用户名: 密码: 验证码:
地基板与混凝土框架结构参数识别的实验与研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近二十年来,基于动力信息的结构损伤诊断研究受到人们的广泛关注,学者在这一领域开展大量的研究。由于土木工程结构的复杂性,人们对结构的建模忽略了很多关键因素,例如没有考虑土与结构动力相互作用的影响。人们多利用低阶模态进行损伤诊断研究,对损伤敏感的高阶模态研究和利用较少。用于结构损伤诊断的动力信息还受到环境因素和测量噪声的影响,存在着不确定性。本文以弹性地基板和弹性地基上的钢筋混凝土框架结构为对象展开参数识别和损伤诊断研究工作,主要内容如下:?
     1.对模态参数识别方法进行了研究,比较最小二乘复指数法(LSCE)与?PolyMAX?方法,发现?PolyMAX?方法识别高阻尼高阶模态的能力较强。在实验室条件下对弹性地基上自由板进行了脉冲锤击法模态实验,讨论了? Winkler?地基和双参数地基板振动的特点,指出实际工程中地基板的振动仅存在“近似刚体模态”。利用? Vlasov?地基上厚薄板通用元建立地基板振动的通用方法,通过反分析识别得到地基的物理参数。?
     2.在实验室条件下对地基上的一座钢筋混凝土框架结构进行了模态实验研究。随着框架结构的浇筑过程,进行了随着层数增加的逐层位移模态测试,得到了各种工况下结构的模态值。然后进行了应变模态测试,得到各阶应变模态测试结果。分别考虑了重复实验,模态参数分析方法,温度变化,力大小不均等因素造成的模态参数不确定性。发现模态参数识别方法的影响不能忽略。随温度的升高,结构模态频率降低。锤击力增大导致结构频率的降低。对于非稳态信号的处理,利用?HHT?的识别得到的结果比?FFT?更好。?
     3.对本文框架结构进行了物理参数识别研究。上部结构采用弯剪缩聚型模型,下部基础采用地基阻抗函数模型。基于不同工况识别得到的结构模态参数结果,利用灵敏度方法进行了各种工况下的结构和地基参数同步识别,得到了模态参数随结构变化的规律。由于灵敏度方法易出现病态问题,采用遗传算法结合模拟退火技术形成遗传退火混合算法,提高了遗传算法的全局寻优能力。利用遗传退火混合算法进行参数识别,识别结果优于灵敏度方法的结果。?
     4.引入模态局部化的概念,通过算例讨论了刚度完好连续梁由于支座位置变化和支座刚度变化导致的模态局部化的问题,在理论上是特征空间的扩张的问题。利用一座? 3?层框架首层梁的模态实验证实了框架梁也具有连续梁的类似特性,并分析了框架中千斤顶对于结构动力特性的影响。对本文框架结构柱的研究发现,连续梁的模态局部化现象也存在于框架柱中,通过在首层柱单元上加质量博士学位论文?块的方法,从实测结果证实了“高灵敏度的高阶模态”的存在。?
     5.建立了基于贝叶斯理论进行损伤诊断的基本框架,利用基于马尔可夫链的蒙特卡罗模拟(MCMC)的方法计算贝叶斯统计问题,编制了?MCMC?计算程序。通过一个三层剪切型框架结构的计算模型,分别计算了单损伤与多损伤,不同准则的比较,不同噪声水平下方法的比较,表明? MCMC?方法能有效地诊断结构的损伤。对本文框架结构局部加强柱部位进行了损伤前和损伤后的各? 5?次试验,利用两步法得到的后验期望估计准确诊断了损伤的位置。同时发现地基参数对于结构动力特性有着明显的影响。
In these two decades, extensive attention has been focused on the researches about structural damage identification based on dynamic information, the studies in this field have been widely conducted by the scholars. Due to the complexity of civil engineering structures, many key factors are neglected in structural modeling, such as the influence of the soil-structure dynamic interaction is not considered. The lower modes are often used in damage identification, however the higher modes which are more sensitive to the damage have seldom been researched and utilized. The dynamic information is also influenced by the environment and the measurement noise, so there exist uncertain factors. In this paper the researches on the slab and frame on elastic foundation are studied in this paper, the main works are as follows.
     1. The researches have been done on modal parameter identification method. Compared with LSCE method, PolyMAX method has better abilities on identifying higher modes and higher damping modes. Modal experiments on free-edged elastic foundation slabs were done by hammer-hitting excitation method in the laboratory. The vibration characters of the slabs on Winkler foundation and on two parameter foundation are discussed, it is indicated that‘approximate rigid modes’exist in the slab on real soil condition. The generalized method analyzing the thick-thin slab on Vlasov foundation has been researched, the physical parameters of the foundation are identified by the inverse analysis.
