用户名: 密码: 验证码:
基于再生核质点法的地基承载力及边坡稳定性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地基承载力和边坡稳定性问题是土力学的两个重要分支,本文将无网格之再生核质点法引入到这两个问题中,通过对多种影响因素的分析,及模拟土体的破坏性状,以期对地基承载力和边坡工程的设计有所借鉴。具体开展了以下工作:
     1.阐述了无网格法与有限元法的本质区别,通过实例得到再生核质点法的核函数及数值积分时背景网格的选取原则。构造了采用增量分析的再生核质点法计算格式,并推导了采用广义von Mises屈服条件的实现过程。
     2.条形基础情况下,详细讨论了流动法则及基底粗糙程度对承载力系数的影响,结果显示对三个承载力系数的影响明显不同,流动法则对N_c和N_q的影响很大,而基底粗糙程度对N_r的影响更大。分析了不同的流动法则及基底粗糙程度与地基破坏模式之间的关系。在同时考虑粘聚力、超载和自重三项因素情况下,将本文的结果与经典的地基承载力公式的结果进行了对比,其中考虑流动法则和基底粗糙程度不同的情况。
     3.讨论了几种不同的边坡失稳判据,并基于实例提出了本文观点。对计算区域离散质点密度、屈服准则和流动法则对稳定性结果的影响进行了分析,并给出工程应用上的合理值。
     4.利用再生核质点法分析结果,探讨了基于应变分析的确定临界滑裂面的方法,比利用有限元法分析结果更容易实现,并根据搜索所得临界滑移面,提出一种计算边坡安全系数的新方法,算例表明该方法是可行的。
     5.研究了双层土质边坡随着土体强度变化的稳定性状,其安全系数和破坏形态随着上下两层土体强度比值的变化表现出一定的规律。对带软弱夹层的土质边坡,边坡的安全系数和破坏形态与软弱夹层土体的强度密切相关,软弱夹层土体强度相对其他土体强度的变化,使边坡的失稳破坏存在两种典型的机制。
     6.讨论了潜水一维非稳态运动Boussinesq方程的对称性,并采用Lie群变换,就某些边界条件得到其解析解。在此基础上,分析了对Boussinesq方程线性化所引起的误差问题,并得到了特定条件下严格的零误差线性化方法。最后,通过算例的分析对比,提出了在线性化时应该遵循的一些原则。
     7.滑坡是深圳地区主要地质灾害类型,具有数量多、规模小、分布广、群发性、危害大等特点。通过大量实例,总结了其滑坡发育的一般规律,对滑坡的治理及平时特别是汛期的预防具有一定的参考价值。
Based on the Reproducing Kernel Particle Method (RKPM), the study of bearing capacity of strip footings and slope stability is performed. The major works are as follows:
     1. The literature review RKPM theory is given and major differences between meshfree method and finite element method are illuminated. Then, two examples of RKPM analyses of cantilever beam and plate with a central hole are performed to show how to select kernel function and background mesh for numerical integration. The RKPM algorithm based on incremental analysis is also formulated and the procedures with von Mises yield rule are deduced.
     2. In case of strip footings, effects of associated and non-associated flow rules and baseroughness on bearing capacity coefficients are studied. It is proven that flow rules affect N_c and N_q greatly, while N_r depends on roughness of base other than flow rules. Therelationship between failure mechanism and base roughness or flow rules is established. Also, considering effects of cohesion, overloading and self-weight, the comparison of results of this study and classical numerical solutions is carried out.
     3. Several criteria of slope failure are discussed. The influences of discrete particle density, yield rule and flow rule on slope stability are analyzed and the sound values of above-mentioned factors are given for engineering practice.
     4. Based on numerical analyses of RKPM, a kind of strain analysis method used to seek critical failure surface and calculate factor of safety is proposed, which is simpler than finite element method. The result of a numerical example shows its feasibility.
     5. The stability analyses of slope with weak foundation and thin weak layer are studied. The factor of safety and failure moods vary correlated to variation of strength ratio. There are two failure mechanisms for a slope with thin weak layer.
     6. The symmetry of the 1-D Boussinseq equation for transient phreatic flows is discussed in this paper, and its analytical solution under such conditions as initial and boundary conditions is obtained by the method of the Lie group transformation. The errors between the non-linear Boussinesq equation and that of its linearization are compared. Based on the analytical solution, a new method for null error linearization of the Boussinesq equation is proposed, and some principles in the linearization are analyzed.
     7. Landslide is main type of geological disasters in Shen Zhen area, which has characteristics of small scale, many amount, long span, high loss, etc. Based on some case study, inherent law of landslide development is concluded. It has practical values for the renovation of landslide, particularly for precaution in flood season.
引文
[1] Atluri S N, Cho J Y, Kim H G. Analysis of thin beams using the meshless local Petrov-Galerkin (MLPG) method, with generalized moving least squares interpolation [J]. Computational Mechanics, 1999, 24:334-347.
    
