用户名: 密码: 验证码:
德州市深层地下水开采与地面沉降关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
德州市由于长期超量开采深层地下水,形成了区域性的深层地下水降落漏斗,并诱发了地面沉降。目前,德州市深层地下水降落漏斗和地面沉降已成为制约该区经济社会可持续发展和亟待解决的重大环境地质问题。论文针对研究区降落漏斗快速扩展和地面沉降不断加剧这一重大环境地质问题,系统分析了地下水的动态变化,应用数值模型模拟了地下水动力场和深层降落漏斗在时、空方面的演化、发展,提出了防止降落漏斗进一步扩展的地下水开采方案。
     在系统分析研究区地下水开采与地面沉降发展动态及相互关系的基础上,从区域分解的思路出发,根据区内地面沉降程度、水文地质及工程地质条件等进行地面沉降综合分区,分别在各区建立地面沉降量与地下水水位相关模型。模拟结果表明,在各区建立的地面沉降量与地下水水位相关模型符合德州地区地面沉降的实际情况,可用于开采条件下德州地区地面沉降的预测。地面沉降是多层含水层和隔水层系统共同压缩的叠加结果,在区域上不易查明其具体数量关系时,本文采用S型曲线地面沉降模型避开了对复杂问题的讨论,为地面沉降的认识和分析提供了一种简洁的方式。
Dezhou City has long been exceedingly withdrawing deep groundwater, which has given rise to several regional descending funnels of deep groundwater and caused land subsidence. At present, this has become a serious environmental geological problem hindering the sustainable development of economy and society in Dezhou and demanding prompt solution. This study is made ever more significant by this practical dilemma. The author is to systematically analyze the development of deep groundwater exploitation and land subsidence and their relationship, to set up a correlative model between land subsidence and groundwater level, and ultimately to seek to predict and prevent land subsidence in Dezhou district.
     To better understand abovementioned geological problem, this thesis systematically analyzes the dynamic change of groundwater by applying Visual MODFLOW model and simulating spacial and temporal development of the hydrodynamic field and descending funnels of the deep groundwater. It further proposes a groundwater exploitation program which may check the expansion of the funnels.
     The study evidences that primary cause of the funnel is the excessive exploitation of deep groundwater. As exploitation proceeds, the funnel extends both horizontally and vertically. The water level elevation at funnel center is -108.00m and that at edge is -50.00m. That water level contour extends outward at 387.50m/a. Water level at funnel center is also descending at 3.55m/a. With a contemporary exploitation of 2047×104m3/a, it may be reasonably predicted that the depression depth may go even further. When t is 5 years, depression depth of the controlled peepholes will be 5.60~23.44m and depression speed 1.12~4.68m/a. When t is 10 years, depression depth will be 15.06~33.66m, depression speed 1.50~3.40m/a, and average water level elevation at funnel center -118.90m. Predications based on various exploitation designs all prove that the groundwater level will fall continuously if the current exploitation of 2047×104m3/a drags on. In 2012, the buried depth will reach -145.72m. With exploitation reduced to 1950×104m3/a, the buried depth of groundwater will reach -134.70m in 2012. If the exploitation is further reduced 1750×104m3/a, groundwater level will stop falling and regain rising tendency in 2011. And in 2012, the buried depth of groundwater in funnel center will rise to -120.40m.
     The study on groundwater exploitation and land subsidence in Dezhou also shows that correlation coefficient between the two reaches as high as 0.9992, which gives further evidence to the proposal that excessive exploitation constitutes primary cause of land subsidence in this district. This paves the way to analyzing the land subsidence mechanism in Dezhou.
     Based on abovementioned systematic analysis, the researcher has divided Dezhou into several settlement districts according to their settlement conditions, hydrogeological and engineering geological features. Each district is provided with an independent land subsidence/groundwater level correlative model. Analysis of model data, especially the accumulated settlement and groundwater buried depth, gives prominence to representative observation points in each district which may be used as a base for simulation. The simulation results show that the correlative model in each district complies with actual land subsidence conditions in Dezhou and may be used to predict further settlement in exploitation districts. All models predict that the settlement at all major reference points will continue growing along with excessive groundwater exploitation and falling groundwater level. As is predicted, the settlement center will fix at No.1 National Textile Company in 2016 with a groundwater level elevation of -128.47m and an accumulated land subsidence of 1332.16mm. Across the whole region, areas with a settlement of more than 1200mm will cover 45km2. Areas with a settlement of more than 1000mm will cover 126km2. Areas with a settlement of more than 800mm will cover 275km2.