     2. The modal experiment on a reinforced concrete frame structure on soil foundation was done in laboratory. The displacement mode experiment was done with increasing of the storey, the modal experimental results of four cases were obtained. The strain mode experiment was done and the strain modes were also obtained. Four different factors influencing the uncertainty of modal parameters are considered, including repeated experiments, modal analysis method, varieties of the temperature and the varieties of hitting force magnitude. It is found that the influence of modal parameter identification method can not be neglected. With the increase of the temperature, the modal frequencies are decreased. Modal frequencies of the structures are also decreased with the higher hitting force. HHT method is better on identifying the non-stationary signals than FFT method.
     3. Physical parameter identification is carried out on the frame structure. The bending shear condensation model is used as the upper structure model, and impedance function model is used as the foundation model. By using the modal parameter identification results in different Cases, the sensitivity method is used to identify the structure’s and foundation’s parameters in the same time, the regulation of the modal parameter changing with story height is obtained. Due to the ill-posed problems often occurred in sensitivity method, the simulated annealing algorithm is used to combine with genetic algorithm, so GAHA is produced and the global searching ability is developed. GAHA is used in parameter identification, the identified results are better than the results calculated by sensitivity method.
     4. The concept of modal localization is introduced, the modal localization phenomenon caused by changing support location and support stiffness in continuous beam like structure is discussed by numerical examples, it is due to the expansion of the eigenvalue space in theory. The modal experiments on the fist story beam of a three story height frame structure testify the frame beam has the similar dynamic characters just like continuous beam, the jack’s influence on the dynamic characters of frame structure is discussed. By researching on the column of the frame structure, it is found that modal localized phenomenon in continuous beam like structure occurred in frame column, by adding the mass on the column element of first story, the‘high sensitive higher mode’is found in experimental results.
     5. The basic frame work of damage identification based on Bayesian statistical theory is established, Markov Chain’s Monte Carlo simulation (MCMC) is used to calculate Bayesian problem. Calculating program of MCMC is compiled. By calculating a three storey shear frame structure, the cases on the single damage location and multiple damage locations, the different criterion and the method under different noise level are compared. It is indicated that Bayesian method based on MCMC method can identify the structural damage effectively. At last, five experiments were conducted before damage and after damage on the frame structure which local column is strengthened, the damage location can exactly be found by using posterior expectation estimation in two step method. It is found that the foundation parameter has obvious influence on structural dynamic characters.
引文
[1] Aktan A E, Catbas F N, Grimmelsman K A et al.. Issues in infrastructure health monitoring for management. Journal of Engineering Mechanics, ASCE, 2000, 126(7): 711-724
    [2] Doebling S W, Charles R F, Prime M B, Shevitz D W. Damage identification and health monitoring of structural and mechanical systems from changes in their vibration characteristics: A literature review. Los Alamos National Laboratory, LA-13070-MS, www.lanl.com, 1996, 1-121
    [3] Doebling S W, Farrar C R, Prime M B. A summary review of vibration-based damage identification methods. The Shock and Vibration Digest, 1998, 30(2):91-105
    [4] Sohn H, Farrar C R, Hemez F M. A review of structural health monitoring literature:1996-2001. Los Alamos National Laboratory, LA-13976-MS, www.lanl.com, 2001: 1-290