    [2] Atluri S N, Sladek J, Sladek V et al. The local boundary integral equation (LBIE) and it's meshfless implementation for nonlinear elasticity [J]. Computational Mechanics, 2000, 25:180-198.
    
    [3] Atluri S N, Zhu T. A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics [J]. Computational Mechanics, 1998,22:117-127.
    
    [4] Atluri S N, Zhu T. The meshless local Petrov-Galerkin (MLPG) approach for solving problem in elasto-statics [J]. Computational Mechanics, 2000,25:169-179.
    
    [5] Barenblatt G I. Scaling, self-similarity, and intermediate asympotics[M]. (Cambridge Texts in Applied Mathematics, 14). Oxford: Cambridge University Press, 1996.
    
    [6] Bear J. Dynamics of Fluids in Porous Media [M]. New York: American Elsevier Publishing Company Inc, 1972.
    
    [7] Belytschko T, Krongauz Y, Organ D, et al. Meshless methods: An overview and recent developments [J]. Computer Methods in Applied Mechanics and Engineering, 1996, 139:3-47.
    
    [8] Belytschko T, Krongauz Y, Organ D, et al. Smoothing and acclerated computations in the element free Galerkin method[J]. J Computational and Applied Mathematics, 1996. 74: 111-126.
    
    [9] Belytschko T, Organ D, Gerlach C. Element-free Galerkin methods for dynamic fracture in concrete[J]. Computer Methods in Applied Mechanics and Engineering, 2000,187: 385-399.
    
    [10] Belytschko T, Lu Y Y, Gu L. Element free Galerkin methods [J]. International Journal for Numerical Methods in Engineering, 1994, 37: 229-256.
    
    [11] Belytschko T, Tabbara M. Dynamic fracture using Element-free Galerkin methods [J]. International Journal for Numerical Methods in Engineering, 1996, 39: 923-938.
    
    [12] Blume G W & Kumei S. Symmetries and Differential Equations [M]. (Applied Mathematical Sciences, 81). New York: Springer-Verlag New York Inc, 1989.
    
    [13] Borja R I, Hsieh H S, Kavazanjian E. Double-yield-surface model. II: implementation and verification [J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 1990, 116(9): 1402-1421.
    
    [14] Cavounidis S, Hoeg K. Consolidation during construction of earth dams [J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 1977, 103(10):1055-1067.
    
    [15] Chai J C, Bergado D T. The analysis of grid reinforced embankment on soft clay [J]. Computers and Geotechnics, 1974,24(4): 437-466.
    
    [16] Chen J S, Pan C, Wu C T. Large deformation analysis of rubber based on a reproducing kernel particle method[J]. Computational Mechanics, 1997, 19:211-227.
    
    [17] Chen J S, Pan C, Wu C T, et al. Reproducing kernel particle methods for large deformation analysis of non-linear structures [J]. Computer Methods in Applied Mechanics and Engineering, 1996, 139:195-227.
    
    [18] Chen J S, et al. A Lagrangian reproducing kernel particle method for metal forming analysis [J]. Computational Mechanics, 1998,22: 289-307.
    
    [19] Chen Z Y, Mi H L, Zhang F. A simplified method for 3D slope stability analysis [J]. Canadian Geotechnical Journal, 2003,40: 675-683.
    