     Land subsidence is caused by the joint compression of several aquifers and aquicludes which have been proven extremely difficult to quantify. The S curvilinear land subsidence model, however, successfully avoids this problem and gives a direct insight into the land subsidence mechanism. The model at each settlement district may be readily modified by updated data of land subsidence and groundwater. The coefficientsa , k in the model are in constant change along with the development of settlement. In a word, the self-adjusting feature of this model ensures a more reliable prediction on settlement tendencty.
     Researches have shown that the study area is now at gradual-speedy- qualitative change stage, an optimal period for measures to be taken to control land subsidence. To effectively prevent land subsidence from deteriorating, the city planners shall take proactive action such as scientific planning, adjusting deep groundwater exploitation, deep groundwater recharging, supplying water in varied qualities and meticulously monitoring land subsidence.
引文
[1]严礼川.我国城市地面沉降概况[J].上海地质,1992,(1):40~48.
    [2]郑铣鑫,武强,侯艳声等.城市地面沉降研究进展及其发展趋势[J].地质评论,2002,48(6):612~618.
    [3]张阿根,魏子新.中国地面沉降[M].上海:上海科学技术出版社,2005.
    [4] Burbey T J. Stress-Strain Analyses for Aquifer-System Characterization[J].Ground Water, 2001, 39 (1):128~136.
    [5] Zhang A G,Liu Y,Gong S L.Overview of international land subsidence research [R].Proc.6th Int.Symp.on Land Subsidence.2000,128.
    [6] R L Hu, Z Q Yue, L C Wang, et al. Review on current status and challenging issues of land subsidence in China [J]. Engineering Geology, 2004, 76:65~77.
    [7] Yu-Qun Xue, Yun Zhang, Shu-Jun Ye, et al.Land subsidence in China[J].Environ. Geol.,2005 (48):713~720.
    [8]刘桂仪.鲁北平原深层地下水基本特征与水环境问题[J].水文地质工程地质,2001,17(5):43~47.
    [9]张景康.德州市地面沉降现状及防治对策[J].问题与探讨,2007,17,254.
    [10]陈杰.常州市地面沉降研究及其数值模拟[D].南京:南京大学硕士论文,2003.
    [11]伍洲云.常州市地面沉降现状及分析[J].水文地质工程地质,1999,26(3): 46~47.
    [12]黄敬军,陆华.江苏沿海地区深层地下水开发利用现状及环境地质问题[J].水文地质工程地质,2004,(6):64~68.
    [13]张宗祜,李烈荣.2005a.中国地下水资源(河北卷).北京:中国地图出版社,48~50.
    [14]张宗祜,李烈荣.2005b.中国地下水资源(山东卷).北京:中国地图出版社,62~65.
    [15]张宗祜,李烈荣.2005c.中国地下水资源(天津卷).北京:中国地图出版社,42~50.
    [16]崔振东,唐益群.国内外地面沉降现状与研究[J].西北地震学报,2007,3(9):275~278.
    [17]郭洪军,于长生.大庆市地面变形特征及影响因素分析[J].水文地质工程地质,2008,3:108~111.
    [18]何庆成,刘文波,李志明.华北平原地面沉降调查与监测[J] .高校地质学报, 2006, 12(2):195~209.
    [19]石建省,郭娇等.京津冀德平原区深层水开采与地面沉降关系空间分析[J].地质论评,2006,6(11):804~809.
    [20]陈崇希.关于地下水开采引发地面沉降灾害的思考[J].水文地质工程地质,2000,1:45~48.
    [21]郑朋.地面沉降与地下水开采问题的探讨[J].西部探矿工程,2007,10:60~62.
    [22]王彩会,陈杰,朱锦旗.开采浅层地下水对地面沉降影响的探讨[J].中国地质灾害与防治学报,2004,15 (4):79 ~81.
    [23] Musavi S M, Khamehchiyan M, Shamsai A. Land subsidence due to groundwater with- drawal [A]/ / International Water Resources Engineering Conference-Proceedings. After the rain has fallen[C]. Tennessee:Memphis Press,1998,75~80.
    [24] Sun H,Grandstaff D,Shagam R.Land subsidence due to groundwater withdrawal:Potential damage of subsidence and sea level rise in southern New Jersey, USA [J]. Environmental Geology, 1999, 37(4): 290~296.
