用户名: 密码: 验证码:
LIF、bFGF真核表达载体的构建及其在BMSCs中的稳定表达
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
周围神经损伤的修复与再生是外科领域至今尚未解决的问题之一。随着基础医学、生命科学和显微外科技术的发展,周围神经损伤后相关神经元的保护、断裂神经干的修复、再生神经轴突重新长入相应靶器官有效支配等方面均有许多深入研究,临床应用也取得了一定的效果。然而,由于多种因素的影响和现代医学技术的限制,周围神经损伤修复后的总体疗效目前仍不尽人意。因此,损伤神经的合理修复、再生轴突的生长速度和重新长入相应靶器官有效支配等方面一直是周围神经外科领域的研究热点。
     在十九世纪,Waller首先描述了周围神经损伤后的变性过程。这一过程称为华勒变性(Wallerian dengenerantion),它是在周围神经损伤后,近端神经元胞体和远端轴突所发生的一系列反应。包括炎症反应、生长锥形成延伸、选择性粘附、细胞外基质作用、神经营养因子上调、神经递质合成、神经元重塑、细胞运动等方面,其中神经营养因子(neurotrophic factor, NTFs)在这个过程中起了重要的作用。
     骨髓间充质干细胞(BMSCs)是具有自我更新和多向分化潜能的成体干细胞,近年来发现其可分化为神经细胞,具有潜在的修复神经损伤的能力。本实验目的是:体外将LIF、bFGF基因转染培养BMSCs后,通过试验来确定转染后的BMSCs是否表达具有促进周围神经再生和减少再生神经周围瘢痕形成的LIF、bFGF。
     研究内容包括:
     (1)通过RT-PCR获得LIF、bFGF的cDNA;
     (2)采用贴壁法应用Ficoll分离液在体外分离培养大鼠BMSCs,观察其一般生物学特性,并结合其具有多向分化潜能及表面标志物来给予鉴定;
     (3)将连于LIF、bFGF基因片段的表达载体转染于BMSCs,通过RT-PCR技术、免疫组化、Westernblot进行鉴定其蛋白表达水平及活性。
     结果显示:(1)成功获取LIF、bFGF的cDNA基因片段;(2)从一周龄大鼠骨髓血内成功分离出BMSCs,其形态为呈成纤维细胞样生长,并可以向成脂、成骨细胞转化,其表面标记物CD44(+)、CD45(-);(3)成功获取了稳定表达LIF、bFGF的BMSCs,并通过RT-PCR技术、Westernblot进行了鉴定。
     研究结论:通过脂质体将连于LIF、bFGF基因片段的真核表达载体分别和共同转染于体外培养的BMSCs能使其在BMSCs内获得稳定的表达。为进行动物试验奠定了基础。
It is an important task to promote peripheral nerve regeneration after injury in neuroscience. Recent technical progress of molecular biology、cell biology and microsurgery results in better outcome, but not all patients have satisfactory results. It is a nodus how to improve the recovery after nerve injury in peripheral nerve surgery.
     The objective task is to solve that bioprotein factor simply applied cure to peripheral nerve injury and surgery couldn’t satisfy the patient’s recovery of the never injury. To reconstitute the part of function and improve the past of never injury, the long time recovery make people suffering. The ideal of this experiment is to rebuilt the peripheral never injury and promote the recovery of never injury.
     Our experimental study were divied into three parts
     Part I: Construction of eukaryotic expression vector pcDNA3.1-LIF、pcDNA3.1-bFGF LIF/bFGF gene was cloned from pregnant uterine deciduas/placenta tissues by using RT-PCR method and was inserted into pcDNA3.1 to construct eukaryotic expression vector consisting of LIF/bFGF gene. Identified by restriction enzyme analysis and PCR amplification.
     Part II: MSCs(mesenchymal stem cells) derived from rat bone marrow were isolated and culture expanded efficiently in vitro and its biological features Ficoll separating medium was added to rat bone marrow mixed liquor that should be centrifuge at 2000rmp×15min soon after it was taken out, then absorb the white layer. Wash the cells twice with PBS and seed cells at a density of 1×106cells per well (6-well format) in 1ml of 15% DMEM of FBS medium. Incubate cells at 37℃in a CO2 incubator. Passage cell was seeded at a density 2~4×104/ml.