    [20] Chen Z Y, Morgenstern N R. Extensions to the generalized method of slices for stability analysis[J]. Canadian Geotechnical Journal, 1983, 20:104-119.
    
    [21] Chen Z Y, Wang X G, Haberfield, et al. A three-dimensional slope stability analysis method using the upper bound theorem, Part I: theory and methods [J]. International Journal of Rock Mechanics and Mining Sciences, 2001,38:369-378.
    
    [22] Chen Z Y, Wang J, Wang Y J, et al. A three-dimensional slope stability analysis method using the upper bound theorem, Part II: numerical approaches, applications and extensions [J]. International Journal of Rock Mechanics and Mining Sciences, 2001, 38: 379-397.
    
    [23] Clough R W, Woodward R J. Analysis of embankment stresses and deformations [J]. Soil Mechanics and Foundation Engineering. Division, ASCE, 1967,93(4):529-549.
    
    [24] Dowding C H, Dmytryshyn O, Belytschko T B. Dynamic response of million block cavern models with parallel processing [J]. Rock Mechanics and Rock Engineering, 2000, 33: 207-214.
    
    [25] Dawson E M, Roth WH, Drescher A. Slope stability analysis by strength reduction [J]. Geotechnique, 1999,49(6): 835-840.
    
    [26] Donald I B, Tan C P, Goh T C A. Stability of geomechanical structures assessed by finite element method [J]. Proc 2~(nd) Int Conf Civil Engrg. Hangzhou, Beijing: Science Press, 1985, 845-856.
    
    [27] Drucker D C, Prager W. Soil mechanics and plastic analysis or limit design [J]. Quarterly Journal of Mechanics and Applied Mathematics, 1952, 10(2): 157-165.
    
    [28] Duarte C A, Oden J T. Hp clouds: a h-p meshless method [J]. Numerical Method for Partical Differential Equations, 1996, 12:673-705.
    
    [29] Duarte C A, Oden J T. An h-p adaptive method using clouds [J]. Computer Methods in Applied Mechanics and Engineering, 1996,139:237-262.
    
    [30] Duncan J M. State of the art: Limit equilibrium and finite element analysis of slopes [J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 1996, 122(7):577-596.
    
    [31] Eisenstein Z, Simmons J V. Three-dimensional analysis of Mica dam [J]. Proc Int Symp Criteria Assum Numer Anal Dams. Quadrant, Swansea, U.K., 1975:1051-1070.
    
    [32] Garcia O, Fancello E A, de Barullos CS te al. hp-clouds in Mindlin's thick plate model [J]. International Journal for Numerical Methods in Engineering, 2000,47: 1381-1400.
    
    [33] Giam S K, Donald I B. Determination of critical slip surfaces for slope via stress-strain calculations [J]. 5~(th) A.N.Z. Conf.Geomechanics, Sydney, 1988: 461-464.
    
    [34] Griffiths D V, Lane P A. Slope stability analysis by finite elements [J]. Geotechnique, 1999, Vol49 ( 3 ): 387-403.
    
    [35] Gu Y T, Liu G R. A meshless local Petrov-Galerkin (MLPG) formulation for static and free vibration analyses of thin plates [J]. Journal for Computational Methods in Engineering Science, 2001,2(4):463-476.
    
    [36] Gunther F C, Liu W K, Diachin D, et al. Multi-scale meshfree parallel computations for viscous, compressible flows [J]. Computer Methods in Applied Mechanics and Engineering, 2000, 189:279-303.
    
    [37] Han W, Peng X. Error analysis of the reproducing kernel particle method J]. Computer Methods in Applied Mechanics and Engineering, 2001, 190:6157-6181.
    
    [38] Johnson G R, Beissel S R. Normalized smoothing functions for SPH impact computations [J]. International Journal for Numerical Methods in Engineering, 1996, 39:2725-2741.
    [39] Johnson G R, Beissel S R, Stryk R A. A generalized particle algorithm for high velocity impact computations [J]. Computational Mechanics, 2000,25:245-256.
    