    [25] Nguyen T Q, Helm D C.Land subsidence due to groundwater withdrawal in Hanoi[J]. nternational Association of Hydrological Sciences,1995,234:55~60.
    [26] Lebbe L. Land subsidence due to groundwater withdrawal from the semi-confined aquifers of southwestern Flanders [J].International Association of Hydrological Sciences,1995,234:47~54.
    [27] Hix G L.Land subsidence and groundwater withdrawal [J]. Water Well Journal,1995, 49(11):37~39.
    [28] Chai J C,Shen S L,Zhu H H,et al.Land subsidence due to groundwater drawdown in Shanghai [J].Geotechnique,2004,54 (2):143~147.
    [29] Ao-Chang Yang,Pao-Shan Yu.Application of Fuzzy Multi Objective Function on Reducing Groundwater Demand for Aquaculture in LandSubsidence Areas [J] . Water Resources Management,2006(20):377~390.
    [30] KJ Larson,H Basagaoglu,M A Marino.Predicition of optional safe ground water yield and land subsidence in the Los Banos-Kettleman City area,California,using a calibrated numerical simulation model [J].Journal of Hydrology,2001,242(122):79~102.
    [31]徐军祥,康风新.山东省地下水资源可持续开发利用研究[M].北京:海洋出版社,2001.
    [32]尚守忠,田世义编著.水资源及其开发利用[M].北京:科学普及出版社,1991.
    [33]李铎,武强,代锋刚等.菲力浦多目标单纯形法在地下水资源管理模型中的应用[J].水文地质工程地质,2006,(4):72~75.
    [34] Bear J.Hydraulics of Groundwater [M].New York:McGRAW-HILL BOOK COMPANY,1979.
    [35]冯康.基于变分原理的差分格式[J].应用数学与计算数学,1965,2(4):238~262.
    [36] Pinder,G .F.,and Bredehoeft,J.D.,Application of the digital computer for aquifer evolution [J].Water Resoures,1968,vol.4,No.5,1069~1093.
    [37]李竞生.地下水流模拟中的强隐式[A].地下水资源评价理论与方法的研究(中国地质学会首届地下水资源评价学术会议论文选编)[C].北京:地质出版社,1982.
    [38]张宏仁,李俊亭.有限差分与有限单元法在渗流问题中的对比[J].水文地质工程地质,1979,2.
    [39]张宏仁.解地下水渗流问题的有限差分法[J].水文地质工程地质,1980,(1)~(4).
    [40]张宏仁,李俊亭.解地下水流的不规则网格有限差方法[A].地下水资源评价理论与方法的研究(中国地质学会首届地下水资源评价学术会议论文选编[C].北京:地质出版社,1982.
    [41] Javandel.L.and Withespoon.P. Application of the finite element method to transient folw in porous media,soc.Pe trol. Eng. J.,1968,vol.8,No.3,241~252.
    [42] Neuman,S.R,and Narasimhan,T.N.,Mixed explicit-implicit iterative finite element scheme for diffusion-type problems,1977,Int.J. for numerical methoding Eng.,vol.11.
    [43]薛禹群主编.地下水动力学[M].北京:地质出版社,1997.
    [44]薛禹群,吴吉春.地下水数值模拟在我国-回顾与展望[J].水文地质工程地质,1997,24(4):21~24.
    [45]薛禹群,吴吉春.面临21世纪的中国地下水模拟问题[J].水文地质工程地质,1999,26(5):1~3.
    [46]薛禹群,谢春红.水文地质学的数值法[M].北京:煤炭工业出版社,1980.
    [47]孙讷正等著.地下水流的数学模型和数值方法[M].北京:地质出版社,1981.
    [48]陈雨孙.地下水运动与资源评价[M].北京:中国建筑工业出版社,1986.
    [49]李俊亭.地下水流数值模拟[M].北京:地质出版社,1989.
    [50]林学钰,侯印伟,邹立芝等.地下水水量水质模拟及管理程序集[M].吉林:吉林科学技术出版社,1988.
    [51]潘国营.地下水数值模拟模型拟合效果的评价[J].焦作矿业学院学报,1994,13 (2):22~56.
    [52]阎学义,朱国荣,王浩然.淄博市腈纶工程水源地地下水资源开采预测的数值模拟[J].高校地质学报,1998,4(2).
    [53]刘少玉.冲洪积扇含水层地下水可开采量数值模拟-以文峪河冲洪积扇为例[J].水文地质与工程地质,1998,1,38~41.
