用户名: 密码: 验证码:
紫鸭跖草对铜的积累规律及在铜胁迫下的生理反应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以我们在中国最大的铜矿——江西省德兴铜矿矿区筛选并报道的超积累Cu植物紫鸭跖草(Setcreasea purpurea Boom.)为试验材料,综合运用溶液培养法、相关酶分析方法、ICP-AES元素测定技术、差速和超速离心技术以及分子生物学研究技术等从几个不同方面研究了该植物对Cu的超积累机理,取得了如下的结果。
     紫鸭跖草(Setcreasea purpurea Boom.)能够超积累Cu,在1000μmol·L~(-+) Cu供应水平时,紫鸭跖草地上部和地下部铜浓度分别高达1105和1210mg.kg~(-1)干重。紫鸭跖草对铜的吸收和转运效率依赖于培养液中的铜供应浓度,250μmol·L~(-1)以上Cu处理使Cu的转运效率急剧上升。
     在不同浓度Cu供应时,紫鸭跖草对其必需养分元素的吸收和积累维持正常,它们的浓度均在保证一般植物正常生长的浓度范围内。100μmol·L~(-1)~250μmol·L~(-1) Cu的供应能明显促进植物生长。高浓度Cu对根和茎叶部分的蛋白质的含量、合成及氨基酸的组成有显著的影响。
     运用差速离心技术研究了Cu在紫鸭跖草亚细胞内的分配特征,结果表明,细胞壁是Cu分布的主要位点之一,其次,叶绿体中的Cu占叶片全Cu的较大比例。在接触高Cu或接触时间延长情况下,根细胞中Cu向细胞壁的分配增加,而向叶绿体中的分配减少,而叶细胞中Cu向叶绿体中的分配增多,向细胞壁的分配减少。
     运用化学试剂顺序提取法和酶解法研究了Cu在紫鸭跖草的根和叶片中的赋存形态,结果显示,叶片中Cu主要与氨基酸和小分子色素、蛋白质、多糖等结合,而根中Cu则主要与纤维素、膜结合蛋白等细胞壁物质相结合。根组织中细胞壁结合态Cu有60%左右与纤维素和/或果胶等相结合,能够被纤维素酶或离析酶所溶解。
     通过研究紫鸭跖草叶中抗氧化体系主要参数在不同浓度Cu影响下的变化发现,活性氧和自由基清除体系的APX、GPX、CAT和SOD活性根部始终高于叶部。在高于250μmol·L~(-1) Cu处理时APX、GPX和SOD活性各抗氧化酶活性均显著升高,在低于250μmol·L~(-1) Cu处理时表现各异。只有CAT活性却一直随Cu浓度的增大而下降。根部和叶部GR活性在100和250μmol·L~(-1) Cu处理时显著高于其它Cu供应水平,GSH含量在250μmol·L~(-1) Cu处理时较高;根中脯氨酸含量与Cu供应水平成线性相关,叶中脯氨酸含量与Cu供应水平成线性负相关。质膜透性和膜脂过氧化研究也表明紫鸭跖草在低于50或高于250μmol·L~(-1) Cu供应时分别受到Cu缺乏或中毒胁迫。光合速率和蒸腾速率的试验结果以及根系活性研究结果均表明紫鸭跖草在较高浓度Cu供应时生长良好。
     以上研究结果表明紫鸭跖草对Cu有很大耐性和富集能力,又由于该植物的生物量较大、生长速率高,因此它在铜污染土壤的植物修复中有很大的应用潜力。
Setcreasea purpurea Boom.,a Cu-tolerant and Cu-hyperaccumulating ecotype, was found in Dexing copper mining area in Jiangxi Province which is the biggest copper mine in china.Our studies were focus on the Cu-hyperaccumulating mechanism of Setcreasea purpurea Boom.by hydroponic approach,related enzyme analysis,ICP-AES element determination,differential centrifugation and ultarcentrifugation and molecular biology technology.The main results obtained were summarized as follows:
     Setcreasea purpurea Boom.has the ability to hyperaccumulate Cu.When the supply of Cu was 1000μmol·L~(-1),the Cu concentration in shoots and roots was up to 1105 and 1210 mg·kg~(-1)DW,respectively.Copper uptake and translocating efficiency of Setcreasea purpurea Boom.depended on the Cu concentration in nutrient solution. and remarkably increased when Cu was over 250μmol·L~(-1).
     At different Cu concentration,the uptake and accumulating of Setcreasea purpurea Boom.for necessary nutrient elements kept normal and the concentration of necessary nutrient elements made normal plant species grow.The Cu concentration from 100μmol·L~(-1) to 250μmol·L~(-1) obviously promoted the plant growth.High copper concentration has significant influence on the content of protein and component of amino acid in root and shoot.
     By means of differential centrifugation,the studies on copper distributing character in subcell of Setcreasea purpurea Boom.showed that Cu content mainly distributed in cell wall and Cu content in chloroplast was a majority of whole leaf Cu content.When Setcreasea purpurea Boom.was in the hydroponic solution with high Cu concentration or lengthen culture time,Cu in the root cell distributed more to cell wall and less to chloroplast,but the reverse was in the leaf cell.
     Cu occurrence characteristic in root and leaf researched by chemical agent order extraction and enzymatic hydrolysis.The results indicated that Cu in leaf mostly combined with amino acid,small molecular pigment,protein,amylose,etc and Cu in root mainly combined with cellulose,membrane banding protein in cell wall.About 60%of banding-Cu combined with cellulose and/or pectin could be dissolved by cellulase and dissociation enzyme.
     Main parameter of antioxidation system under different Cu levels supplied in nutrient solution were determined and analized.The activities of active oxygen and APX,GPX,CAT and SOD of free radical in root were higher than that in leaf.The activities of APX,GPX,SOD and antioxidation enzymes increased obviously When Cu concentration was over 250μmol,but differed when under 250μmol·L~(-1).However, CAT activity was decreased with the increase of Cu concentration.GR activities in root and leaf at the supply of 100 and 250μmol·L~(-1) Cu were remarkably higher than that at other Cu level,and GSH content was comparatively high at the supply of 250μmol·L~(-1) Cu;proline content in root was correlated linearly to the Cu supplied level and in leaf was negative correlated linearly to the Cu supplied level.Plasma membrane permeability and membrane lipid peroxidation were researched,suggesting that Setcreasea purpurea Boom.was at the shortage of Cu when Cu supply below 50μmol·L~(-1) and on copper toxic stress when Cu supply over 250μmol·L~(-1). Photosynthesis and transpiration rate experiments and root system activity research indicated that Setcreasea purpurea Boom.grew well at the high Cu level.
     Due to its fast growth rate and high Cu-accumulating ability,from a phytoremediation perspective,accumulating ecotype of Setcreasea purpurea Boom.is a potential plant species for Cu removal from contaminated soils.
引文
[1]Adriano D C,Wenzel W W and Blum W E H.Role of phytoremediation in the establishment of a global soil remediation network[A].In:Proceedings International Seminar on Use Plants for Environmental Remediation[C].Kosaikaikan,Tokyo,Japan,1997,3-25.
    [2]Raskin I,Smith R D and Salt D E.Phytoremediation of metals:using plants to remove pollutants from the environment[J].Current Opinion in Biotechnology,1997,8:221-226.
    [3]武正华,张宇峰,王晓蓉,等.土壤重金属污染植物修复及基因技术的应用[J].农业环境保护,2002,21(1):84-86.
    [4]Baker A J M,Brooks R R.Terrestrial higher plants which hyperaccumulate metallic elememts [J].Biorecovery,1989,1:81-97.
    [5]Cunnigham S.D.,et al.Remediation of contaminated soil with green plants:an overview[J].In Vitro Cell Dev Bio1,1993,29:207-212.
    [6]Chaney R.L.,Malik M.,Li YM et al.Phytoremediation of soil metals.Current Opinion Biotechnology,1997,8:279-284.
    [7]沈振国,陈满怀.土壤重金属污染生物修复的研究进展[J].农业生态环境,2000,16(2):39-44.
    [8]Brooks,R.R.,Lee,J.,Reeves,R.D.,Jaffre,T.Detection of nickliferous rocks by analysis of herbarium specimens of indicator plants[J].Journal of Geochemical Exploration,1977,7:49-57.
    [9]Kong X.S(孔祥生),Zhang M.X(张妙霞),Guo X.P(郭秀璞).Effecls of Cd toxicity on cell membrane penneability and protective enzyme activity of maize seedling.Agro-environ Protection (农业环境保护).1999,18(3):133-134.
    [10]Morris H.E.Injury to growing crops caused by the application of araenical compounds to the soil.J Arg Res.1972.34:59-78.
    [11]Mukherji S.Roy B.K.Characterization of chromium toxicity in different plant materials.Indian J exp Boil.1978,16:1017-1019.
    [12]Lamoreaux R.J.,Chaney W.R.Grow and water movement in silver maple seedling affected by cadmium.J Environ Qual.1977,6:201-205.
    [13]王焕校,污染生态学基础.昆明:云南大学出版社.1990,91-108.
    [14]Ouzounidou G.Root growth and pigment composition in relationship to element uptake in Silene compacta plants treated with copper[J].J.Plant Nutr.,1994.17(6):933-943.
    [15]STIBOREVA M.Effect of heavy metal ions on growth and biochemical characteristics of photosynthesis of barley[J].Photosynthetica,1986,20:418-425.
    [16]Peng M(彭鸣),Wang H.X(王焕校),Wu Y.S(吴玉树).Ultrastructural changes induced by cadmium and lead corn seedling cell.Chin Environ Sci(中国环境科学).1991,11(6):426-431.
    [17]Yang J.R(杨居荣),He J.X(贺建兴),Jiang W.R(蒋婉茹).Effect of Cd pollution on the physiology and biochemsistry of plant.Agro-Environ Protection(农业环境保护).1995,14(5):193-197.
    [18]Zhou J.H(周建华),Wang Y.R(王永锐).Physiological studies on poisoning effects of Cd and Cr on rice seedlings through inhibition of Si Nutrition. Chin J Appl Environ Biol(应用与环境生物学报).1999,5(1):11-15.
    