    [40] Johnson G R, Stryk R A, Beissel S R. SHP for high velocity impact computations [J]. Computer Methods in Applied Mechanics and Engineering, 1996, 139: 347-373.
    
    [41] Jun S, Im S. Multiple-scale meshfree adaptivity for the simulation of adiabatic shear band formation [J]. Computational Mechanics,2000,25: 257-307.
    
    [42] Kaljevic I, Saigal S. An improved element free Galerkin formulation [J]. International Journal for Numerical Methods in Engineering, 1997( 40): 2953-2974.
    
    [43] Kim J Y, Lee S R. An improved search strategy for the critical slip surface using finite element stress fields [J]. Computers and Geotechnics. 1977, 21(4): 295-313.
    
    [44 Lancaster P, Salkauskas K. Surfaces generated by moving least squares methods [J]. Mathematical and Computer Modelling, 1981, 37, 141-158.
    
    [45] Lechman J B, Griffiths D V. Analysis of the progression of failure of earth slopes by finite elements [A]. In: Geothchnical Special Publication: Slope Stability 2000[C]. ASCE, 2000: 250-265.
    
    [46] Liazka T J, Duarte C, Tworzydlo W W.Hp-meshless cloud method[J]. Computer Methods in Applied Mechanics and Engineering, 1996,139: 263-288.
    
    [47] Lin H, Atluri S N. Analysis of incompressible Navier-Stokes flows by the meshless MLPG method [J]. Journal for Computational Methods in Engineering Science, 2001,2(2): 117-142.
    
    [48] Liu G R, Gu Y T. A point interpolation method for two-dimensional solids [J]. International Journal for Numerical Methods in Engineering, 2001, 50:937-351.
    
    [49] Liu G R, Gu Y T. Meshless local Petrov-Galerkin (MLPG) method in combination with finite element and boundary element approaches [J]. Computational Mechanics, 2000,36:536-546.
    
    [50] Liu W K, Jun S, Zhang Y F. Reproducing kernel particle methods [J]. International Journal for Numerical Methods in Fluids, 1995, 20:1080-1106.
    
    [51] Liu W K, Jun S, Li S, et al. Reproducing kernel particle methods for structural dynamics [J]. International Journal for Numerical Methods in Engineering, 1995,38:1655-1679.
    
    [52] Liu W K, Chen Y. Wavelet and multiple scale Reproducing kernel particle methods [J]. International Journal for Numerical Methods in Fluids, 1995,21: 901-931.
    
    [53] Liu W K, Chen Y, et al. Generalized multiple scale reproducing kernel particle methods [J]. Computer Methods in Applied Mechanics and Engineering, 1996, 139:91-157.
    
    [54] Liu W K, Chen Y, Chang C T, et al. Advances in multiple scale kernel particle methods [J]. Computational Mechanics, 1996,18(2):73-111.
    
    [55] Liu W K, Li S, Belytschko T. Moving least squares kernel Galerkin methods Part: Methodology and convergence [J]. Computer Methods in Applied Mechanics and Engineering, 1997, 143:113-154.
    
    [56] Liu W K, Hao S, et al. Multiple scale meshfree methods for damage fracture and localization [J]. Computational Materials Science, 1999, 16:197-205.
    
    [57] Liu W K, Jun S, Sihling D T, et al. Multiresolution reproducing kernel particle methods for computational fluid dynamics [J]. International Journal for Numerical Methods in Fluids, 1997, 24:1-25.
    
    [58] Lucy L B. A numerical approach to the testing of the fission hypothesis [J]. The Astronomy Journal, 1977, 82(12): 1013-1024.
    
    [59] Lu Y Y, Belytschko T, Tabbara M. Element-free Galerkin methods for wave propagation and dynamic fracture [J]. Computer Methods in Applied Mechanics and Engineering, 1995, 126: 131-153.
    
    [60] Manzari M T, Nour M A. Significanique of soil dilatancy in slope stability analysis [J]. Journal of Geotechnical and Geoenvirontnental Engineering. ASCE, 2000, Vol126 ( 1 ): 75-80.
    
    [61] Matsui T, San K C. Finite element slope stability analysis by shear strength reduction technique [J]. Soils and Foundation, 1992,32(1):59-70.
    