    [54]刘建立,朱学愚,陈余道.山东淄博市地下水资源评价及其合理开发利用研究[J]..高校地质学报,1999,5 (2):211~220.
    [55]卢京,张钦.数值模拟在银川市地下水资源开采评价中的应用[J].河北师范大学学报(自然科学版),2000,24(4):536~539.
    [56]吴吉春,薛禹群.山西柳林泉域地下水流数值模拟[J].水文地质工程地质,2001(2):18~20.
    [57]许光泉,潘晓如.长垣西部地区不同开采方案地下水数值模拟[J].淮南工业学院学报,2001,21(3):4~7.
    [58]杜汉学,常国纯,张乔生.利用地下水库蓄水的初步认识[J].水科学进展,2002, 13(5).
    [59]何杉.Modflow软件在地下水污染防治中的应用[J].水资源保护,1999,57(3):16~18.
    [60]吴剑峰,朱学愚.由Modflow浅谈地下水流数值模拟软件的发展趋势[J].工程勘察,2002,(2):12~15.
    [61]武强,董东林等.水资源评价的可视化专业软件(Visual Modflow)与应用潜力[J].水文地质工程地质,1999,(5):21~23.
    [62]魏林宏,束龙仓,郝振纯.地下水流数值模拟的研究现状和发展趋势[J].重庆大学学报(自然科学版),2000,1 (23):50~52.
    [63]贾金生,刘吕明.华北平原地下水动态及其对不同开采量响应的计算-以河北省栾城县为例[J].地理学报,2002,57(2):201~209.
    [64]张奇.数值模型在地下水管理中的应用[J].水文地质工程地质,2003,(6):72~88.
    [65]王金生,王澎,刘文臣等.划分地下水源地保护区的数值模拟方法[J].水文地质工程地质,2004,(4):83~86.
    [66]姜蓓蕾,吴吉春,杨仪等.常州市滆湖典型地块浅层地下水数值腄鈁J].水文地质工程地质,2004,31(6):29~32.
    [67]杨青春,卢文喜,马洪云等.Visual Modflow在吉林省西部地下水数值模拟中的应用[J].水文地质工程地质,2005,32(3):67~69.
    [68]陈喜,刘传杰,胡忠明等.泉域地下水数值模拟及泉流量动态变化预测[J].水文地质工程地质,2006,(2):36~40.
    [69]陈喜,陈洵洪.美国Sand Hills地区地下水数值模拟及水量平衡分析[J].水科学进展,2004,15 (2):94~99.
    [70]薛禹群.我国地面沉降模拟现状及需要解决的问题[J].水文地质工程地质,2003,5:1~4.
    [71]上海市经济区地质中心,列日大学工程地质、水文地质、地球物理勘探实验室,比利时地质调查所KWAMGO处,等.长江三角洲上海地区第四纪地质、水文地质、工程地质及地面沉降数学模型研究[R].上海市经济区地质中心,1989.
    [72]朱锡冰,佴磊,奚建国等.上海浦东新区“地下水水量-水位-沉降联合数学模型”应用[R].中国地质科学院水文地质工程地质研究所,1995.
    [73]李勤奋,方正,王寒梅.上海市地下水可开采量模型计算及预测[J].上海地质,2000,(2):36~43.
    [74]吴铁钧,金东锡.天津地面沉降防治措施及效果[J].中国地质灾害与防治学报,1998,5(2):6~12.
    [75]陈崇希,裴顺平.地下水开采-地面沉降数值模拟及防治对策研究-以江苏省苏州市为例[M].武汉:中国地质大学出版社,2001.
    [76]陈崇希.地下水开采-地面沉降模型研究[J ].水文地质工程地质,2001,28(2):5~8.
    [77] R Bravo,J R Rogers,et al .休斯顿地区地下水流和地面沉降的新三维有限差分模型[A].第四届地面沉降国际讨论会论文集[C].北京:地质出版社,1993.
    [78] A Rivera,E.Ledovx,G de Marsily.墨西哥城含水层-弱透水层系统的地下水径流和地面沉降总量的非线性模拟[A].第四届地面沉降国际讨论会论文集[C].北京:地质出版社,1993 :11~21.
    [79] G Gambolati,G Ricceri,et al.由水、气开采引起的拉温万纳地面沉降的数值分析[A].第四届地面沉降国际讨论会论文集[C].北京:地质出版社,1993:34~40.
    [80] K Daito,M Mizuno,et al.日本大鳄平原为防止地面沉降而控制地下水抽水量[A].第四届地面沉降国际讨论会论文集[C].北京:地质出版社,1993.