    [19]ChenY(陈愚), Ren J.C(任久长), Cai X.M(蔡晓明). Effects of Cd on nitrale reductase and superoxide disniutase of submerged macrophytes . Acta Sci Circumstantiae( 环境科学学报). 1998(13):313-317.
    
    [20] Mathys W. Vergleichende Untersuchugen der Zinkaufnahme Von die Sistenten und Sensitiven Popualtion Von agrostis tenuis Sibth. Flora.1973,162:492-499.
    
    [21] Briat L.R., Lfbrun M. Plant responses to metal toxicity [J]. Plantbiology and pathology, 1999, 322: 43-54.
    
    [22] Gao S.Y(高圣义), Wang H.X(王焕校), Wu Y.S(吴玉树). The effects of zinc pollution on some physiological and biological indenes of Vicia Fiaba L. Chin Environ Sci(中国环境科学). 1992,( 14) 2:281-284.
    
    [23] Salt D.E, Smonth R.D. and Raskin I. Phytoremediation [J]. Annu Rev Plant Physoil Mole Biol. 1998.49:643-668.
    
    [24] Huang J.W, Chen J, Berti W.R, Cunningham S.D. Phytoremediation of lead-contaminated soils:role of synthetic chelates in phytoextraction [J]. Environ Sci Technol, 1997,31:800-805.
    
    [25] Teery N., De Souza M. Phytoremediation of selenium in soil and water. Proceedings of Soil Rem 2000. 2000,156-160.
    
    [26] Pilon-Smits E.A.H., Hwang S., Lytle C.M., Zhu Y., Tai J., Bravo R.C., Chen Y., Leustek T., Terry N. Overexpression of ATP sulfurylase in India mustard leads to increased selenate uptake,reduction,and tolerance. Plant physiology,1999,119:123-132.
    
    [27] Bizily S. P., Rugh C.L., Summers A.O., Meagher R.B. Phytoremediation of methylmercury pollution: MerB expression in Arbidopsis thaliana confers resistance to organmeourials [J]. Proe Nath Acad Sci USA,1999.96:6808-6813.
    
    [28] Cacador I., Vale C., Catarino F. accumulation of Zn, Pb, Cu, Cr and Ni in sediments between roots of the Tagus Estuary salt marshes, Portugal. Estuarine Coastal and Shelf Science, 1996,42:393-403.
    
    [29] Shanks J.V., Morgan J. Plant 'hairy root' culture. Current opinion in Biotechnology,1999,10:151-155.
    
    [30] Anderson T.A. bioremediation in the rhizospere. Environ. Sci. & Technol., 1993,27(2):2630-2635.
    
    [31] Aprill W., Sims R.C. Evaluation of the use olpraine grasses for stimulating ploycyclic aromaric hydrocarbon treatment in soil. Chemosphere, 1990,20:253-265.
    
    [32] Cunningham S.D. et al. Phytoremediation of contaminated soils. Trend in biotechnology,1995,13(9):393-397.
    
    [33] Bradshaw A.D., Chadwish M.D. The restoration of land: the geology and reclamation of derelict and degraded land. University of California Press, California, 1980.
    
    [34] Cotter-Howelts J.D., Caporn S. Remediation of contaminated land by formation of heavy metal phosphates. Applied Geochemistry. 1996,11:335- 342.
    
    [35] Margoshes M., Vallee B.L. A cadmium protein from equine kidney cortex. J Am chem. Soc. 1957,79:4813-4814.
    
    [36] Maitani T. The composition of metal bound to Class III metallothioncin (phytochelation and itsdesglycyl peptide) induced by various metal in root cultures of Rabia tinctorum. Plant Physiol. 1996,110:1145-1150.
    
    [37] Ortiz D.F., Kreppel L., Speiser D.M., Scheel G., McDonald G., Ow D. Heavy metal tolerance in the fission yeast requires an ATP-banding cassette-type vacuolar membrane transporter. EMBO J.1992,11:3491-3499.
    
    [38] Salt D.E., Smith R.D., Raskin I. Phytoremediation. Annu Rev Plant Physoil Plant Mol Bio. 1998,49:643-649.
    
    [40] Murphy A., Zhou J.M., Goldsbrough P.B., Tain L. Purification and immunological identification of metallothioneins 1 and 2 from Arabidopsis thaliana . Plant Physoil, 1997,113:1293-1301.
    
    [41] Lane B.G., Kajioka R., Kennedy T.D. The wheat germ Ec protein is a zinc-containing metallothionein. Biochemical and Cell Biology, 1987,65:1001-1005.
    
    [42] Kawashina I., Kennedy T.D., Chino M. Lane B.G. Like mammalian Zn~(2+) metallothionein genes, wheat Zn~(2+) metallothionein genes are conspicuously expressed during embryogenesis. Eur J Biochem,1992,209:971-977.
    
    [43] 王剑虹,麻密. 植物修复的生物学机制. 植物学通报, 2000,17(6):504-510.
    
    [44] Grill E., winnacker F.L., Zenk M.H. Phytochelatins: the principal heavy-metal complexing peptides of higher plants. Science,1985,230:674-676.
    
    [45] Leuchter R., Wolf k., ZinmeTmenn M. Isolation of an arabidopsis thaliana cDNA complementing a schizosaccharomyces pombe nutant which in deficient in phytochelatin synthesis. (Accession No. AJ006787 ). Plant Physoil,1998,117:1526.
    
    [46] Meuwley P., Rauser W.E. Alteration of thiol pools in roots and shoots of maize seedlings exposed to cadmium. Plant physoil. 1992,99:8-15.
    
    [47] Schneider S.T., Bergmann L. Regulation of glutathione synthesis in suepension cultures of paraley and tobacco. Bot Acta 1995,108:34-40.
    
    [48] Hell R., Bergmann L. γ-Glutamylcysteine synthesis in higher plant: catalytic properties and subcellular localication. Planta, 1990,180:603-612.
    
    [49] Murata K., Kimura A. Cloning of a gene responsible for the biosynthesis of glutathione in Escherichia coli B. Appl Environ Microbiol,1982,44(6):1444-1448.
    
    [50] Dhankher O.P., Li Y., Rosen B.P.,et al. Engineering tolerance and hyperaccumulation of arsenic in plants by combining arsenate reductase and gamma glutamylcysteine synthetase expression. Nat Biotechnol,2002,20(11): 1140-1145.
    
    [51] Nies D.H.,CzcR ,CzcD. Gene products affecting regulation of resistance to cobalt, zinc, and cadmium (czc system) in Alcaligenes eutrophus.[J]Bacteriol,1992,174(24):8102-8110.
    [52] Hao Z., Chen S., Wilson D.B. Cloning,expression,and characterization of cadmium and manganese uptake genes from Lactobacillus plantarum. Appl Environ Microbio, 1999, 65 (11): 4746 -4752.
    
    [53] Grass G., Fan B., Rosen B.P., et al. ZitB(YbgR), amember of the cation diffusion facilitator family, is an additional zinc transporter in Escherichia coli. [J ] Bacteriol,2001,183(15):4664-4667.
    
    [54] Wang Y., Moore M., Levinson H.S., et al. Nucleotide sequence of a chromosomal mercury resistance determinant from a Bacillus sp. With broad spectrum mercury resistance.[J] Bacteriol,1989, 171(1):83-92.
    