    [62] Mendoncca P T R, Barcellos C S, Duarte A. Investigations on the hp-Cloud method by solving Timoshenko beam problems [J]. Computational Mechanics, 2000, 25:286-295.
    
    [63] Meroi E A, Schrefler B A, Zienkiewicz O C. Large strain static and dynamic semisaturated soil behaviour [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1995, 19(2):81-106.
    
    [64] Monaghan J J. An introduction to SPH [J]. Computer Physics Communications, 1998, 48:89-96.
    
    [65] Monaghan J J. Particle method for hydrodynamics [J]. Computer Physics Reports, 1985, 3:71-124.
    
    [66] Monaghan J J. Smoothed particle hydrodynamics [J]. Annual Review Astronomics and Astrophysics, 1992, 30: 543-574.
    
    [67] Nayroles B, Touzot G, Villon P. Generalizing the finite element method: diffuse approximation and diffuse elements [J]. Computational Mechanics, 1992, 10:307-318.
    
    [68] Oden J T, Cho J R. Adaptive hp-finite element methods of hierarchical models for plate and shell-like structures [J]. Computer Methods in Applied Mechanics and Engineering, 1996, 136:317-345.
    
    [69] Onate E, Idelsohn S, Zienkiewicz O C, et al. A Finite Point Method in Computational Mechanics. Applications to Convective Transport and Fluid Flow [J]. International Journal for Numerical Methods in Engineering, 1996,39:3839-3866.
    
    [70] Onate E, Idelsohn S. A mesh-free finite point method for advective-diffusive transport and fluid flow problems [J]. Computational Mechanics, 1998,21:283-292.
    
    [71] Onate E, Idelsohn S, Zienkiewicz O C, et al. A stabilized finite point method for analysis of fluid mechanics problems [J]. Computer Methods in Applied Mechanics and Engineering, 1996, 139:315-346.
    
    [72] Ortiz M, Leroy Y, Needleman A. A finite element method for localized failure analysis [J]. Computer Methods in Applied Mechanics and Engineering, 1987, 61:189-214.
    
    [73] Ovsiannikov L V. Group Analysis of Differential Equations [M]. London: Academic Press Inc, 1982.
    
    [74] Palmertron J B. Application of three-dimensional finite element analysis [J]. Proc Symp Appl FEM Geotech Engrg, U.K. Army Corps Engs, Wtwy Experiment Stn, Vicksburg, Miss, 1972:155-213.
    
    [75] Ponthot J P, Belytschko T. Arbitrary Lagrangian-Eulerian formulation for Element-free Galerkin methods [J]. Computer Methods in Applied Mechanics and Engineering, 1998, 152: 19-46.
    
    [76] Raymond G P. Prediction of undrained deformations and pore pressures in weak clay under two embankments [J]. Geotechnique, 1972,23(3):381-401.
    