    [5]李德葆,陆秋海.实验模态分析及其应用.北京:科学出版社,2001, 146-214
    [6]俞云书.结构模态试验分析.北京:宇航出版社,2000, 122-190
    [7]傅志方.模态分析理论与应用.上海:上海交通大学出版社,2000, 82-211
    [8]曹数谦,张文德,萧龙翔.振动结构模态分析-理论、试验与应用.天津:天津大学出版社,2001, 104-173
    [9] Bart P, Partick G, Herman V D A et al. Automotive and Aerospace Applications of the PolyMAX Modal Parameter Estimation Method. In: Proceedings of International Modal Analysis Conference (XXII). Dearborne: Michigan, 2004, 1-11
    [10] Bart P, Herman V D A, Patrick G et al. The PolyMAX frequency-domain method: a new standard for modal parameter estimation. Shock and Vibration, 2004, 11: 395-409
    [11]林有勤.基于随机状态空间模型的结构损伤识别方法研究. [福州大学博士学位论文],福州:福州大学,2007, 16-28
    [12] Huang N.E, Shen Z. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. In: Proceeding of Royal Society. London: 1998, 903-995
    [13] Huang N E, Shen Z, Steven R L. A new view of nonlinear water waves: TheHilbert spectrum. Annual Review Fluid Mechanics, 1999, 31:417-457
    [14] Yang J N, Lei Y, Lin S et al. Hilbert-Huang based approach for structural damage detection. Journal of Engineering Mechanics, ASCE, 2004, 130(1): 85-95
    [15] Yang J N, Lei Y, Pan S et al. System identification of linear structures based on Hilbert-Huang spectral analysis. Part 1: normal modes. Earthquake Engineering and Structural Dynamics, 2003, 32:1443-1467
    [16] Yang J N, Lei Y, Pan S et al. System identification of linear structures based on Hilbert-Huang spectral analysis. Part 2: complex modes. Earthquake Engineering and Structural Dynamics, 2003 32:1533-1554
    [17]任伟新,韩建刚,孙增寿.小波分析在土木工程结构中的应用.北京:中国铁道出版社, 2006, 1-14
    [18]闫桂荣.基于广义柔度矩阵和小波分析的结构损伤识别方法.[哈尔滨工业大学博士学位论文].哈尔滨:哈尔滨工业大学,2006, 92-143
    [19] Hou Z, Noori M, Amand R S. Wavelet-based approach for structural damage detection. Journal of Engineering Mechanics, ASCE, 2000, 126(7):677-683
    [20] Hera A, Hou Z. Application of wavelet approach for ASCE structural health monitoring benchmark studies. Journal of Engineering Mechanics, ASCE, 2004, 130(1): 96-104
    [21] Sun Z, Chang C C. Structural damage assessment based on Wavelet packet transform. Journal of Structural Engineering, ASCE, 2002, 128(10):1354-1361
    [22]邓自立,王欣,高媛.建模与估计.北京:科学出版社, 2007:1-2
    [23]郭勤涛,张令弥.结构动力学有限元模型确认方法研究.应用力学学报,2005,22(4):572-578
    [24] Friswell M I, Mottershead. Finite element model updating in structural dynamics. Netherlands: Kluwer Academic Publishers, 1995, 98-253
    [25] Brownjohn J M M, Pan T C, Deng X Y. Correlating dynamic characteristics from field measurements and numerical analysis of a high-rise building. Earthquake Engineering and Structural Dynamics, 2000, 29:523-543
    [26] Li Q S, Wu J F. Correlation of dynamic characteristics of a super-tall building from full-scale measurements and numerical analysis with various finite element models. Earthquake Engineering and Structural Dynamics, 2004, 33: 1311-1336
    [27] Unger J F, Teughels A, Roeck G D. Damage detection of a prestressed concrete beam using modal strains. Journal of Structural Engineering, ASCE, 2005, 131(9):1456-1463
    [28] Unger J F, Teughels A, Roeck G D. System identification and damage detectionof a prestressed concrete beam. Journal of Structural Engineering, ASCE, 2006, 132(11): 1691-1698
    [29] Wu J R, Li Q S. Structural parameter identification and damage detection for a steel structure using a two-stage finite element model updating method. Journal of Constructional Steel Research, 2006, 62:231-239
    [30] Ji X D, Qian J, Xu L H. Damage diagnosis of a two-storey spatial steel braced-frame model. Structural Control and Health Monitoring, 2006, 14(8): 1083-1100
    [31] Saiidi M, Douglas B, Feng S. Prestress force effect on vibration frequency of concrete bridges. Journal of Structural Engineering, ASCE, 1994, 120(7): 2233-2241
    [32] Teughels A, Roeck G D. Structural damage identification of the highway bridge Z24 by model updating. Journal of Sound and Vibration, 2004, 278: 589-610