     Bone marrow mesenchymal stem cells (BMSCs) is one kind of adult stem cells that have self-renewal and multilineage differentiation potential. It has recently been reported that BMSCs can differentiate into neural cells, opening new frontiers in therapy for nerve injury. The morphology of BMSCs was observed with invert-microscope constantly. BMSCs' curve of growth was depicted and cell cycle was analyzed by flowing cytometry. BMSCs were induced to differentiate into osteoblasts and adipocytes in induction medium containing desamethasone、β-Glycerophosphate and horse serum. Then differentiated cells were identificated by AKP and oil O stain. Results showed BMSCs could be isolated and proliferated by density gradient centrifugation adherent method in vitro. The appearance of BMSCs were fibroblast-like cells and its growth curves was like shape of S. Cell cycle analysis showed that most of BMSCs were in G1/G0 phase. BMSCs can be differentiated into osteoblasts and adipocytes in vitro.
     Part III: LIF/bFGF was successfully expressed in BMSCs
     Transfected by Lipofectmine into BMSCs. The eukaryotic expression vector pcDNA3.1-LIF/pcDNA3.1-bFGF, which can be expressed stablely in BMSCs, has been successfully constructed. LIF/bFGF expression was analyzed using Western blot and RT-PCR. LIF/bFGF was successfully expressed in BMSCs.
     Conclude: LIF/bFGF gene was cloned from pregnant uterine deciduas/ placenta tissues by using RT-PCR method and was inserted into pcDNA3.1 to construct eukaryotic expression vector consisting of LIF/bFGF gene. The recombinant vector pcDNA3.1-LIF/ pcDNA3.1- bFGF was identified by restriction enzyme analysis and PCR amplification. Then transfected by Lipofectmine into BMSCs. LIF/bFGF expression was analyzed using Western blot and RT-PCR. LIF/bFGF was successfully expressed in BMSCs. The eukaryotic expression vector pcDNA3.1-LIF/bFGF, which can be expressed stablely in BMSCs, has been successfully constructed.
引文
[1]王澍寰.手外科学[M].北京:人民卫生出版社,2005:366-367.
    [2]张西峰,朱胜修. Wallerian变性研究进展[J].国外医学·创伤与外科基本问题分册,1997,18(3):145-152.
    [3]Friedlander DR, Grumet M, Edelman GM. Et al. Nerve growth factor enhances expression of neuron glial cell adhesion molecule in PC12 cells. Cell Biology, 1986;10(2): 413.
    [4]Brushart TM. Motor axons preferentially reinnervate motor pathways. J Neurosci, 1993, 13(6): 2730-2738.
    [5]Brusharttm. Preferential reinnervation of motor nerves by regene-rating motor axons. Neuroscience, 1998, 8: 1026.
    [6]Madison RD, Archibald SJ, Brushart TM. et al. Reinnervation accuracy of the rat femoral nerve by motor and sensory neurons. Neuroscience, 1996, 16: 5698.
    [7]Lindsay RM. Role of neurotrophins and trK receptors in the development and maintenance of sensory neurons. Biological Sciences, 1996a, 351: 365.
    [8]Lindsay RM, Wiegand SJ, Altar CA, et al. Neurotrophic factors: from molecule to man.Trends Neurosci, 1994, 17(5): 182-190.
    [9]Hopkins SJ, Rothwell NJ. Cytokines and the nervous system 1: expression and recognition. Trends in Neuroscience, 1995, 18: 83.
    [10]李少兵韩卉.神经营养因子与周围神经再生.解剖科学进展,2001,7(3): 265-270.
    [11]Thoenen H, Brade YA. Physiology of nerve growth factor. Phsiology Review, 1980, 12: 84.
    [12]罗永湘.神经生长因子对坐骨神经在硅小室内再生的影响.中华显微外科杂志, 1994,17:195.
    [13]Pellitteri R, Russo A, Stanzani S. Schwann cell: a source of neurotro- phic activity on cortical glutamatergic neurons in culture. Brain Res, 2006 , 1069(1): 139-144.
    [14]Niles LP, Armstrong KJ, Rincon Castro LM, et al. Neural stem cells express melatonin receptors and neurotrophic factors: colocalization of the MT1 receptor with neuronal and glial markers. BMC Neurosci, 2004, 285(1): 41.
    [15]Garcia R, Aguiar J, Alberti E, et al. Bone marrow stromal cells produce nerve growth factor and glial cell line-derived neurotrophic factors. Biochem Biophys Res Commun, 2004, 9316(3): 753-754.