    [55] Jeyaprakash A., Welch J.W., Fogel S. Multicopy CUP1 plasmids enhance cadmium and copper resistance levels in yeast. Mol Gen Genet, 1991,225(3):363-382.
    
    [56] Zhao H., Eide D. The yeast ZRT1 gene encodes the zinc tranporter of a high affinity uptake system induced by zinc limitation. Proc Natl Acad Sci USA,1996,93:2454-2458.
    
    [57] Gomes D.S., Fragoso L.C., Riger C.J. et al. Regulation of cadmium uptake by Saccharomyces cerevisiae. Biochimicaet Biophysica Acta,2002,1573:21-25.
    
    [58] Li L., Kaplan J. Defects in the yeast high affinity iron transport system resulting increased metal sensitivity because of the increased expression of transporters with abroad transition metal specificity. [J] Biol Chem,1998,273:22181-22187.
    
    [59] Clemens S., Bloss T., Vess C.et al. A transporter in the endoplasmic reticulum of Schizosaccharomyes pombe cells mediates zinc storage and differentially affects transtion metal tolerance. [J] Biol Chem,2002,277:18215-18221.
    
    [60] Leustek T., Murillo M., Cervantes M. Cloning of a cDNA encoding ATP sulfurylase from Arabidopsis thaliana by functional expression in Saccharomyces cerevisiae. Plant Physiol, 1994, 105 (3): 897-902.
    
    [61] Van der Zaal B.J., Neuteboom L.W., Pina J.E. et al. Overexpression of a novel Arabidopsis gene related to putative zinc-transporter genes from animals can lead to enhanced zinc resistance and accumulation. Plant Physiol, 1999,199:1047-1055.
    
    [62] Eide D., Broderius M,. Fett J. et al. A novel ironregulated metal transporter from plants identified by functional expression in yeast.Proc Natl Acad Sci USA,1996,93:5624-5628.
    
    [63] Korshunova Y.O., Eide D., Clark W.G. et al. The IRT1 protein from Arabidopsis thaliana is a metal transporter with broad specificity. Plant Mol Biol,1999,40:37-44.
    
    [64] Rogers E.E., Eide D.J., Guerinot M.L. Altered selectivity in an Arabidopsis metal transporter. Proc Natl Acad Sci USA,2000,97:12356-12360.
    
    [65] Li L., He Z.Y., Randey G.K. et al. Functional cloning and characterization of a plant efflux carrier for mutidrugand heavy metal detoxi fication.[J] Biol Chem,2002,277:5360-5368.
    
    [66] Suzuki N., Yamaguchi Y., Koizumi N. et al. Functional characterization of a heavy metal binding protein CdI19 from Arabidopsis. Plan J,2002,32(2):165-173.
    
    [67] Pence N.S., Larsen P.B., Ebbs S.D. et al. The molecular physiology of heavy metal transportin the Zn/Cd hyperaccumulator Thlaspi caerulescens. ProcNatlAcadSciUSA,2000,97:4956-4960.
    
    [68] Persans M.W., Nieman K., Salt D.E. Functional activity and role of cation efflux family in Ni hyperaccumulation in Thlaspi goesingense. ProcNatlAcadSciUSA,2001,98:9995-10000.
    
    [69] Zhang Y.X., Chai T.Y., Zhao W. Metal Cloning and expression analysis of the heavy metal responsive gene PvSR2 from bean. Plant Science,2001,161(4):783-790.
    
    [70] Clemens S., Kim E.J., Neumann D. et al. Tolerance to toxic metals by a gene family of phytochelatin synthases from plants and yeast. EMBO [J],1999,18(12):3325-3333.
    
    [71] Arazi T., Sunkar R., Kaplan B. et al. A tobacco plasmamembran calmodulin binding transporter confers Ni~(2+) tolerance and Pb~(2+) hypersensitivity in transgenic plants. Plant J,1999,20:171-182.
    
    [72] Brzezinski R., Smorawinska M., Vezina G. et al. Cloning and characterization of the metallothionein I gene from mouse LMTK cells.Cytobios,1987,52(208):33-38.
    
    [73] Palmiter R.D., Findley S.D.. Cloning and functional characterization of amammalian zinc transporter that confers resistance to zinc. EMBO J, 1995,14:639-649.
    
    [74]Rugh C.L., Senecoff J.F., Meagher R.B., Merkle S,A. Development of transgenic yellow poplar for mercury phytoremediation. Nature biotechnology, 1998,16:925-928.
    
    [75]Yong Liang Zhu, et al. Cadmium Tolerance and accumulation in Indian Mustard Is Enhanced by Overexpressing r-Glutemcylcysteine Synthetase. Plant Ptysiology 1999.12(12):1169-1177.
    
    [76] Lasat M M , Pence N S , Garvin D F , Ebbs S D and Kochian L.V. Molecular physiology of zinc transpor in the Zn hyperaccumulator Thlaspi caerulescens [J ] . J . Exp. Bot . , 2000 , 51 :71-79.
    
    [77] Edie D , Broderius M , Fett J , Gurinot M L. A noval iron-regulated metal transporter from plants identified by functional expression in yeast [J ]. Proceedings of the national academy of sciences USA , 1996 , 93 :5624-5628.
    
    [78]Zhao H , Eide D. The yeast ZRTI gene encodes the zinc transporter protein of a high affinity uptake system induced by zinc limitation[J ]. Proceedings of the national academy of sciences USA , 1996 ,93 :245422458.
    
    [79] Kamizono A , Nishizawa M , Teranishi Y, Kimura A. Identification of a gene conferring resistance to zinc and cadmium ions in the yeast S accharomyces cerevision [ J ]. Mol. Gen. Genet, 1989 ,219 :1612167.
    
    [80] Conklin D S , McMaster J A , Culbertson M R , Kung C. COT1, a gene involved in cobalt accumulation in S accharomyces cerevision [J ]. Mol. Gen. Genet ,1994 ,244 :3032311.
    
    [81] Conklin D S , Conklin D S , Kung C. Interactions between gene products involved in divalent cation transport in S accharomyces cerevision [J ] . Mol. Gen. Genet ,1994 ,244 :3032311.
    
    [82] Li L , Kaplan J . Defects in the yeast high affinity iron transport system result in increased metal sensitivity because of the increased expression of transporters with a broad transition metal specificity[J].J.Biol.Chem.,1998,273:22181-22187.
    [83]van der Zaal E J,Neuteboom L W,Pinas J E,Schat H,Verkleij J,Hooykaas P J J.verexpression of a zinc transporter gene from Arabidopsis can lead to enhanced zinc resistance and zinc accumulation[J].Plant Physiol.,1999,119:129.
    [84]Persans M W,Yan X,Patnoe J M M L,Kramer U,Salt D E.Molecular dissection of the role of histidine in nickel hyperaccumulation in Thlaspi goesingense(Halacsy)[J].Plant Pysiol.,2000,121:1117-1126.
    [85]Chen T.B.,Wei C.Y.,Huang N.C.,et al.Arsenic hpyeraccumulator Pteris vittata L.and its arsenic accumulation.Chinese Sci.Bull.,2002,47(11):902-905.
    [86]薛生国,陈英旭,林琦,等.中国首次发现的锰超积累植物—商陆[J].生态学报,2003.23(5):935-937.
    [87]Yang MJ(杨明杰)(2001).Mechanisms of copper hyperaccumulation in Elsholtzia splendens Nakai(海州香薷(Elsholtzia splendens Nakai)对铜的超积累机理研究).Zhejiang University(in Chinese).
    [88]束文圣,杨开颜,张治权,杨兵,蓝崇玉,湖北铜绿山古铜矿炼渣植被与优势植物的重金属含量研究,应用与环境生物学报,2001.7(1)7-12.
    [89]杨肖娥,龙新宪,倪吾钟,等.东南景大—一种新的锌超富集植物[J].科学通报,2002,47(13):1003-1007.
    [90]Cunningham S.D.,Ow D.W.Promises and Prospects of Phytoremediation.Plant physiology,1996,110:715-716.
    [91]Marschner,H.Mineral Nutrition in Higher Plants.Academic Press,1995.London.
    [92]Cumming,J.R.,Tomsett,A.B.Metal tolerance in plants.In Biogeochemistry of trace Metals.Adriano,D.C.Ed.,1992.pp.329-364.Lewis Publishers,Boca Raton.
    [93[Robinson,N.J.,Tommey,A.M.,Kuske,C.,Jackson,J,Plant metallothioneins.Biochem J.1993.295:1-10.
    [94[Schat,H.,Ten Bookum,W.M.Metal specificity of heavy metal tolerance syndromes in higher plants.The Vegetation of Ultramafic(Serpentine)Soils.Baker,AJ.M.,Reeves,R.D.,Proctor,J.,Eds,1992.pp.337-353.Intercept,Andover,UK.
    [95]Macnair.MR,Smith,S.E.,Cumbes,Q.J.Heritability and distribution of variation in degree of copper tolerance in Mimulus gullatus at Copperopolis,California.Heredity 1993.71:445-455.
    [96[Barber.S.A.Soil Nutrient Bioavailability:a mechanistic approach-2nd.John Wiley Sons,Inc.1995.New York.
    [97]Baccini,P.Metal transport and metal/biota interactions in lakes.Environ.Technol.Letters.1985.6:327-334.
    [98]Freedman.B.,Hutchinson,T.C.Effects of smelter pollutants on forest leaf litter decomposition near a nickel-copper' smeltcr at Sudbury,Ontario.Can.J.Bat.1980.58:1722-1736.
    [99]Moore,J.W,Ramamoorthy S.Heavy metals in natural waters-Applied monitoring and impact assessment.Springcr-Vcrlag.1884.New York..
    [100] 黄长干,邱业先. 江西德兴铜矿铜污染状况调查及植物修复研究,土壤通报,2005,36 (6) :991-992.
    