    [81] S A Leake.区域地下水流模型中的土垂向压缩模拟[A].第四届地面沉降国际讨论会论文集[C].北京:地质出版社,1993.
    [82] X Y Gu,D N Xu And W Deng.A computing model based cyclic consolidation tests [A].Land Subsidence:Proceedings of 5th International Symposium on Land Subsidence[C].IAHS 1995:295~303.
    [83] A Rossi,C Calore and U Pizzi,Land subsidence of pisa plain,Italy:experimental results and preliminary modeling study[A].Land Subsidence:Proceedings of 6th International Symposium on Land Subsidence,Italy[C].C.N.R ,2000:91~104.
    [84] G de Lange,GB M Brand,A J Bruijne et al.Modeling regional and local surface subsidence due to compaction of unconsolidation sediments [A].Land Subsidence : Proceedings of 6th International Symposium on Land Subsidence,Italy[C].C.N. R,2000.2:289~304.
    [85] M Sneed.M T Pavelko and D L Galloway.Modeling residual aquifer-system compaction:constraining the vertical hydraulic diffusivity of thick aquifers[A].Land Subsidence:Proceedings of 6th International Symposium on Land Subsidence,Italy[C].C. N. R,2000:343~355.
    [86] A Ortega-Guerrero,D L Rudolph,J A Cherry.Analysis of long-term land subsidence near Mexico City:field investigations and predictive modeling[J].Water Resources Research,1999,35 (11):3327~3341.
    [87] K J Larson,H Basagaoglu,M A Marino.Prediction of optimal safe ground water yield and land subsidence in the Los Banos-Kettleman City area,California ,using a calibrated numerical simulation model [J].Journal of Hydrology,2001,242 (12):79~102.
    [88]薛禹群.地下水资源与江苏地面沉降研究[J].江苏地质,2001,25(4):193~195.
    [89]王晓梅,朱国荣等.苏锡常地区主采层地下水流数值模拟[J].水文地质工程地质,2003,30 (189):26 ~29.
    [90]黄旭林,倪菊水.地下水开采与地面沉降因果关系的剖析和探讨[A].上海:全国地面沉降学术讨论会论文集[C].2002,100~105.
    [91]张云.苏南地区地面沉降概述[J].地质灾害与环境保护,1999,10(3):66~71.
    [92]朱鸿鹄,陈晓平,张芳枝等.南沙软土固结变形特性试验研究[J].工程勘察,2005 (1):1~3.
    [93]张惠明,徐玉胜,曾巧玲.深圳软土变形特性与工后沉降[J].岩土工程学报,2002,24(4):509~514.
    [94] Hu R L.Review on current status and challenging issues of land subsidence in China [J].Engineering Geology,2004,76:65~77.
    [95]姜洪涛.苏锡常地区地面沉降及其若干问题探讨[J].第四纪研究,2005,25(1): 29~33,11.
    [96]冉启全,顾小芸.考虑流变特性的流固耦合地面沉降计算模型[J].中国地质灾害与防治学报,1998,9(2):99 ~103.
    [97]薛禹群,吴吉春.数值模拟是反映客观规律和定量评价的重要手段[J].水文地质工程地质,1992,19(2):2~ 4.
    [98]刘嘉麒,刘强.中国第四纪地层[J].第四纪研究,2000,20(2):129~141.
    [99]刘嘉麒,倪云燕,储国强.第四纪的主要气候事件[J].第四纪研究,2001,21(3):239~248.
    [100]刘嘉麒,韩家.跻身世界前列的中国第四纪研究—回顾与展望[J].第四纪研究,2003,23(2):225~230.
    [101]王锡魁,赵莉,隋维国,徐梦新.吉东碱性玄武岩K2O含量与岩浆来源深度、岩石年龄的相关性分析[J].长春地质学院学报,1993,23(4):416~422.
    [102]王彦俊,刘桂仪.德州深层地下水降落漏斗相关模型建立及其应用[J].山东地质,1998,14(2):38~45.
    [103] McDonald M C,Harbaugh A W.A Modular Three-dimensional Finite-difference Ground-water Flow Model: US.Geological Survey Techniques of Water-Resources investigations,book6,chap A 1,1998,586.
    [104] Bennett,G.D.,A .L. Kontis,and S .P. Larson.1982,Representation of multi aquifer well effects in three-dimensional groundwater flow simulation [J].Ground Water,20(3),pp:334~344.