    [16]蔡卫东,方煌.神经生长因子促进神经在深的研究进展[J].中国矫形外科杂志,2003,11(22):1564-1566.
    [17]Liu HM, Pollack L, Graser TA, et al. Identification of genes differentially expressed by nerve growth factor and neurotrophin-3 dependent sensory neurons[J]. Neurophysiol, 1997, 78(1): 31.
    [18]方煌,罗永湘.神经生长因子对周围神经运动纤维再生的影响[J].中华手外科杂志,1997,78(1):31.
    [19]Yip HK. The effect of nerve growth factor and its antiserum on the postnatal development and survival after injury of sensory neurons in rat dorsal ganglia[J]. Neurosci, 1984, 4: 986.
    [20]LONG Zai-yu, WU Ya-ming, CHENG Heng-sheng, et al. Effects of nerve growth factor on repair of injured sciatic nerve in rats[J]. Acta Academiae Medicinae Militaris Tertiae, 2000, 4: 366.
    [21]Fisher J, Levkovitch Verbin H, Schorci H, et al. Vaccination for neuroprotection in the mouse optic nerve: implication for optic reuropathies[J]. J Neurosci, 2001, 21: 136.
    [22]Sutter A, Riopelle RJ, Harris RM. Nerve growth factor receptors: characterization of two distinct classes of binding sites of chick embryo sensory ganglia cells. J Biol Chem, 1979, 254: 5972.
    [23]Maness LM, Kastin AJ, Weber JT, et al. The neurotrophins and their receptors: structure, function and neuropathology. Neuroscience and BIObehavioural Review, 1994, 18: 143.
    [24]Bennett DLH, Michael GJ, Munson JB.et al.A distinct subgroup of small DRG cells express GDNF receptor components and GDNF is protective for these neurons after nerve injury.J Neuroscience, 1998, 18: 3059.
    [25]Richardson PM. Ciliary neurotrophic fator: a review. Pharmacological Therapy, 1994, 63: 187.
    [26]Adler R. Ciliary neurotrophic factor as an injury factor. Current Opinion inNeurobiology, 1993, 3: 785.
    [27]Thompson SWN, Vernallis AB, Heath JK. et al. Leukaemia inhibitory factor is retrogradely transported by a distinct population of adult sensory neurons. J European Neuroscience, 1997, 9: 1244.
    [28]Marchionni MA, Gooderal ADJ, Chen MS, et al. Glial growth factors are alternatively spliced erbB2 ligands expressed in the nervous system. Nature, 1993, 362: 312.
    [29]Mahanthappa NK, Anton ES, Matthew WD. et al. Glial growth factor 2, a soluble neuregulin, directly increases Schwann cell motility and indirectly promotes neurite outgrowth. J Neuroscience, 1996, 16: 4673.
    [30]Groves MJ, Giometto B, Scaravilli F, et al. Axotomy-nduced apoptosis in adult rat primary sensory neurons. J Neurocytology, 1997, 26: 153.
    [31]Anand P, Terenghi G, Brich R. et al. Endogenous NGF an CNTF levels in human peripheral nerve injury. Neuroreport, 1998, 8: 1935.
    [32]Sterne GD, Coulton GR, Brown RA. et al. NT-3 modulates NPY expression in primary sensory neurons following peripheral nerve injury. J Aatomy, 98, 23: 41.
    [33]Cho HJ, Kim SY, Park MJ. et al. Expression of mRNA for brain-derived neurotrophic factor in the dorsal root ganglion following peripheral inflammation. Brain Res, 1997, 749: 58
    [34]Michael GJ, Averill S, Nitkunan A. et al. Nerve growth factor treament increases brain-derived neurotrophic factor selectively in trkA- expressing dorsal root ganglion cells and in their central terminations within the spinal cord. J Neuroscience, 1997, 17: 76.
    [35]Li H , Terenghi G, Hall SM. et al. Effects of delayed reinnervation on the expression of c-erbB receptors by chronically denervated rat Schwann cells in vivo. Glia, 1997, 20: 333.
    [36]Trachtenberg JT, Thompson. Schwann cell apoptosis at developing neuromuscular junctions is regulated by glial growth factor. Nature, 1996, 379: 174.
    [37]Rende M, Stipa G, Tonali P. et al. Effects of sciatic nerve graf on choline acetyltransferase and p75 expression in transected adult hypoglossal motoneurons. Neuroscience, 1997, 81: 517.