    [101]Graham, R.D. Absorption of copper by plant roots. In Copper in Soils and Plants. Loneragan, J.F., Robson, A.D., Graham, R.D., Eds., 1981.pp.141-163. Academic Press, Sydney
    [102] Kochian, L.V. Mechanisms of micronutrient uptake and translocation in plants.In Micronutrients in Agriculture 2"0 Edition, SSSA Book Series: 4. Mortvedt, J.J, Cox, F.R., Shuman, L.M., Welch R.M., Eds., 1991. pp.229-296. Soil Science Society of America, Inc. Madison, W.I.
    [103] Wallace, A. Effects of chelating agents on uptake of trace elements when chelating agents are applied to soil in contrast to when they are applied to nutrient cultures. J. Plant Nutr. 1980.2: 171-175.
    
    [104] Thornton, B., Macklon, A.E.S. Copper Uptake by Ryegass Seedlings; Contribution of Cell Wall Adsorption. J. Exp. Bot. 1989. 40 (219): 1105-1110.
    [105] Holden, M.J., Crimmins, Jr TJ., Chancy, R.L. Cuz' reduction by tomato root plasma membrane vesicles. Plant Physiol. 1995.108: 1093-1098.
    [106] Graham, R.D. Absorption of copper by plant roots. In Copper in Soils and Plants. Loneragan, J.F., Robson, A.D., Graham, R.D., Eds., 1981.pp. 141-163. Academic Press, Sydney
    [107] Hill, K1., Hassett, R , Kosman, D., Merchant, S. Regulated copper uptake in Chlamydomonas rginhardtil in response to copper availability. Plant Physiol. 1996.112: 697-704
    [108] Dancis, A., Yuan, D.S, Haile, D., Askwith, C., Eidc, D., Moehle., Kaplan, J., Klausner, R.D. Molecular characterization of a copper transport protein in S. cerevisiae: An unexpected role for copper in iron transport. Cell.1994. 76: 393-402.
    
    [109] Kampfenkel, K., Van Montagu, M.V., Inze,D. Effects of iron excess on Nicotiana plumbaginifolia plants. Plant Physiol. 1995.107: 725-735.
    
    [110] Bowen, I.E. Kinetics of active uptake of boron, zinc, copper, and manganese in barley and sugar cane. J. Plant Nutr. 1981.94: 99-108.
    
    [111] Graham, R.D. Absorption of copper by plant roots. In Copper in Soils and Plants. Loneragan, J.F.,Robson, A.D., Graham, R.D., Eds., 1981.pp.141-163. Academic Press, Sydney
    [112] Graham, R.D. Effects of nutrient stress on susceptibility of plants to disease with particular reference to the trace elements. Adv. Rot. Res. 1983.10: 221-276.
    
    [113] Loneragan, IF Distribution and movement of copper in plants. In Copper in Soils and Plants. Loneragan, J.F., Robson. A.D, Graham, R.D., eds. 1981.pp. 165-188. Academic Press, Sydney
    
    [114] Hocking, PJ., Atkins, C.A, Sharkey, PJ. Diurnal patterns of transport and accumulation of minerals in fruiting plants oflupinus angustifolius L. Ann. Dot. 1978.42: 1277-1290.
    [115] Liao, M.T, Hedley, M., Wooley, D.J, Brooks, R.R., Nichols, M.A. Copper uptake and translocation in chicory (Cichorium intybus L. cv Grasslands Puna) and tomato (Lycopersicon esculentum Mill. cv Rondy) plants grown in NFC system. II. The role of nicotianamine and histidine in xylem sap copper transport. Plant and Soil. 2000. 223: 243-252.
    [116] Soon, YK., Bates, TE., Moyer, J.R. Land application of chemically trcated sewage sludge, III. Effects on soil and plant heavy metal content. J. Environ. Qual. 1980. 13: 497-504.
    
    [117] Jarvis, A.W., Whitehead, D.C. The influence of some soil and plant factors on the concentration of copper in perennial ryegrass. Plant soil. 1983.60: 275-286.
    
    [118] Van den Burg, J. Copper uptake by some forest tree species from an acid sandy soil. Plant Soil. 1983.75: 213-219.
    
    [119] Pich, A., Schob, G., Stephan, U.W. Iron-dependent changes of heavy metals, nicotianamine, and citrate in different plant organs and in the xylem exudates of two tomato genotypes. Nicotianamine as possible copper transporter. Plant Soil. 1994.165: 189-194.
    
    [120] Stephan, U.W, Scholz, G. Nicotianamine: mediator of transport of iron and heavy metals in the phloem? Physiot. Plant. 1993.88: 522-529.
    
    [121] Mullins, G.L, Sommers, L.E., Housley, TL. 1986. Metal speciation in xylem and phloem exudates. Plant and Soit 96: 377-391.
    
    [122] Lin SJ, Pufahl R, Dancis A, O1-Ialloran r V, and Culotta V C. A Role for the Saecharomyces cerevisiae ATX1 Gene in Copper Traficking and Iron Transport[J]. J Biol. Chem. , 1997, 272: 9215-9220.
    
    [123]Harrison M D, Jones C E, Solioz M. Danmron C T. Intracellular copper routing: the role of copper chaperones[J]. Trends Biochem. Soi. .2000.25: 29-32.
    
    [124] Woste K E, Kieber J J. A strong loss—of—function mutation in RANt results in constitutive activation of the ethylene response pathway well a rosette—lethal phenotype[J]. Plant Cell, 2000, 12: 443-455.
    
    [125] Balandin rr, Castresanac. AtCOX17, an Arabidopsis Homolog of the Yeast Copper Chaperone COX17[J]. Plant Physiol. , 2002, 129: 1852-1857.
    
    [126]Shikanai T, Moul~PM, MunekageY, Niyogi KK, PilonM. PAA1, a P-Type ATPase of Arabidopsis, Functions in Copper Transport in Chloroplasts[J]. Plant Cell, 2003, 15: 1333-1346.
    
    [127]Baxter I, Tchieu J, Sussman M R, Boutry M, Palmgren M G, Gribskov M, Harper J F, Axelsen K B. Genomic Comparison of P-Type ATPase Ion Putnps in Arabidopsis and Rice[J]. Plant physiol. , 2003, 132: 618-628.
    
    [128] Shingles R, Wimmem L E , McCarty R E. Copper Transport Across Pea Thylak oid Membranes. Plant Physiol. , 2004, 135: 145-151.
    
    [129]MiraH, Martinez—Garcia F, Pefiarrubia L. Evidence for the plant—specific intercellular transport of the Arabidopsis copper chaperone CCH[J]. Plant J. , 2001, 25: 521-525.
    
    [130]Ouzounidou, G, ()iamporov O, M, Moustakas M, Karataglis S. Responses of maize(Zea mays 1.)plants to copper stress-1. Growth, mineral content and ultrastructure of roots[J]. Environs Exp. Bot. , 1995. 35(2): 167-176.
    
    [131] Doncheva S, Nicolov B, Ogneva V. Efect of copper excess on the morphology of nucleus in maize meristem cells. Physiol[J]. Plant, 1996, 96: 118-122.
    
    [132] Doncheva S. Uhrastmctural localization of Ag-NOR proteins in root meristem cells after copper treatment[J]. J. Plant Physiol, 1997, 151: 242-245.
    
    [133] Adalsteinsson S. Compensatory root gro-h in winter wheat: efects of copper exposure on root geometry and nutrient distribution[J]. J. Plant Nun-. , 1994, 17(9): 1501-1512.
    
    [134] Ardumi L., Godbold D. Onnis A. influence of copper Oil rot growth and morphology of PinuspineaL. and Pinus pinaster Ait seedlings[J]. Tree Physiol. , 1995, 15: 411-415.
    