    [77] Snitbhan N, Chen W F. Finite element analysis of large deformations in slopes [A]. Proc Conf Numer Meth Geometh[C], Blacksburg, Va. 1976:744-756.
    [78]Swegle J W,Attaway S W.On the feasibility of using smoothed particle hydrodynamics for underwater explosion calculations[J].Computational Mechanics,1995,17:151-168.
    [79]Ugai K.A method of calculation of total factor of safety of slope by elasto-plastic FEM[J].Soils and Foundation,1989,29(2):190-195.
    [80]Uras R A,Chang C T,Chen Y,et al.Multiresolution reproducing kernel particle methods in acoustics[J].Journal of Computational Acoustics,1997,5:71-94.
    [81]Wang J G,Liu G.R.A point interpolation meshless method based on radial basis functions[J].IInternational Journal for Numerical Methods in Engineedng.2002,54:1623-1648.
    [82]Wiberg N E,Koponen M,Runesson K.Finite element analysis of progressive failure in long slopes[J].International Journal for Numerical and Analytical Methods in Geomechanics,1990,14:599-612.
    [83]Zhang X,Song K Z,Lu M W.Meshless methods based on collocation with radial basis function[J].Computational Mechanics,2000,26(4):333-343.
    [84]Zhang X,Lu X H,Song K Z,et al.Least-square collocation meshless method[J].International Journal for Numerical Methods in Engineering,2001,51(9):1089-1100.
    [85]Zhu T,Zhang J,Atluri S N.A meshless local boundary integral equation(LBIE) method for solving nonlinear problems[J].Computational Mechanics,1998,22:174-186.
    [86]Zienkiewicz O C,Humpheson C,Lewis R W.Associated and non-associated visco-plasticity and plasticity in soil mechanics[J].Geotechnique,1975,25(4):67-689.
    [87]贝新源,岳宗五.三维SPH程序及其在斜高速碰撞问题的应用[J].计算物理,1997,14(2):155-166.
    [88]陈惠发.极限分析与土体塑性[M].北京:人民交通出版社,1995.
    [89]陈建,吴林志,杜善义.采用无单元法计算含边沿裂纹功能梯度材料板的应力强度因子[J].工程力学,2000,17(5):139-144.
    [90]陈祖煜.土坡稳定通用条分法及其改进[J].岩土工程学报,1983,5(4):11-27.
    [91]陈祖煜.建筑物抗滑稳定分析中“潘家铮最大最小原理”的证明[J].清华大学学报,(自然科学版),1998,38(1):1-4.
    [92]陈祖煜,弥宏亮,汪小刚.边坡稳定三维分析的极限平衡法[J].岩土工程学报,2001,23(5):525-529.
    [93 陈祖煜.边坡锲体稳定分析的广义解[A].中国土木工程学会第九届土力学及岩土工程学术会议论文集[C],清华大学出版社,2003:254-258.
    [94]陈祖煜.土质边坡稳定分析--原理、方法、程序[M].北京:中国水利水电出版社,2003.
    [95]邓楚键,何国杰,郑颖人.基于M-C准则的D-P系列准则在岩土工程中的应用研究[J].岩土工程学报,2006,28(6):735-739.
    [96]关立军.基于强度折减的土坡稳定分析方法研究[D].硕士学位论文,2003.
    [97]何伟.边坡稳定性弹-粘塑性大变形有限元分析[D].南京大学硕士学位论文,2001.
    [98]连镇营,韩国城,孔宪京.强度折减有限元法研究开挖边坡的稳定性[J].岩土工程报告,2001,23(4):407-411.
    [99]刘更,刘天祥,谢琴.无网格法及其应用[M].西安:西北工业大学出版社,2005.
    [100]刘金龙,栾茂田,赵少飞等.关于强度折减有限元方法中边坡失稳判据的讨论[J].岩土力学,2005,26(8):1345-1348.