    [33] Chang C C, Chang T Y P, Zhang Q W. Ambient vibration of long-span cable-stayed bridge. Journal of Bridge Engineering, ASCE, 2001, 6(1):46-53
    [34] Zhang W, Chang T Y P, Chang C C. Finite-elenent model updating for the Kap Shui Mun cable-stayed bridge. Journal of Bridge Engineering, ASCE, 2001, 6(4):285-293
    [35] Brownjohn J M W, Moyo P, Omenzetter P et al. Assessment of highway bridge upgrading by dynamic testing and finite-element model updating. Journal of Bridge Engineering, ASCE, 2003, 8(3):162-172
    [36] Brownjohn J M W, Xia P Q, Hao H et al. Civil structure condition assessment by FE model updating: methodology and case studies. Finite Elements in Analysis and Design, 2001, 37:761-775
    [37] Xia P Q, Brownjohn J M W. Bridge structural condition assessment using systematically validated finite-element model. Journal of Bridge Engineering, ASCE, 2004, 9(5):418-423
    [38] Jaishi B, Ren W X. Structural finite element model updating using ambient vibration test results. Journal of Structural Engineering, ASCE, 2005, 131(4): 617-628
    [39] Jaishi B, Kim H J, Kim M K et al. Finite element model updating of concrete-filled steel tubular arch bridge under operational condition using modal flexibility. Mechanical Systems and Signal Processing, 2007, 21: 2406-2426
    [40] Zanardo G, Hao H, Xia Y et al. Stiffness assessment through modal analysis of an RC bridge before and after strengthening. Journal of Bridge Engineering, ASCE,2006, 11(5):590-601
    [41] Friswell M I, Penny J E T, Garvey S D. A combined genetic and eigensensitivity algorithm for the location of damage in structures. Computers and Structures, 1998, 69:547-556
    [42]易伟建,刘霞.混凝土梁板类构件边界条件识别与研究.湖南大学学报,2000,27(4):81-87
    [43] Sarma K C, Adeli H. Fuzzy genetic algorithm for optimization of steel structures. Journal of Structural Engineering, ASCE, 2000, 126(5):596-604
    [44] Hao H, Xia Y. Vibration-based damage detection of structures by genetic algorithm. Journal of Computing in Civil Engineering, ASCE, 2002, 16(3): 222-229
    [45] Lu Y, Tu Z G. Dynamic model updating using a combined genetic- eigensensitivity algorithm and application in seismic response prediction. Earthquake Engineering and Structural Dynamics, 2005, 34: 1149-1170
    [46]谢献忠,易伟建.混合遗传算法在结构动力反演中的应用研究.工程力学,2005,22(3):21-25
    [47] Haralampidis Y, Papadimitriou, Pavlidou C M. Multi-objective framework for structural model identification. Earthquake Engineering and Structural Dynamics, 2005, 34: 665-685
    [48] Perera R, Tarres R. Structural damage detection via modal data with genetic algorithms. Journal of Structural Engineering, ASCE, 2006, 132(9):1491-1501
    [49]孙木楠,史志俊.基于粒子群优化算法的结构模型修正.振动工程学报, 2004, 17(3): 350-353
    [50] Marwala T. Finite element model updating using response surface method. In: 45th Structures, Structural Dynamics and Materials Conference, California: American Institute of Aeronautics and Astronautics Journal, 2004
    [51] Cundy A L. Use of response surface metamodels in damage identification of dynmamic structures. Los Alamos National Laboratory, LA-14045-T, www.lanl.com, 2003, 1-78
    [52]陈华斌.基于响应面的结构有限元模型修正方法研究. [福州大学硕士学位论文].福州:福州大学,2007, 1-62
    [53] Adams R D, Cawley P, Pye C J et al.. A vibration technique for non-destructively assessing the integrity of structure. Journal of Mechanical Engineering Science 1978, 20(2): 93-100
    [54] Hassiotis S, Jeong G D. Identification of stiffness reductions using naturalfrequencies. Journal of Engineering Mechanics, ASCE, 1995, 121(10):1106-1113
    [55] Salawu O S. Detection of structural damage through changes in frequency: a review. Engineering Structures, 1997, 19(9): 718-723
    [56] Ren W X, Roeck G D. Structural damage identification using modal data. I: Simulation verification. Journal of Structural Engineering, ASCE, 2002, 128(1):87-95
    [57] Ren W X, Roeck G D. Structural damage identification using modal data. II: Test verification. Journal of Structural Engineering, ASCE, 2002, 128(1): 96-104
    [58] Yam L H, Leung T P, Li D B et al. Theoretical and experimental study of modal strain analysis. Journal of Sound and Vibration, 1996, 191(2):251-260