    [135]Ouzounidou G. Root growth and pigment composition in relationship to element uptake in Silene compacta plants treated with copper[J]. J. Plant Nutr. , 1994. 17(6): 933-943.
    
    [136]Nieminen T, Helmisaari HS. Nutrient translocation in the foliage of Pinus sylvestris L. Growing along a heavy metal pollution gradient [J]. Tree Physiol. , 1996, 16: 825-831.
    
    [137] Adalsteinsson S. Compensatory root gro-h in winter wheat: efects of copper exposure on root geometry and nutrient distribution[J]. J. Plant Nun-. , 1994, 17(9): 1501-1512.
    
    [138] Llorens N, Arola L, Blad6 C, Mas A. Efects of copper exposure upon nitrogen metabolism in tissue cultured Vitis vinifera[J]. Plant Science, 2000, 160: 159-163.
    
    [139]Ouzounidou G. Root growth and pigment composition in relationship to element uptake in Silene compacta plants treated with copper[J]. J. Plant Nutr. , 1994. 17(6): 933-943.
    
    [140]Taylor F J, Foy C D. Diferential uptake and toxicity of ionic and chelated copper in Triticum aestivum[J]. Can. J. Sot. , 1985, 63: 1271-1275.
    
    [141] Sandmann G, Boger P. The enzymatological function of heavy metals and their role in electron transfer processes of plants. In Encyclopedia of Plant Physiology. NewSeries[M]. Lauchli A L, . BieleskiRL, Eds Vol. Springer-Verlag. Berlin. 1983. 15: 563-596.
    
    [142] Bareel J, Poschendeder C H. Plant water relationships as afected by heavy metals stress[J]. A review J. Plant Nutr, 1990, 13: 1-37.
    
    [143] De Vos C H R, Vonk M J, Voijs R. Schat H. Glutathione depletion due to copper— induced phytochelatin synthesis causes oxidative stress in Silene eucubalus[J]. Plant Physiol. , 1992, 98: 853-858.
    
    [144] De Vos. C H R, Sehat H, Voijs R, Ernst WHO. Copper-induced damage to the permeability barrier in rots of Silene cucubalus[J]. J Plant Physiol. , 1989, 135: 165-169.
    
    [145] Demidchik V, Sokolik A. Yurin V. The efect of Cu ion transpo systems of the plant cell plasmalemma[J]. Plant Physiol, 1997, 114: 1313-1325.
    
    [146] DEMIDCHIK V, SOKOLIK A, YURIN V. The effect of Cu2+ on iontransport systems of the plant cell plasmolemma [J]. Plant Physiol,1997, 114: 1313-1325.
    
    [147] Tomas J C, Malick F K, Endreszl C, Davies E C, Murray K S. Distinct respo nses to copper stress in the halophytc Mesembryanthemum crystallinum[J]. Physiol. Plant, 1998, 102: 360-368.
    
    [148] Mehta S K, Gaur J P. Heavy-metal-induced proline, accumulation and its role in ameliorating metal toxicity in Chlorella vulgaris[J]. New Phytol. , 1999, 143: 253-259.
    