    [105] Hill,M.C.,Solving groundwater flow problems by conjugate-gradient methods and the strongly implicit procedure [J].Water Resources Research,1990b,26(9),pp:1961~1969.
    [106] Anderson,Mary P. and William Woessner,Applied Ground-water Modeling: Simulation of Flow and advective transport[R].New York,1992,480 p.
    [107] Ahmad,Rafi, N. Lal, and P.K. Sharma. A fission-track age of ignimbrite from Summerfied Formation [J]. Jamaica: Caribbean Jounral of Science,1987,v.23,pp:444~449.
    [108] Atkinson, T.C., Diffuse flow and conduit flow in limestone terrain in MendipsHills [J].Sommerset,Great Britain:Journal of Hydrology,1977,v.35,pp:93~110.
    [109] Bear,Jacob,Chin-Fu T sang,and Ghislain de Marsely (eds.),Flow and contaminant transport in fractured rock:560p,1993,Cardy,W.F.G.,1971.
    [110] Brown,M.C. and D.C. Ford,Caves and ground-water pattenrs in a tropical karst environment,Jamaica,West Indies:American Journal of Science,1973,v.273,p.622~633.
    [111] Brahana,J.V.,J.Thrailkill,T.Freeman,W . C. Ward,Carbonate rocks,in The Geology of North America,eds. B. William,J.S. Rosenshein,and P .R. Seaber,Geological Society of America,Boulder,Colorado,1988,vol.O-2,p.333~352.
    [112] Bowin,C.,Caribbean gravity field and plate tectonics Geological Society of America Special Paper 169,1976,79p.
    [113] Botbol,M.,Lower Rio Cobre Limestone Aquifer Hydrogeology:Unpublished Report:Water Resources Division.no.1/2,1982,p.51~56.
    [114] Cant,R .V.,Jamaica's Pleistocene reefs,Geologie en Minjbouw,1973,v.52,p.159~160.
    [115] Cartwright,K .and M .R .McComas.Geophysical surveys in the vicinity of sanitary Landfills in Northern Illinois[J].Ground Water,1968,v.16,no.5,p.23~30.
    [116] Chubb,L .J. and K .C. Burke,Age of the Jamaican granodiorite:Geological Magazine,1963,v.100,p.524~532.
    [117] Chin,H.,Surface water resources of Jamaica:Journal of the Geological Society of Jamaica,1979,v. 28,p.20~32.
    [118] Coates, Anthony G., Jamaican coral-rudest frameworks and their geologic setting:in Frost,S.H., Weiss, M .P. and Sanders, J .B. (eds), Reefs and related carbonates-Ecology and sedimentology: American Association of Petroleum Geologists, Studies in Geology, 1977x, v. 4, p.83~91.
    [119] Cooper, H. H. Jr. A hypothesis concerning the dynamic balance of freshwater and Saltwater in a coastal aquifer [J].Journal of Geophysics Research, 1959, 64(4):461~467.
    [120] Cvijic. Hydrographic souterraine et evolution morphologique du karst. Rec. Tray. Inst Geog. Alpine[J], 1918, 6(4): 375~426.
    [121] Dasgupta,S .N .and S .A. Vincenz. Pale magnetism of a Paleocene pluton on Jamaica:(Earth) and Planetary Science Letters[J], 1975, 25: 49~56.
    [122] Delleur, J. W. The handbook of groundwater engineering.J. D elleur,ed,CRC Press[M],1999.
    [123] Dickenson, W. R., Relations of andesites, granites. And derivative sandstones to arc-trench territories:Reviews of Geophysics and Space Physics[J], 1970, 8:813~860.
    [124] Domenico,Patrick A..Concepts and models in ground-water hydrology:McGraw-Hill [J]. New York,1972,405p.
    [125] Donovan,S. K..Geological excursion guide:Jamaica[J]. Geology Today,1993,9(1): 30~34.
    [126] Herzberg, A..Die Wasserversorgrung einger Nordseebader[J]. Journal Gasbeleutchung and Wasserversong,(Munich).1901,44: 819,824~84.
    [127] Hill, V.G. and A.C. Ellington, The chemical characteristics of the ground-water resources of Jamaica, WI:A contribution to the interpretation of hydrochemical data[J]. Economic Geology,1961,36: 533~541.
    [128] Hydrogeological problems of the Kingston area,Jamaica.Transactions of the Caribbean Geological Conference, 5:235.