    [59]周先雁,沈蒲生.用应变模态对混凝土结构进行损伤识别的研究.湖南大学学报, 1997, 24(5): 69-74
    [60] Pandey A K, Biswas M, Samman M M. Damage detection from changes in curvature mode shapes. Journal of Sound and Vibration, 1991, 145(2):321-332
    [61] Shi Z Y, Law S S, Zhang L M. Structural damage detection from modal strain energy change. Journal of Engineering Mechanics, ASCE, 2000, 126(12):1216-1223
    [62] Shi Z Y, Law S S, Zhang L M. Improved damage quantification from elemental modal strain energy change. Journal of Engineering Mechanics, ASCE 2002, 128(5):521-529
    [63] Li H J, Yang H Z, Hu S L J. Modal strain energy decomposition method for damage localization in 3D frame structures. Journal of Engineering Mechanics, ASCE, 2006, 132(9):941-951
    [64] Hu S L J, Wang S Q, Li H J. Cross-modal strain energy method for estimating damage severity. Journal of Engineering Mechanics, ASCE, 2006, 132(4): 429-437
    [65] Pandey A K, Biswas M. Experimental verification of flexibility difference method for locate damage in structures. Journal of Sound and Vibration, 1995, 184(2): 311-328
    [66] Bernal D, Gunes B. Flexibility based approach for damage characterization: benchmark application. Journal of Engineering Mechanics, ASCE, 2004, 130(1):61-70
    [67] Gao Y, Spencer B F. Online damage diagnosis for civil infrastructure emplying a flexibility-based approach. Journal of Smart Material and Structures, 2006, 15(1): 9-19
    [68] Cao T T, Zimmerman D C. Procedure to extract Ritz vectors from dynamic testing data. Journal of Structural Engineering, ASCE, 1999, 125(12): 1393-1400
    [69] Sohn H, Law K H. Damage diagnosis using experimental Ritz vectors. Journal of Engineering Mechanics, ASCE, 127(11):1184-1193
    [70] Zimmerman D C, Kaouk M. Structural damage detection using a minimum rank update theory. Journal of Vibration and Acoustics, 1994, 116: 222-231
    [71]周先雁,沈蒲生,程翔云.用振动参数识别技术对混凝土框架进行破损评估.土木工程学报, 1998,31(2):39-45
    [72] Pierre C, Tang D M, Dowell E H. Localized vibrations of disordered multispan beams: theory and experiment. American Institute of Aeronautics and Astronautics Journal, 1987, 25(9): 1249-1257
    [73] Oddvar O. Bendiksen. Mode localization phenomena in large space structures. American Institute of Aeronautics and Astronautics Journal, 1987, 25(9): 1241-1248
    [74] Cornwell P J, Oddvar O. Bendiksen. Localization of Vibrations in Large Space Reflectors. American Institute of Aeronautics and Astronautics Journal, 1989, 27(2):219-226
    [75] Cox A M, Anges G S. A statistical analysis of space structure mode localization. American Institute of Aeronautics and Astronautics Journal, 1999, 39(5): 3123-3133
    [76] Nayfeh A H, Hawwa M A. The effect of mode localization on structure-borne sound. American Institute of Aeronautics and Astronautics Journal, 1994, 39(6):114-122
    [77] Levine-West M B, Salama M A. Mode localization experiments on a ribbed antenna. American Institute of Aeronautics and Astronautics Journal, 1993, 31(10):1929-1937
    [78] Bouzit D, Pierre C. An experimental investigation of vibration localization in disordered multi-span beams. American Institute of Aeronautics and Astronautics Journal, 1993,34(12):1565-1577
    [79]李国强,李杰.工程结构动力检测理论与应用.北京:科学出版社,2002, 196-245
    [80]徐丽.基于模态参数的混凝土框架结构损伤诊断研究. [湖南大学博士学位论文],长沙:湖南大学,2004, 1-124
    [81] Qi G Z, Guo X, Qi X Z etc. Local measurement for structural health monitoring. Earthquake Engineering and Engineering Vibration, 2005, 4(1): 165-172
    [82] Papadopoulos L, Garcia E. Structural damage identification: a probabilistic approach. American Institute of Aeronautics and Astronautics Journal, 1998, 36(11): 2137-2145
    [83] Xia Y, Hao H, Brownjohn J M W et al.. Damage identification of structures with uncertain frequency and mode shape data. Earthquake Engineering and Structural Dynamic, 2002, 31:1053-1066
    [84] Sohn H, Law K H. A Bayesian probabilistic approach for structure damage detection. Earthquake Engineering and Structural Dynamics, 1997, 26:1259-1281
    [85] Beck J L, Katafygiotis L S. Updating models and their uncertainties. I: Bayesian statistical framework. Journal of Engineering Mechanics, ASCE, 1998, 124(4): 455-461