    [101]刘开富.若干土工问题工程形状的大变形有限元分析[D].浙江大学博士学位论文,2006.
    [102]刘欣,朱德,陆明万等.平面裂纹问题的h,p,hp型自适应无网格方法的研究[J].力学学报,2000,32(3):308-318.
    [103]刘祚秋,周翠英,董立国等.边坡稳定及加固分析的有限元强度折减法[J].岩土力学,2005,26(4):558-561.
    [104]栾茂田,武亚军,年廷凯.强度折减有限元法中边坡失稳的塑性区判据及其应用[J].防灾减灾工程学报,2003,23(3):1-8.
    [105]潘家铮.建筑物抗滑稳定和滑坡分析[M].水利出版社,1980.
    [106]庞作会,葛修润.一种新的数值方法.无网格伽辽金法(EFGM)[J].计算力学学报,1996,16(3):320-329.
    [107]庞作会,葛修润,王水林.无网格伽辽金法(EFGM)在边坡开挖问题中的应用[J].岩土力学,1999,20(1):61-64.
    [108]秦卫星,陈胜宏,陈士军.有限单元法分析边坡稳定的若干问题研究[J].岩土力学,2006,27(4):586-590.
    [109]邵国建,卓家寿,章青.岩体稳定性分析于评价准则研究[J].岩石力学与工程学报,2003,24(5):691-696.
    [110]孙均实.条分法的数值分析[J].岩土工程学报,1984,6(2):1-12.
    [111]索科洛夫斯基(徐志英译).松散介质静力学[M].北京:地质出版社,1956.
    [112]王成华,夏绪勇,李广信.基于应力场的土坡临界滑动面的遗传算法搜索[J].清华大学学报(自然科学板),2004,44(3):425-428.
    [113]吴琼,林志红.库水位下降时隔水底板倾斜的层状岸坡中浸润线的解析解[J].地质科技情报,2007,26(2):91-94.
    [114]谢琴,刘更,刘天祥.再生核粒子法及其应用[J].机械科学与技术,2006,25:878-882.
    [115]徐干成,郑颖人.岩土工程中屈服准则应用的研究[J].岩土工程学报,1990,12(2):93-99.
    [116]杨红坡,谢新字,张继发等.弹塑性土质边坡再生核粒子法分析[J].浙江大学学报(工学版),2006,40(3):490-493.
    [117]杨红坡,谢新宇,张继发等.潜水一维非稳态运动解析解[J].水科学进展,2004,15(1):82-86.
    [118]张鲁渝,时卫民,郑颖人.平面应变条件下土坡稳定有限元分析[J].岩土工程学报,2002,24(4):487-490.
    [119]张鲁渝,刘东升,时卫民.扩展广义Drucker-Prager屈服准则在边坡稳定分析中的应用[J].岩土工程学报,2003,25(3):216-219.
    [120]张鲁渝,郑颖人,赵尚毅等.有限元强度折减系数法计算土坡稳定安全系数的精度研究[J].水利学报,2003(1):21-27.
    [121]张培文,陈祖煜.弹性模量和泊松比对边坡稳定安全系数的影响[J].岩土力学,2006,27(2):299-303
    [122]张士兵.边坡稳定性大变形弹塑性有限元强度折减分析[D].西安科技大学硕士学位论文。2003.
    [123]张雄,宋康祖,陆明万.无网格法研究进展及其应用[J].计算力学学报,2003,20(6):730-742.
    [124]张玉芳,齐明柱,马华.深圳市边坡病害及其防治[J].岩石力学与工程学报,2006,25(supp2):84-93
    [125]赵尚毅,郑颖人,时卫民等.用有限元强度折减法求边坡稳定安全系数[J].岩土工程学报,2002,24(3):343-346.
    [126]张友谊,胡卸文.库水位等速上升作用下岸坡地下水浸润线的计算[J].水文地址工程地质,2007,3:46-49.
    [127]赵尚毅,郑颖人,张玉芳.极限分析有限元法讲座--Ⅱ.有限元强度折减法中边坡失稳的判据探讨[J].岩土力学,2005,26(2):332-336.
    [128]郑宏,刘德富,罗先启.基于变形分析的边坡潜在滑面的确定[J].岩石力学与工程学报,2004,23(5):705-716.
    [129]郑宏,刘德富.弹塑性矩阵D_(ep)的特性何有限元边坡稳定性分析中的极限状态标准[J].岩石力学与工程学报,2005,24(7):1099-1105.
    [130]郑宏,李春光.,李焯芬等.求解安全系数的有限元法[J].岩土工程学报,2002,24(5):323.328.
    [131]郑颖人,时卫民,孔位学.库水位下降时渗透力及地下水浸润线的计算[J].岩石力学与工程学报,2004,23(18):3203-3210.
    [132]郑颖人,赵尚毅,时卫民等.边坡稳定分析的一些进展[J].地下空间,2001,21(5):450-454.
    [133]郑颖人,赵尚毅,张鲁渝.用有限元强度折减法进行边坡稳定分析[J].中国工程科学,2002,14(10):57-61.
    [134]郑颖人,赵尚毅,宋雅坤.有限元强度折减法研究进展[J].后勤工程学院学报,2005,3:1-6.
    [135]周翠英,刘祚秋,董立国等.边坡变形破坏工程的大变形有限元分析[J].岩土力学,2003,24(4):644-647.
    [136]朱以文,吴春秋,蔡元齐.基于滑移线场理论的边坡滑裂面确定方法[J].岩石力学与工程学报,2005,24(15):2609-2616.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700