    [149] De Vos C H R. , Schat H, De Waal MAM, Vooijs R, Ernst WHO. Increased resistance to copper- induced damage of the root cell plasmalemma in copper-tolerant Silene cucubalus[J]. Physiol Plant, 1991, 82: 523-528.
    [150]Murphy A,Taiz L.Correlation between potassium eflux and copper sensitivity in 10Arabidopsis ecotypes[J].New Phytol,1997,136:211-222.
    [151]Murphy A S,Eisinger W R,Shaft J E,Kochian LV,Taiz 1.Early Copper—Induced Leakage of K~+ from Arabidopsis Seed lings 1s Mediated by Ion Channels and Coupled to Citrate Efflux[J].Plant Physiol,1999,121:1375-1382.
    [152]DE VOS H R,SCHAT H,DE WAAL M A M,et al.Increasedresistance to copper-induced damage of the root cell plasmolemma incopper tolerant Silene cucubalus[J].Physiol Plant,1991,82:523.
    [153]BRIAT L R,LEBRUN M.Plant responses to metal toxicity[J].Plantbiology and pathology,1999,322:43-54.
    [154]STIBOREVA M.Effect of heavy metal ions on growth and biochemical characteristics of photosynthesis of barley[J].Photosynthetica,1986,20:418-425.
    [155]SANDMANN G,BOGER P.Copper deficiency and toxicity in Scinedesmus[J].J Pflanzenphysiol,1980,98:53-59.
    [156]BRANQUINHO C,BROWN D H,CATARINO F.The cellular location of Cu in lichens and its effects on membrane integrity and chlorophyll fluorescence[J].Environ Exp Bot,1997,38:165-179.
    [157]储玲,刘登义,王友保,等。铜污染对三野草幼苗生长及活性氧化代谢影响的研究.[J]应用生态学报,2004,15(1):119-122。
    [158]谷巍,施国新,张超英,等.Hg~(2+)、Cd~(2+)、Cu~(2+)对菹草光合系统及保护酶系统的毒害作用.[J]植物生理与分子生物学学报2002,28(1):69-74.
    [159]Mocquot B,Vangronsveld J,Clijsters H,Mench M Copper toxicity in young maize(Zea mays L.)plants:efects on growth,mineral and chlorophyll contents,and enzymes activities[J].Plant and Soil,1996,182:287-300.
    [160]Ouzounidou G,Moustakas M,Lannoye R.Chlorophyll fluorescence and photoacoustic characteristics in relationship to changes in chlorophyll and Ca content of a Cu-tolerant Silene compacta ccotype under Cu treatment[J].Physiol.Plant,1995,93:551-557.
    [161]Bar6n M,Arellano J B,L6pez Gorg6 J,Copper and photosystem 11:A controversial relationship[J].Physiol.Plant,1995,94:174-180.
    [162]P(A|¨)TSIKK(A|¨) E,KAIRAVUO M.Excess copper predisposes photosystem Ⅱ to photoinhibition in Vivo by out competing iron and causing decrease in leaf chlorophyll[J].Plant Physiol,2002,129:1359-1367.
    [163]黄艺,陶澍。 过量铜、锌对外生菌菌根牛乳牛肝菌生物量、呼吸和糖酵解酶活性的影响[J].植物生理学报,2001,27(4):303-308.
    [164]Doncheva S.Copper-induced alternations in structure and proliferation of maize root meristem cells[J].J.Plant Physiol.,1998,153:482-487.
    [165]COOMBES A J.Effect of copper on IAA-oxidase activity in root tissue of barley[J].P flanzenphysiol,1976,80:236-242.
    [166]BESSONOVA V P.Effect of environmental pollution with heavy metals on hormonal and trophic factors in buds of shrub plants[J].Russian J Ecology,1993,24(2):91-95.
    [167]KIM Y S,CHOI D,LEE M M,et al.Biotic and abiotic stress-related expression of 1-amino cycloprane-1-caboxylate oxidase gene family in Nicotiana blutinosa L[J].Plant Cell Physiol,1998,39(6):565-573.
    [168]倪才英,陈英旭,骆永明,等.红壤模拟铜污染下紫云英根表形态及其组织和细胞结构变化[J].环境科学,2003,24(3):116-120.
    [169]葛才林,阳小勇,刘向农,等.重金属对水稻和小麦DNA甲基化水平的影响[J].植物生理与分子生物学学报,2002,28(5):363-368.
    [170]张开明,黄苏珍,原海燕,等。铜污染的植物毒害、抗性机理及其植物修复[J].江苏环境科技,2005,18(1):4-9.
    [171]F.Remonsellez,A.Orell and C.A.Jerez,Copper tolerance of the thermoacidophilic archaeon Sulfolobus metallicus:possible role of polyphosphate metabolism.Microbiology[J]2006,152,59-66.
    [172]YANG H,WONG J W C,YANG Z M,et al.Ability ofAgrogyron elongatum to accumulate the single metal of cadmium,copper,nickel and lead and root exudation of organic acids[J].J Environ Sci,2001,13(3):368-375.
    [173]常学秀,段昌群,王焕校.根分泌作用于植物对金属毒害的抗性.[J]应用生态学报,2000,11(2):315-320.
    [174]FRY S C.The growing plant cell wall:Chemical and metabolic analysis[M].England:Longman Scientific and Technical,Inc,1998:195.
    [175]Nishizono H.the role of the root cell wall in the heavy metal tolerance of Athyrium Yokoscense[J].Plant and Siol,1987,(101):15-20.
    [176]BERGLUND A H,QUARTACCI M F,LILJENBERG C.Changes in plasma-membrane lipoid composition:a strategy for acclimation to copper stress[J].Biochem Soc Trans,2000,28(6):905-907.
    [177]C H R De Vos,H Schat,M A M De Waal,et al.Increased resisitance to copper induced damage of the root cell plasm Plasmalemma in copper torlent sliene cucubalus[J].Physiologia plantarum,1991,(82):523-528.
    [178]Hogan G D,Rauser E E.Role of copper binding,absorption and translocation in copper tolerance of Agrostisgigantea Roth[J].J.Exp.Bot.,1981,32:27-36.
    [179]HALL J L.Cellular mechanisms for heavy metal detoxification and tolerance[J].J Exp Bot,2002,53:1-11.
    [180]Arduini,I,Godbold,D.,Onnis,A.1996.Cadmium and copper uptake and distribution in Mediterranean tree seedlings.Physiol.Plant 15:411-415.
    [181]Vesk,PA.,Nockolds,C.E,Allaway,WG.Metal localization in water hyacinth roots from an urban wettand.Plant,Cell & Environ.1999.22:149-156.
    [182]Ouzounidou,G.,Moustakas,M.,Lannoye,Chlorophyll fluorescence and photoacoustic family of phytochelatin synthases from plants and yeast.EMBO J.1999.18(12):3325-3333.
    [201]Ha,S.B.,Smith,A.P,Howden,R..,Dietrich,W.M.,Bugg,S.,O'Connell,M.1,Goldsbrougb,RB.,Cobbett.C.S.Phytochelatin synthase genes from Arabidopsis and the yeast SchLosaccharomyces pombe.Plant Cell.1999.11:1153-1163.
    [202]Chen,J.J.,Zhou,J.M,Goldsbrough,P.B.Characterization of phytochelatin synthase from tomato.Physiol.Plant lot:1997.165-172.
    [203]Kahle,H,Response of roots of trees to heavy metals.Environ.Exp.Rot 1993.33(1):99-119.
    [204]Thumann,J.,Grill,E.,Winnacker,E-L.,Zenk,M.H.Reactivation of metal-requiring apoenzymcs by phytochelatin-metal complexes.FEBS Left 1991.284:66-69.
    [205]Schat,H.,Kalff.,M.M.A.Are phytochelatins involved in differential metal tolerance or do they merely reflect metal-imposed strain? Plant Physiol.1992.99:1475-1480.
    [206]Kubota,K.Nishizono,H.,Suzuki,S.Ishii,F.A copper-binding protein in root cytoplasm of Polygonum cuspidatum grown in a metalliferous habitat.Plant Cell Physiol.1988.29(6):1029-1033.
    [207]Salt,D.E.,Thurrnan,R.D.,Tomsett,A.B.,Sewell,A.K.Copper phytochelatins of Mimulus gutlatus.Proc.R Soc.Lond.B 1989.236:79-89.
    [208]NEILL S,DESIKAN R,HANCOCK J.Hydrogen peroxide signaling[J].Current Oponion in Plant Biology,2002,5:388-395.
    [209]NAGALAKSHMI N,PRASAD M N V.Responses of glutathione cycle enzymes and glutathione metabolism to copper stess on Scenedesmus bujugatus[J].Plant science,2001,160:291-299.
    [210]MORITA S,KAMINAKA H,MASUMURA T,et al.Induction of rice cytosolic ascorbate peroxidase mRNA by oxidative stress signa ling[J].Plant Cell Physiol,1999,40:417-422.
    [211]CELINA M L,CLAUDIO A G,VICTORIO S T.Oxidative damage caused by an excess of copper in oat leaves[J].Plant Cell Physiol,1994,35:11-15.
    [212]WECKX J E J,CLIJSTERS H M M.Oxidative damage and defense mechanisms in primary leaves of Phaseolus vulgaris as a result of root assimilation of toxic amounts of copper[J].Physiol Plant,1996,96:506-512.
    [213]CHONGPRADITNUN P,MORI S,CHINO M.Excess copper induces a cytosolic Cu,Zn-superoxide dismutase in soybean root[J].Plant cell Physiol,1992,33(3):239-244.
    [214]Brooks,R.R.General introduction.Plants that Hyperaccumulate Heavy Metals.Their Role in Phytoremediation,Microbiology,Archaeology,Mineral Exploration and Phytomining,Brooks,R-R.,Ed.,1998.pp 1-12.CAB International Wallingford,England.
    [215]沈得中.污染土壤的植物修复.生态学杂志,1998.17(2);59-64.
    [216]韦朝阳,陈同斌.重金属超富集植物及植物修复技术研究进展.生态学报,2001.7:1196-203.
    [217]骆永明等.金属污染土壤的植物修复[J].土壤,1999.31(5):261-265.
    [218]马成玲,王火焰,周健民,杜昌文,黄标.长江三角洲典型县级市农田土壤重金属污染 状况调查与评价.农业环境科学学报2006,25(3):751-755.
    [219]Ctter-Howells J D,Capom S,Charnock J M.Remediation of contaminated land by formation of heavy metal phospate[J]Applied Geochemistry,1996.67(11):315-342.
    [220]Martin Alexander M.Biogradation and Bioremediation[M].London:Academic Press,1999
    [221]黄长干等,植物对环境重金属污染的修复技术研究进展,江西农业大学学报,2003,25(5):676-680.
    [222]青年科学家论坛第67期,污染环境的植物修复[J].科技与产业,2002.2(3):33-39.
    [223]Baker,AJ.M,and P.L.Walker.Ecophysiology of metal uptake by tolerant plants[M].1990.pp.155-177.In:A.J.Shaw(ed.),Heavy Metal Tolerance in Plants:Evolutionary Aspects.CRC Press,Boca Raton,FL.
    [224]顾继光,周启星,王新,土壤重金属污染的治理途径及其研究进展[J],应用基础与工程科学学报,2003.6:143-151.
    [225]廖斌,邓冬梅,杨兵,束文圣,栾天罡,蓝崇钰。鸭跖草Commelina communis中差异表达cDNA片断的克隆与分析,中山大学学报(自然科学版),2004.1(Vol.43):75-78.
    [226]黄学平,万金保.乐安河水环境现状及其治理措施[J],长江流域资源与环境,2005,14(06):770-774.
    [227]黄长干,张莉,余丽萍,等.德兴铜矿铜污染状况调查及植物修复研究[J],江西农业大学学报,2004,26(4):629-632.
    [228]Brooks R R,Lee J,Reeves R D,et al.Detection of nickcliferous rocks by alysus of herbarium species of indicater plants[J].Journal of Geochemical Exploration.1997.7:49-57.
    [229]Allen S.E.chemical analysis of Ecological Materials[M],2~(nd) edn.Oxford;Blackwell Science Publishers,1989.
    [230]梁宋平,生物化学与分子生物学实验教程[M],第一版,高等教育出版社,2003.3.
    [231]俞建英,蒋宇,王善利,生物化学实验教程[M],第一版,化学工业出版社,2005.5
    [232]Harper,EA.,S.Smith,M.Macnair.Can an increased copper requirement in copper-tolerant Mimulus guttatus explain the cost of tolerance[J]? Vegetative growth.New Phytol.1997.136:455-467.
    [233]Brooks,R.R.Plant that Hyperaccumulate Heavy Metals[M].General introduction 1998.
    [234]周云龙,植物生物学[M],第一版,高等教育出版社,1999.11.
    [235]Welch,R.M.Micronutrient nutrition of plants[J].Critical Rev.Plant Sci.1995,14:49-82.
    [236]De Vos,C.H.R.,H.Schat,M.A.M.De Waal,R.Vooijs,and W.H.U.Ernst.Increased resistance to copper-induced damage of the root cell plasmalerdma in copper-tolerant Silene cucubalus[J].Physiol.Plant 1991,82:523-528.
    [237]Demidchik V,Sokolik,A.,Yurin,V.The effect of CuZn' ion transport systems of the plant cell plasmalemma[J].Plant Physiol.1997,114:1313-1325.
    [238]Kinraide,Three mechanisms for the calcium alleviation of mineral toxicities[J].Plant Physiol.1998.118:513-520.
    [239]Kinraide Capom S,Charnock J M.Remediation of contaminated land by formation of heavy metal phospate[J]Applied Geochemistry,1996,67(11):315-342.
    [240]Cobbet C.S.,Goldsbrough P.Phytochelatins and metallothioneins,roles in heavy metal detoxification and homeostasis[J].Annual Review of Plant Biology,2002,53,159-182.
    [241]Cobbet C.S.Phytochelatins and their roles in heavy metal detoxification[J].Plant Physiology,2000,123,825-833.
    [242]Douchkov D.,Gryczka C.,Stephan U.W.,Hell R.,Baunlein H.Ectopic expression of nicotianamine synthase genes results in improved iron accumulation and increased nickel tolerance in transgenic tobacco[J].Plant,Cell and Environment,2005,28,365-374.
    [243]薛艳,周东美,郝秀珍,沈振国,陈怀满。 2种不同耐性青菜品种对铜胁迫响应差异的机制研究,农业环境科学学报2006,25(2):281-285.
    [244]Causton,DR 1991.Plant growth analysis:the variability of relative growth rate within a sample[J].Ann.Rot.67:137-144.
    [245]Martin Alexander M.Biogradation and Bioremediation[M].London:Academic Press,1999.
    [246]Welch,R.M.Micronutrient nutrition of plants.Critic.Rev.Plant Set.1995,14:49-82.
    [247]Hayens,R.I.Ion exchange properties of roots and ionic interactions within the root POPLsm:Their role in ion accumulation by plants.But.Rev.1980,46:75-99.
    [248]Rauser,W.E.Structure and function of metal chelators produced by plants.Cell Biochem.and Btophys.1999,31:19-48.
    [249]Allan,D.L.,Jarrell,W.M.Proton and copper adsorption to maizc and soybean root cell walls.Plant Physiol.1989,89:823-832.
    [250]廖斌,邓冬梅,杨兵等.铜在鸭跖草细胞内的分布利化学形态研究,中山大学学报,2004(43),2:72-75.
    [251]Vaquez,M.D.,C.Poschenrieder,J.Barcell,A.J.M.Baker,P Hatton,and G.H.Cope.Compartment of zinc in roots and leaves of the zinc hyperaccumulator Thlaspi caerulescens J&C Presl.Bot.Acta 1994,107:243-250.
    [252]王友保,张莉,沈章军,李晶,刘登义.铜尾矿库区土壤与植物中重金属形态分析,应用生态学报,2005,16(12):2418-2422.
    [253]Yang J R,Bao Z P,Zhang S Q.Distribution and chemical binding forms of Cd,Pb in plant [J].Chi Enviro.Sci,1993,13(4):263-268.
    [254]Kupper H,Zhao F J,Mcgath S P.Cellula compartmentation of zinc in leaves of the hyperaccumulator Thlaspi caerulescens[J].Plant Physiol,1999,119:305-311.
    [255]Meharg,A.A.The role of the plasmalemma in metal tolerance in angiosperms.Physiol.Plant 1993,88:191-198.
    [256]Harrison,S.I.,Lepp,N.W,Phipps,D.A.Uptake of copper by excised roots.Copper desorption from free space.Z.Plfanzenernahr.Bodenkd.1979,94:27-34.
    [257]Kramer,U,Pickering,I.J.,Prince,R.C.,Raskin,1.,Salt,D.E.Subcellular localization and speciation of nickel in hyperaccumulator and non-accumulator Thlaspi species.Plant Physiol.2000,122:1343-1353.
    [258] Allen S.E. chemical analysis of Ecological Materials[M], 2~(nd) edn. Oxford ;Blackwell Science Publishers,1989.
    