    [86] Yeo I, Shin S, Lee H S et al. Statistical damage assessment of framed structures from static responses. Journal of Engineering Mechanics, ASCE, 2000, 126(4): 414-421
    [87] Sohn H, Law K H. Bayesian probabilistic damage detection of a reinforced- concrete bridge column. Earthquake Engineering and Structural Dynamics, 2000, 29:1131-1152
    [88] Katafygiotis L S, Yuen K V. Bayes spectral density approach for modal updating using ambient data. Earthquake Engineering and Structural Dynamics, 2001, 30: 1103-1123
    [89] Singhai A, Kiremidjian A S. Bayesian updating of fragilities with application to RC frames. Journal of Structural Engineering, ASCE, 1998, 124(8): 922-929
    [90] Yuen K V, Au S K, Beck J L. Two-stage structural health monitoring approach for phase I benchmark studies. Journal of Engineering Mechanics, ASCE, 2004, 130(1): 16-33
    [91] Wolf J P. Dynamic soil-structure interaction. New York: Prentice-Hall Inc, 1985,1-277
    [92] Wolf J P. Soil-structure-interaction analysis in time domain. New Jersey: Prentice-Hall Inc, 1991, 1-437
    [93]严人觉,王贻荪,韩清宇.动力基础半空间理论概论.北京:中国建筑工业出版社,1981:1-503
    [94] Selvadurai A P S. Elastic analysis of soil-foundation interaction. New York: Elsevier Scientific Publishing Company, 1979, 7-23
    [95] Ayvaz Y, Daloglu A, Dogangun A. Application of a modified Vlasov model to earthquake analysis of plates resting on elastic foundations. Journal of Soundand Vibration, 1998, 212(3): 499-509
    [96] Daloglu A, Dogangun A, Ayvaz Y. Dynamic analysis of foundation plates using a consistent Vlasov model. Journal of Sound and Vibration, 1999, 224(5): 941-951
    [97] Nazarian S, Reddy S. Study of parameters affecting impulse response method. Journal of Transportation Engineering. ASCE, 1996, 122(4): 308-315
    [98]许金余,邓子辰.机场刚性道面动力分析.西安:西北工业大学出版社,2002:1-172
    [99]曾亚.混凝土刚性路面板静、动力特性及损伤诊断研究.[湖南大学博士学位论文].长沙:湖南大学,1998,1-96
    [100]张望喜.混凝土地基板静、动力特性试验与研究.[湖南大学博士学位论文].长沙:湖南大学,2002, 1-155
    [101]王陶.基于遗传算法的刚性路面脱空判定.中国公路学报,2003,16(3):23-26
    [102] Ottosen N S, Ristinmaa M, Davis A G. Theoretical interpretation of impulse response tests of embedded concrete structures. Journal of Engineering Mechanics, ASCE, 2004, 130(9):1062-1071
    [103]姬亦工,王复明,郭忠印.基于落锤式弯沉仪(FWD)动态数据的路面模量反演方法.土木工程学报, 2002, 35(3): 31-36
    [104]王陶,王复明,王钊.弹性地基接缝板模量反演和地基脱空判定.岩土力学, 2003, 24(2):233-236
    [105]查旭东,王秉纲.基于同伦方法的路面模量反算研究.中国公路学报, 2003, 16(1): 1-5
    [106]王旭东,郭大进,邓学钧.动态弯沉盆几何特性分析.东南大学学报,1999, 29(5): 115-120
    [107]张建霖,郑小平.机场道面的地基反应模量及承载力分析.土木工程学报,2005,38(5):72-76
    [108]沈聚敏,周锡元,高小旺等.抗震工程学.北京:中国建筑工业出版社,2000,297-353
    [109]谢旭.桥梁结构地震响应分析与抗震设计.北京:人民交通出版社,2006, 1-12
    [110]《地震工程概论》编写组.地震工程概论.北京:科学出版社,1985,32-34
    [111]廖振鹏.工程波动理论导论.北京:科学出版社,2002,1-132
    [112]尹华伟.土-结构动力相互作用的计算方法研究. [湖南大学博士学位论文].长沙:湖南大学,2005,1-18
    [113] Wong H L, Trifunac M D. A comparison of soil-structure interactioncalculations with results of full-scale forced vibration tests. Soil dynamics and Earthquake Engineering, 1988, 7(1): 22-31
    [114] Hayashi Y, Tamura K, Mori M et al. Simulation analysis of buildings damaged in the 1995 Kobe, Japan, earthquake considering soil-structure interaction. Earthquake Engineering and Structural Dynamic, 1999, 28: 371-391
    [115] Aarcia F J C, Soto M C. The contribution of the built environment to the‘free-field’ground motion in Mexico City. Soil Dynamics and Earthquake Engineering, 2002, 22: 773-780
    [116] Trifunac M D, Ivanovic S S, Todorovska M I. Apparent periods of a building. I:Fourier analysis. Journal of Structural Engineering, ASCE, 2001, 127(5): 517-526
    [117] Hans S, Boutin C, Ibraim E .In situ experiments and seismic analysis of existing buildings. Part I: Experimental investigations. Earthquake Engineering and Structural Dynamics, 2005, 34(12): 1513-1529
    [118] Chassiakos A G, Masri S F, Nayeri R D et al. Use of vibration monitoring data to track structural changes in a retrofitted building. Structural Control and Health Monitoring, 2005