    [129] Karlinger,M.R.and J.A.Skrivan,Kriging analysis of mean annual precipitation,Powder River,Basin,montana and Wyoming.U.S.Geological Survey Water Resoucres Investigations 80~50,1980,p.25.
    [130] Kilpatrick,F.A. Source of baseflow to streams:International Association of Scientific Hydrology 63,1964,p.329~339.
    [131] Land , L.S.and T.F. Goreau , Submarine lithification of Jamaican reefs : Journal of Sedimentology,1970,v.40,p.257~462.
    [132] MacFarlane,N.A.(compiler),Geological map of Jamaica,1:250000.Ministry of Mining and Natural Resoucres,Kingston,Jamaica,1977.
    [133] Maclntyer,I. A ndA .C.Neumann,Reef response to sea level rise;keep-up,catch-up or give-up.Proceedings of the Fifth intenrational coral congress,Rosenstiel School of Marine and Atmospheric Science, University of Miami,Miami,FL,United States1985,v.3,p.105.
    [134] Nkemdirim,Lawrence C.,1979.Spatial and seasonal distribution of rainfall and runoff in Jamaica:Geographical Review,v.69,no .3,p. 288~301.
    [135] Underground Water Authority Final Report,1990.Water Resources Development Master Plan, Ma in Volume,Government of Jamaica.
    [136] Vogel,K.L. andA .G.Reif,Geohydrology and simulation of ground-water flow In the Red Clay Creek Basin,Chester County Pennsylvania,and Newcastle County Delawaer:US Geological Survey Water Respource Investigations Report,1993,934-055.111p.
    [137] White,Michael N.,Saline intrusion of the karstic limestone aquifer in the Lower.Rio Cobre Basin [J].Jamaica:Journal of the Geological Society of Jamaica,1980,v.19,p.25 ~34.
    [138] Srivastava, K.,S.N. Rai,and R.N. Singh,Water-table variation in a sloping aquifer due to random recharge,[J].Water Resources Management,1996,v.10,no.3,pp.241~50.
    [139] Bonacci,D., Karst springs hydrographs as indicators of karst aquifers[J].Journal ofHydrological Sciences,1993,v.38,n.
    [140] Fetter C W.Contaminant Hydrogeology.New York:Macmillan Publishing Company,1993,1~111.
    [141] Ahmad , Rafi , N.Lal , and P.K.Sharma , A fission-track age for the Above RocksGranodiorite[J].Jamaica:Caribbean Jounral of Science,1987,v.23,pp:450~453.
    [142] Basayanake,S.B.,Hydro geological studies of the Lower Rio Cobre Basin Alluvial Aquifer,Unpublished Report:Underground Water Authority,Government of Jamaica,1988.
    [143] Zhang Q,Schaeffer J,Bradley J,Varma S,Kern A.A 3D groundwater flow model for the collie basin [A].International Groundwater Conference, Balancing the Groundwater Budget [C]. Darwin,Australia,May 12~17,2002.
    [144] Hunt,R.J.,Simulation of the recharge area for Frederick Springs,Dane County,Wisconsin,United States Geological Survey,Water-Resources Investigations Paper 00~4172,33p.
    [145] Halford, K.J..Effects of steady-state assumption on hydraulic conductivity and recharge estimates in a surficial aquifer system[J]. Ground Water, 1999, 37(1):70~79.
    [146] Adams,J.J.,D.N. Graham,P. J. Martin and N. Guiger,Evaluating the WHS Solver-new Bi-CGSTAB solver for MODFLOW,MODFLOW 1998 Conference,Denver, Colorado,1998.
    [147]李力争.划分地下水水源地保护区的研究[J].中国环境科学,1995,15(5):338~341.
    [148]王澎.地下水保护区的划分[D].北京:北京师范大学硕士学位论文,2003.
    [149]周念清,朱蓉,朱学愚.MODFLOW在宿迁市地下水资源评价中的应用[J].水文地质工程地质,2000,27(6):9~13.
    [150] Waterloo Hydro geologic Inc.User's Manual for Visual Modflow,1999.
    [151] Waterloo Hydro geologic Inc.Visual Modflow Tutorial,2000.
    [152] Oreskes,N,K.Shrader-Frechete,and K.Belitz,1994.Verification,validation,and Confirmation of numerical models in earth sciences[J]. Science,263: 641~646.
    [153] Poeter,E.P,and M.C. Hill,Inverse models:a necessary next step in groundwater modeling [J]. Ground Water, 1997, 35(2): 250~260.