    [259] Morrison, R.S. Brooks, RR, Reeves, R.D. Maiaisse,F. Hornwitz, P., Aronson, M., Merriam, G.R. The diverse chemical forms of heavy metals in tissue extract of some metallophytes from Shaba province, Zaire. Phytoehent. 1981,20: 455-458.
    
    [260] Iwasaki, K., Sakurai, K., Takahashi, E. Copper binding in the root cell walls of Italian ryegrass and red clover. Soil Sci. ant Nutr. 1990,36(3): 431-439.
    
    [261] Brunt, A., Urbach, W., Dietz, K.J. Compartmentation and transport of zinc in barley primary leaves as basic mechanisms involved in zinc tolerance. Plant Cell and Environment ,1994,17: 153-162.
    
    [262] Ernst, W.H.O., Verkleij, J.A.C., Shat, H. Metal tolerance in plants. Acta Bot. Neerl. 1992, 41(3):229-248.
    
    [263] 韩贻仁,分子细胞生物学,科学出版社,北京,2000.
    
    [264] Henridues, F.S. Effects of copper deficiency on the photosynthetic apparatus of sugar beet (Beta vulgaris L.). [J]. Plant Physiol. 1989,135: 453-458.
    
    [265] De Vos, C.H.R., Schat, H., Vooijs, R, Ernst, W.H.O. Copper-induced damage to the permeability barrier in roots of Silene cucubalus [J]. Plant Physiol. 1989,135:165-169
    
    [266] Lastra, O., Chueca, A., Gonzlez, C., Lachica, M., Gorge, J.L. El cobre como nutrients de la planta Anales Edafol. Agrobiol. 1987,46: 1005-1020.
    
    [267] Leita, L., Nobili, M. De., Cesco, S. Analysis of intercellular cadmium forms in roots and leaves of bush bean. J. Plant Nutr. 1996,19 (3&4): 527-533.
    
    [268] Iwasaki, K., Sakurai, K., Takahashi, E. Copper binding the root cell walls of Italian ryegrass and red clover. Soil Sci. ant Nutr. 1990, 36(3): 431-439.
    
    [269] Clarkson, D.T., Hanson, J.B. The mineral nutrition of higher plants. Annual. Rev. Plant Physiol. 1980,31: 239-298.
    
    [270] Wagner, G.J., Krotz, R.M. Perspectives on Cd and Zn accumulation, accommodation and tolerance in plant cells: the roll of Cd-binding peptide versus other mechanisms. Molecular Biology and Chemistry (Metal ion homeostasis). Alan, R., Ed., 1989. pp.325-336. Liss, Inc.
    
    [271] Van Assche, F., Clijsters, H. Effects of metals on enzyme activity in plants [J]. Plant Cell&Environ. 1990, 13:195-206.
    
    [272] Dietzk J, Baier M, Krmer U. Free radicals and reactive oxygen species as mediators of heavy metal toxicity in plants[C]. PREASAD MNV, HAGEMEYER J. Heavy metal stress in plants: from molecules to ecosystems. Berlin: Springer Verlag. 1999:73-97.
    
    [273] Alscher, R.G., Donahue, J.L, Cramer, C.L, Reactive oxygen species and antioxidants: Relationships in green cells [J]. Physiol. Plant. 1997,100: 224-233.
    
    [274] De Vos, C.H.R., Schat, H., De Waal, M.A.M., Vooijs, R, Ernst, W.H.O. Increased resistance to copper- induced damage of the root cell plasmalemma in copper-tolerant Silene cucubalus[J]. Physiol. Plant. 1991,82: 523-528.
    [275] Raychaudhuri, S.S., Deng, X.W. The role of superoxide dismutase in combating oxidative stress in higher plants. Sot. Rev. 2000,66(1): 89-98.
    
    [276] Mocquot, B., Vangronsveld, J. Clijsters, H, Mench, M. Copper toxicity in young maize (Zea mays L) plants: effects on growth, mineral and chlorophyll contents, and enzymes activities [J]. Plant and Soil. 1996,182: 287-300.
    
    [277] Luna, C.M., GonzAlcz, CA., Trippi, VS. Oxidative damage caused by an excess of copper in oat leaves [J]. Plant Cell Physiol. 1994,35(1): 1-15.
    
    [278] Savour, A., Thorin, D., Davey. M., Hua, X.J., Mauro, S., Van Montagu, M., Inz, D., Verbruggen, N. NaCl and CuSO_4 treatments trigger distinct oxidative defence mechanisms in Alicodana plumbaginifolia L [J]. Plant Cell & Environ. 1999,22: 387-396.
    
    [279] Navari-lzzo, F, Quartacci, M.F., Pinzino, C., Vecchia, F.D., Sgherri ,C.L. Thylakoid-bound and stromal antioxidative enzymes in wheat treated with excess copper[J]. Physiol. Plant. 1998, 104: 630-638.
    
    [280] Schickler, H, Caspi, H. Response of antioxidative enzymes to nickel and cadmium stress in hyperaccumulator plants of the genus Alyssum[J]. Physiol. Plant. 1999,105: 39-44.
    
    [281] Demidchik, V, Sokolik, A., Yurin, V. The effect of Cu~(2+) ion transport systems of the plant cell plasmalemma[J]. Plant Physiol. 1997, 114: 1313-1325.
    
    [282] Wang H, Shan XQ, Wen B, et al. Responses of antioxidative enzymes to accumulation of co pper in a copper hyperaccumulator of Commoelina communis. Archives of Environmental Conta mination and Toxicology [J]. 2004, 47 (2): 185-192 .
    
    [283] Murphy, A., Taiz, L. Correlation between potassium efflux and copper sensitivity in 10 Arabfdopsis ecotypes [J]. New Phytol. 1997, 136: 211-222.
    
    [284] Peter MA ,Karl L ,Ruth P. Modification of the lipid - protein interaction in human low - density lipoprotein destabilizes ApoB -100 and decreases oxidizability[J ]. Biochemistry .1999 ,38 :3401 - 3408.
    