    [119] Sugawara Y, Uetake T, Kobayashi T et al. Forced vibration test of the Hualien large scale soil structure interaction model (part 2). Nuclear Engineering and Design, 1997, 172: 273-280
    [120] Borja R I, Chao H Y, Montans F J et al. SSI effects on ground motion at Lotung LSST site. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 1999, 125(9):760-770
    [121] Choi J S, Lee J S, Yun C B. Input and system identification of Hualien soil-structure interaction system using earthquake response data. Earthquake Engineering and Structure Dynamics, 2003,(32):1955-1975
    [122] Luco J E, Barros F C P. Identification of structural and soil properties from vibration tests of the Hualien containment model. Earthquake Engineering and Structure Dynamics, 2004, 34:21-48
    [123]陈跃庆,吕西林,李培振等.分层土-基础-高层框架结构相互作用体系振动台模型试验研究.地震工程与工程振动,2001, 21(3):104-112
    [124]吕西林,陈跃庆.结构-地基相互作用体系的动力相似关系研究.地震工程与工程振动,2001,21(3):85-92
    [125]陈波,吕西林,李培振,陈跃庆.用ANSYS模拟结构-地基动力相互作用振动台试验的建模方法.地震工程与工程振动,2002,22(1):126-131 - 14 4 -
    [126]陈波,吕西林,李培振,陈跃庆.均匀土-桩基-结构相互作用体系的计算分析.地震工程与工程振动,2002,22(3):91-99
    [127]吕西林,陈跃庆.高层建筑结构-地基动力相互作用效果的振动台试验对比研究.地震工程与工程振动,2002, 22(2):42-48
    [128]李培振,吕西林,陈波,陈跃庆.均匀土-箱基-结构相互作用体系的计算分析.地震工程与工程振动,2002,22(5):115-121
    [129]尹冠生,黄义.散粒体-贮仓结构-地基的动力特性分析.应用力学学报,2002,19(4):92-97
    [130]黄义,尹冠生.考虑地基-结构-散粒体相互作用时贮仓结构的静动力研究-实验研究.应用力学学报,2002,19(3):40-45
    [131]黄义,尹冠生.考虑地基-结构-散粒体相互作用时贮仓结构的静、动力研究[Ⅱ]-有限元分析.应用力学学报,2003,20(2):124-128
    [132] Barroso L R, Rodriguez R. Damage detection utilizing the damage index method to a benchmark structure. Journal of Engineering Mechanics, ASCE, 2004, 130(2):142-151
    [133] Chase J G, Hwang K L, Barroso L R et al. A simple LMS-based approach to the structural health monitoring benchmark problem. Earthquake Engineering and Structural Dynamics, 2005, 34: 575-594
    [134] Lus H, Betti R, Yu J et al. Investigation of a system identification methodology in the context of the ASCE benchmark problem. Journal of Engineering Mechanics, ASCE, 2004, 130(1):71-84
    [135] Johnson E A, Lam H F, Katafygiotis L S. Phase I IASC-ASCE structural health monitoring benchmark problem using simulated data. Journal of Engineering Mechanics, ASCE, 2004, 130(1): 3-15
    [136] Dobry R, Gazetas G. Dynamic response of arbitrary shaped foundations. Journal of Geotechnical Engineering, ASCE, 1986, 112(2): 109-315
    [137]易志华.刚性路面板的试验研究. [湖南大学硕士学位论文].长沙:湖南大学, 2002,1-52
    [138] Herman V D A, Jan L. A new testing paradigm for today’s product development process-Part2. Sound and Vibration, 2005, 11:18-22
    [139] Peter A, Raj S, Bart P et al. Modal parameter estimation for large, complicated MIMO tests. Sound and Vibration, 2006, 1:14-20
    [140] JTJ059-95.公路路基路面现场测试规程.
    [141]邓学均,黄晓明.路面设计原理与方法.北京:人民交通出版社,2001
    [142]王瑁成,劭敏.有限元法基本原理和数值方法.北京:清华大学出版社, 2002,332-335
    [143] Vallabhan C V G, Daloglu A T. Consistent FEM-Vlasov model for plates on layered soil. Journal of Structural Engineering,ASCE,1999,125(1):108-113
    [144] Wu C P, Shen P A. Dynamic analysis of concrete pavements subjected to moving loads. Journal of Transportation Engineering, ASCE, 1996, 122(5): 367-373
    [145]龙志飞,岑松,匡文起等.厚薄板振动分析的通用矩形单元.工程力学,1996,(增刊): 332-334
    [146]张望喜,易伟建.双参数地基上厚薄板通用元与地基参数识别的挠度分析.工程力学, 2003, 20(6): 46-51
    [147]龙志飞,岑松.有限元法新论-原理、程序、进展.北京:中国水利研究出版社,2001:1-318
    [148]龙志飞,王海霞.将薄板矩形单元扩展为厚板通用单元的一般方法.工程力学, 2000,17(4):37-43
    [149]王杰贤.动力地基与基础.北京:科学出版社, 2001,105-106
    [150] Peeters B, Roeck G D. One-year monitoring of the Z24-bridge: environmental effects versus damage events. Earthquake Engineering and Structural Dynamics, 2001, 30:149-171
    [151] Sohn H, Dzwonczyk M, Staser E G et al.. An experimental study of temperature efect on modal parameters of the Alamosa Canyon bridge. Earthquake Engineering and Structural Dynamics, 1999, 28: 879-897
    [152] Huth O, Feltrin G, Maeck J et al.. Damage identification using modal data: experiences on a prestressed concrete bridge. Journal of Structural Engineering, ASCE, 2005, 131(12):1898-1910
    [153] Xia Y, Hao H, Zanardo G et al. Long term vibration monitoring of an RC slab: temperature and humidity effect. Engineering Structures, 2006, 28: 441-452
