical control of photocatalytic treatments: degradation of a sulfonated azo dye [J]. Anal. Bioanal. Chem. 2004, 378: 214-220.
    [10] Fox, M.A; Dulay, M.T. Heterogeneous Photocatalysis [J]. Chem Rev, 1993, 93: 341-357.
    [11] Comparelli R., Fanizza E., Curri M. L., Cozzoli P. D., Mascolo G., Passino R., Agostiano A., Photocatalytic degradation of azo dyes by organic-capped anatase TiO_2 nanocrystals immobilized onto substrates [J]. Appl. Catal. B - Environ. 2005, 55: 81-91.
    [12] Rajh T., Nedeljkovic J. M., Chen L. X., Poluektov O., Thurnauer M. C., Improving optical and charge separation properties of nanocrystalline TiO_2 by surface modification with vitamin C [J]. J. Phys. Chem. B 1999,103: 3515-3159.
    [13] Xagas A. P., Bernard M. C., Goff A. H., Spyrellis N., Loizos Z., Falaras P., Surface modification and photosensitisation of TiO_2 nanocrystalline films with ascorbic acid [J]. J. Photochem.Photobiol.A-Chem.2000, 132: 115-120.
    [14] Sirimanne P. M., Soga T., Fabrication of a solid-state cell using. vitamin C as sensitizer [J]. Sol. Energy Mater. Sol. Cells 2003, 80: 383-389.
    [15] Ou Y, Lin J. D., Zou H. M., Liao D. W., Effects of surface modification of TiO_2 with ascorbic acid on photocatalytic decolorization of an azo dye reactions and mechanisms [J]. J. Mol. Catal. A - Chem. 2005, 241: 59-64.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700