    [285] Mchta, S.K., Gaur, J.P Heavy-metal-induced proline, accumulation and its role in ameliorating metal toxicity in Chlorella vulgaris[J]. New Phytol. 1999,143: 253-259.
    [286] Tomas, J.C, Maliek, F.K., Endreszl, C., Davies, E.C., Murray, K.S. Distinct responses to copper stress in the halophyte Mesembryanthemum crystallinum Physiol[J]. Plant. 1998,102: 360-368.
    
    [287] Costa, G., Spitz, E. Influence of cadmium on soluble carbohydrate, free amino acids, protein content of in vitro cultured Lnpinus albus [J]. Plant Sci: 1997,128: 131-140.
    [288] Costa, G., Morel, J.L., Water relations, gas exchange and amino acid content in Cd-treated lettuce[J]. Plant Physiol. Biochem. 1994,32: 561-570.
    
    [289] Ouzounidou, G., Qamporovh, M., Moustakas, M., Karataglis, S. Responses of maize (Zea mays L.) plants to copper stress-1. Growth, mineral content and ulbastructure of roots[J]. Environ. Exp. But. 1995,35(2): 167-176.
    [290] Patsikka, E., Aro, E-M., Tyystjdrvi, E. Increase in the quantum yield of photoinhibition contributes to copper toxicity in vivo[J].Plant Physiol.1998,117:619-27.
    [291]Baron,M.,Arellano,I.B.,Lepez Gorgd I.,Copper and photosystem Ⅱ:A controversial relationship[J].Physiol.Plant.1995,94:174-180.
    [292]Kupper H,Mijovilovich A,Meyer-Klaucke W,et al.Tissue-and age-dependent differences i n the complexation of cadmium and zinc in the cadmium/zinc hyperaccumulator Thlaspi caerulesc ens(Ganges ecotype) revealed by X-ray absorption spectroscopy.Plant Physiology[J],2004,134(2):748-757.
    [293]Quartacci,M.,Pinzino,C.,Sgherri,C.L.M.,Vecchia,ED.,Navari-Izzo,F.Growth in excess cooper induces changes in the lipid composition and fluidity of PSⅡ-enriched membranes in wheat [J].Physiol.Plant.2000,108:87-93.
    [294]Kahle,H,Response of roots of trees to heavy metals[J].Environ.Exp.Rot.1993,33(1):99-119.
    [295]Helal,H.M,Ragab,A.S.,Abdel,Monem,M.,Schnug,E.Evaluation of root mortality by biochemical analysis[J].Commun.Soil Sci.Plant Anal.1996,27(5-8):1169-1175.
    [296]朱祝军.油菜种子发芽过程中依赖于抗坏血酸的残OZ清除酶活性的变化[J]。浙江农业大学学报,1997,23(5):505-509.
    [297]Prasad,KVS.K.,Paradha,Saradhi,P.,Sharmila P.Concerted action of antioxidant enzymes and curtailed growth under zinc toxicity in Brassica juncea[J].Environ.Exp.Bot 1999,42:1-10.
    [298]Donahue,J.L.,Okpodu,C.M,Cramer,C.L.,Grabau,E.A.,Alscher,R.G.Responses of antioxidants to paraquat in pea leaves.Relationships to resistance[J].Plant Physiol.1999,113:249-257.
    [299]Serraj,R.,Shelp,B.J.,Sinclair,T.R.Accumulation of y-aminobutyric acid in nodulated soybean in response to drought stress[J].Physiol.Plant 1998,102:79-86.
    [300]朱广廉,钟诲文,张爱琴.植物生理学实验[M].1990,北京大学出版社.
    [301]Savour,A.,Thorin,D.,Davey.M.,Hua,X.J.,Mauro,S.,Van Montagu,M.,Inz,D.,Verbruggen,N.NaCl and CuSO_4 treatments trigger distinct oxidative defence mechanisms in Alicodana plumbaginifolia L.Plant,Cell& Environ.1999,22:387-396.
    [302]Bradford,M.M.A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J].Anal.Biochem.1976.72:248-254.
    [303]Hissin,P.L.,Hilf,R.A tluorimetric method for determination of oxidized and reduced glutathione in tissues[J].Anal.Biochem.1976,74:214-26.
    [304]张志良.植物生理学实脸指导[M].1990,高等教育出版社.
    [305]Helal,H.M,Ragab,A.S.,Abdel,Monem,M.,Schnug,E.Evaluation of root mortality by biochemical analysis[J].Commun.Soil Sci.Plant Anal.1996,27(5-8):1169-1175.
    [306]Fridovich,I.Superoxide radical and superoxide dismutases[J].Ann.Rev.Biochem.1995,64:97-112.
    [307]Demidchik V,Sokolik A.Yurin V.The efect of Cu ion transpo systems of the plant cell plasmalemma[J].Plant Physiol,1997,114:1313-1325.
    [308] De Vos C H R. , Schat H, De Waal M A M, Vooijs R, Ernst WHO. Increased resistance to copper- induced damage of the root cell plasmalemma in copper-tolerant Silene cucubalus [J]. Physiol Plant, 1991, 82: 523-528.
    
    [309]Ni CY, Chen YX, Lin Q, Tian GM. Subcellular localization of copper in tolerant and non-tole rant plant[J]. Journal of Environmental Sciences-China, 2005, 17 (3): 452-456.
    
    [310]Roosens NH, Bernard C, Leplae R, Verbruggen N. Evidence for copper homeostasis function metallothionein of metallothionein (MT3) in the hyperaccumulator Thlaspi caerulescens[J]. FEB S LETTERS, 2004, 577 (1-2): 9-16.
    
    [311] Halliwell, B., Gutteridge, M.C. Oxygen toxicity oxygen radicals, transition metals and disease[J]. Biochem. J. 1984,219: 1-14.
    
    [312] Hagemeyer, S.B., Smith, A.P, Howden, R.., Dietrich, W .M., Bugg, S., O'Connell, M.L, Goldsbrougb, RB., Cobbett .C.S. Phytochelatin synthase genes from Arabidopsis and the yeast SchLosaccharomyces pombe[J] .Plant Cell 1999,11:1153-1163.
    
    [313] Kahle, H, Response of roots of trees to heavy metals. Environ[J]. Exp. Rot. 1993,33(1): 99-119.
    
    [314] Marschner, H. 1995. Mineral Nutrition of Higher Plants. Academic Press, LondonMartens, S.N., Boyd, R.S. Meecological significance of nickel hyperaccumulation: a plant chemical defense[J]. Oecologia (Berlin). 1994,98: 379-384.
    
    [315] Helal, H.M, Ragab, A.S., Abdel, Monem, M., Schnug, E. Evaluation of root mortality by biochemical analysis[J]. Commun. Soil Sci. Plant Anal. 1996, 27(5-8): 1169-1175.
    
    [316] Cox, R.M., Hutchinson, T.C. The response of root acid phosphatase activity to heavy metal stress in tolerant and non-tolerant clones of two grass species[J]. New Phytol. 1980,86: 359-364.
    
    [317] Tang S R, Wilke BM, Huang C Y. The uptake of copper by plant dominantly growing on copper mining spoils along the Yangtze River, the People's Repubic of China[J]. Plant and Soil, 1999, 209(2): 225- 232.
    
    [318] Luna C M, Gonzalez C A, Trippi V S. Oxidative damage caused by an excess of copper in oat leaves[J]. Plant Cell Physiol, 1994, 35(1): 11-15.
    
    [319] Maksymiec, W., Russa, R., Urbanik-Sypniewskat, Baszytiski . Effects of excess Cu on the photosynthetic apparatus of runner bean leaves treated at two different growth stages[J]. Physiol. Plant. 1994,91: 715-721.
    
    [320] Baron, M., Arellano, I.B., Lepez Gorgd I., Copper and photosystem II: A controversial relationship[J]. Physiol. Plant .1995, 94: 174-180.
    
    [321] Ouzounidou, G. Copper induced changes on growth, metal content and photosynthetic function of Alyssum montanum L[J]. plants. Environ. Exp. Bot. 1994,34(2): 165-172.
    
    [322] Tilstone. G.H., Macnair, M.R. Nickel tolerance and copper-nickel co-tolerance in Mimulusguttatus from copper mine and serpentine habitats[J]. Plant and Soil 1997,191:,173-180.
    
    [323] Robson, A.D., Reuter, D.1. Diagnosis of copper deficiency and toxicity. In: Copper in Soils anti Plants[M], loneragan, J.F., Robson, A.D., Graham. R.D., Eds., 1981,pp.287-312. Academic Press, Sydney.
    [324] Bergamnn,W. Nutritional Disorders of Plants [M]. Gustav Fisher Verlag, Jena, 1992. Germany.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700