    [154] Ndambi J M, Peeters B, Maeck J et al. Comparison of techniques for modal analysis of concrete structures. Engineering Structures, 2000, 22: 1159-1166
    [155] Neild S A, Williams M S, McFadden P D. Nonlinear vibration characteristics of damaged concrete beams. Journal of Structural Engineering, ASCE, 2003, 129(2): 260-268
    [156] Law S S, Zhu X Q. Nonlinear characteristics of damaged concrete structures under vehicular load. Journal of Structural Engineering, ASCE, 2004, 131(8): 1277-1285
    [157]陈隽.高层建筑损伤检测中的复合反演理论与试验研究.[同济大学博士学位论文].上海:同济大学, 1999,1-113
    [158] Pais A, Kausel E. Approximate formulas for dynamic stiffness of rigid foundations . Soil Dynamic and Earthquake Engineering, 1988, 7(4):213-227
    [159]蒯行成.地基-基础-上部结构动力相互作用分析.[湖南大学博士学位论文].长沙:湖南大学,1998, 1-57
    [160] Sanayei M,McClain J, Fascetti S W. Parameter estimation incorporating modal data and boundary conditions. Journal of Structural Engineering, ASCE, 1999, 125(9): 1049-1055
    [161] Nicoud Y R, Raphael B, Smith I F C. System identification through model composition and stochastic search. Journal of Computing in Civil Engineering, ASCE, 2004, 19(3): 239-247
    [162]雷英杰,张善文,李续武等.Matlab遗传算法工具箱及应用.西安:西安电子科技大学出版社,2005,62-105
    [163]易伟建,刘霞.基于遗传算法的结构损伤诊断研究.工程力学, 2001,18(2):64-71
    [164]王凌.智能优化算法及其应用.北京:清华大学出版社, 2001:1-230
    [165]康立山,谢云,尤矢勇等.非数值并行算法-模拟退火算法.北京:科学出版社,1997,22-38
    [166]王小平,曹立明.遗传算法-理论、应用与软件实现.西安:西安交通大学出版社, 2002,18-50
    [167] Cawley P, Adams P D. The location of detects in structures from measurements of natural frequencies. Journal of Strain Analysis, 1979, 14(2):49-57
    [168] Yao G C, Chang K C, Lee G C. Damage diagnosis of steel frames using vibrational signature analysis. Journal of Engineering Mechanics, ASCE, 1992, 118(9):1946-1961
    [169] Pandey A K, Biswas M. Damage detection in structures using changes in flexibility. Journal of Sound and Vibration. 1994, 169(1):3-17
    [170] Chen J C, Garba J A. On-Orbit damage assessment for large space structures. American Institute of Aeronautics and Astronautics Journal, 1988, 26(9):1198-1126
    [171]胡海昌,刘中生,王大钧.约束位置的修改对振动模态的影响.力学学报,1996,28(1):23-32
    [172] Pierre C, Tang D M, Dowell E H. Localized vibrations of disordered multispan beams: theory and experiment. American Institute of Aeronautics and Astronautics Journal, 1987, 25(9):1249-1257
    [173]朱慧明,韩玉启.贝叶斯多元统计推断理论.北京:科学出版社,2006:1-8
    [174] Katafygiotis L S, Beck J L. Updating models and their uncertainties. II: Model identifiability. Journal of Engineering Mechanics, ASCE, 1998, 124(4): 463-467
    [175] Vanik M W, Beck J L, Au S K. Bayesian probabilistic approach to structural health monitoring. Journal of Engineering Mechanics, ASCE, 2000, 126(7): 738-745
    [176] Beck J L, Au S K. Bayesian updating of structural models and reliability using markov chain monte carlo simulation. Journal of Engineering Mechanics, ASCE, 2002, 128(4): 380-391
    [177] Ching J, Beck J L. Bayesian analysis of Phase II IASC-ASCE structural health monitoring experimental Benchmark data. Journal of Engineering Mechanics, ASCE, 2004, 130(10): 1233-1244
    [178]易伟建,吴高烈,徐丽.模态参数不确定性分析的贝叶斯方法研究.计算力学学报, 2006, 23(6): 700-705
    [179]李功标,瞿伟廉.基于应变模态和贝叶斯方法的杆件损伤识别.武汉理工大学学报,2007, 29(1): 135-138
    [180]张仪萍.地基沉降曲线拟合的概率方法.岩土工程学报, 2005, 27(7):837-840
    [181]陈斌,刘宁,卓家寿.岩土工程反分析的扩展贝叶斯法.岩石力学与工程学报. 2004,23(4):555-560
    [182]茆诗松.贝叶斯统计.北京:中国统计出版社, 1999, 6-19
    [183] Papadimitriou C, Beck J L, Katafygiotis L S. Asymptotic expansions for reliability and moments of uncertain systems. Journal of Engineering Mechanics, ASCE, 1997,123(12): 1219-1229
    [184] Morkov Chain Monte Carlo and Gibbs Sampling. Lecture Notes for EEB 596z, www.stat.columbia.edu, 2002
    [185] Fitzgerald W J. Markov chain Monte Carlo methods with applications to signal processing. Signal Processing, 2001, 81:3-18
    [186] Karandikar R L. On the Markov Chain Monter Carlo(MCMC) method. Sadhana, 2006, 31(2): 81-104
    [187] Marques J P.模式识别-原理、方法及应用.北京:清华大学出版社, 2002, 28-38

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700