    [154]于军,武健强,王晓梅,余勤.基于“区域分解”思想的苏锡常地区地面沉降相关预测模型研究[J].水文地质工程地质,2004,4:92~95.
    [155]董国凤.地面沉降预测模型及应用研究[D].天津大学,2006.
    [156]中国地质环境监测院,中国地质大学(武汉).华北平原地面沉降机理模拟模型及信息管理系统研究[R].武汉:中国地质大学,2006.1.
    [157]骆祖江,张月萍,刘金宝,刘建东.江苏沿江开发带地下水开采与地面沉降三维数值模拟[J].地球科学与环境学报,2007,3(9):280~284.
    [158]许烨霜,余恕国,沈水龙.地下水开采引起地面沉降预测方法的现状与未来[J].防灾减灾工程学报.26 (3):352~357.
    [159]李涛,潘云等.人工神经网络在天津市区地面沉降预测中的应用[J].地质通报,2005,24 (7):677~681.
    [160] Hiroshi P Sato,Kaoru Abe,Osamu Otaki.GPS-measured land subsidence in Ojiya city,Niigata Prefecture,J apan [J].Engineering Geology,2003 (67): 379~390.
    [161] Environment Modeling System Inc. (EMS2I). Groundwater Modeling System (GMS2510) [R]. USA. Uta State, 2004.
    [162]Yao Guoqing, Mu Jingqin.D-InSAR Technique for Land Subsidence Monitoring[J].Earth Science Frontiers, 2008, 15(4):239~243.
    [163] Xiaoqing Shi,Jichun Wu,Shujun Ye,et al.Jun Yu Regional land subsidence simulation in Su-Xi-Chang area and Shanghai City[J].China Engineering Geology,2008,100:27~42.
    [164]刘毅.地面沉降研究的新进展与面临的新问题[J].地学前缘,2001,8 (2):273~278.
    [165]张人权.地下水资源特性及其合理开发利用[J].水文地质工程地质,2003 ,30(6):1~5.
    [166]段永侯,肖国强.河北平原地下水资源与可持续利用[J].水文地质工程地质,2003 ,30(1):2~7.
    [167]王家兵,李平.天津平原地面沉降条件下的深层地下水资源组成[J].水文地质工程地质,2004,31(5):35~38.
    [168]殷跃平,张作辰,张开军.我国地面沉降现状及防治对策研究[J].中国地质灾害与防治学报,2005,16 (2):1 ~8.
    [169]薛禹群,张云,叶淑君等.我国地面沉降若干问题研究[J].高校地质学报,2006,12(2):153~160.
    [170]王家兵.天津深层地下水资源持续利用研究[D].中国地质大学(北京),2006.
    [171]王家兵,王亚斌,张海涛.控制地面沉降条件下天津深层地下水资源持续利用[J].水文地质工程地质,2007,4:74~78.
    [172]鄂建,孙爱荣.华北平原地面沉降机理与特点及防治措施[J].资源环境与工程,2007,2(4):156~159.
    [173]董克刚,周俊等。天津市地面沉降的特征及其危害[J].地质灾害与环境保护,2007,1(3):67~70.
    [174]孙晓明.环渤海地区地下水资源可持续利用研究[D].中国地质大学(北京),2007.
    [175]刘花台,郭占荣.深层地下水及其可利用性分析[J].水文地质工程地质,2008,2:124~128.
    [176]张光辉,费宇红,聂振龙等.海河平原东部地区地面沉降机理与趋势[J].中国地质灾害与防治学报,2005,16(1):13~17.
    (1)《德州地区1:10万农田供水水文地质勘察报告》,1978
    (2)《德州市东郊水源地供水水文地质勘察报告》,1981
    (3)《1980年~1985年深层地下水降落漏斗监测报告》,1985
    (4)《德州市地面沉降监测报告》,1992
    (5)《德州漏斗及德州市地面沉降观测总结报告》,1994
    (6)《德州市地质环境监测报告》1986、1991、1996、2001
    (7)《德州市深层地下水降落漏斗研究报告》,1996
    (8)《德州市德城区地质环境调查评价报告》,2000
    (9)《德州市人民政府关于加强地下水资源管理的通知》(德政发[2003]16号),2003年11月24日
    (10)《德州市德城区深层地下水人工回灌调查报告》,2004
    (11)《德州市人民政府办公室关于印发德州市总体抗旱预案和德州市市区专项抗旱预案的通知》,德政办字[2008]98号,2008年12月25日

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700