    [38]Wang W, Loera S, Chiu AY. et al. Brain derived neurotrophic factor spares choline acetyltransferase mRNA following axotomy of motor neurons in vivo. Journal of Neuroscience Res, 1997, 47: 134.
    [39]Hiruma S, Shimizu T, Huruta T. et al. Ciliary neurotrophic factor immunoreactivity in rat intramuscular nerve during reinnervation through a silicone tube after severing of the rat sciatic nerve. Experimental Molecular Pathology, 1997, 64: 23.
    [40]Sun Y, Zigmond RE. Leukaemia inhibitory factor induced in the sciatic nerve after axotomy is involved in the induction of galanin in sensory neurons. J European Neuroscience, 1996, 8: 2213.
    [41]Kurek JB, Bower JJ, Romanella M. et al. The role of leukaemia inhibitory factor in skeletal muscle regeneration. Muscle & Nerve, 1997, 20: 1.
    [42]Sterne GD, Coulton GR, Brown RA. et al. Neurotrophin-3 enhanced nerve regeneration selectively improves recorvery of muscle fibres expressing myosin heavey chains 2b. Journal of Cell Biolohy, 1997b, 139: 709.
    [43]Matheson CR, Wang J, Collins FD. et al. Long-term survival effects of GDNF on neonatal rat facial motoneurons after axotomy. Neuroreport, 1997, 8: 1739.
    [44]Nguyen QT, Parsadanian AS, Snider WD. et al. Hyperinnervation of neuromusclar junctions caused by GDNF overexpression inmuscle. Science, 1998, 279: 1725.
    [45]Mendell LM. Neurotrophins and sensory: role in development, maintenance and injury. Biology Sciences, 1996, 351: 463.
    [46]Gold BG. Axonal regeneration of sensory nerves is delayed by continuous intrathecal infusion of nerve growth factor. Neuroscience, 1997, 76: 1153.
    [47]Munson JB, Shelton DE, Mcmahon B. et al. Adult mammalian sensory and motor neurons: roles of endogenous neurotrophins and rescue by exogenous neurotrophin after axotomy. J Neuroscience, 1997, 9: 1450.
    [48]Lewin SL, Vtley DS, Vekity AN. et al. Simultaneous treatment with BDNF and CNTF after peripheral nerve transection and repair enhances rate of funtionalrecovery compared with BDNF treatment alone. Larngoscope, 1997, 107: 992.
    [49]Mcallister AK, Katz LC, Lo DC. et al. Opposing roles for endogenous BDNF and NT-3 in regulating cortical dendritic growth. Neuron 1997, 18: 767.
    [50]Arce V, Pollock, Philippe JM. et al. Synergistic effects of Schwann and muscle-derived factors on motoneuron survival involve GDNF and CT-1. J Neuroscience, 1998, 18: 1440.
    [51]Anand P. Neurotrophins and neuropathy. Biological Science, 1996, 351: 449.
    [52]Hoffer B, Olson L. Treatment strategies for neurodegenerative diseases based on trophic factors and cell transplantation techniques. J Neural Transmission, 1996, 104: 1.
    [53]Gravel C, Lorrain A, Sendtner M. et al. Adenoviral gene transfer of ciliary neurotrophic facter and brain-derived neurotrophic factor leads to long-term survival of axotomised motorneurons. Nature Medicine, 1997, 3: 765.
    [54]路艳蒙,傅文玉.人骨髓间充质干细胞的培养及性质鉴定.第一军医大学学报,2001;21(8):571-573.
    [55]Castro Malaspina H, Gay REResnick G, et al. Characterization of human bone marrow fibroblast colony-forming cells and their progeny. Blood, 1980, 56: 289-301.
    [56]Conget PA, Minguell J J. Phenotypical and functional properties of human bone marrow mesenchymal progenitor cells. J Cell Physiol, 1999, 181: 67-73.
    [57]Friedenstein A J. Osteogenic stem cells in the bone marrow. Bone and Mineral Research, 1990, 7: 243-272.
    [58]Prockop DJ. Marrow stromal cells as stem cells of nonhematopoietic tissues for continual renewal and as potential vectors for gene therapy. J Cell Biochem Suppl, 1998, 30(31): 284-285.
    [59]Deans RJ, Moseley AB. Mesenchymal stem cells: biology a-nd potential clinical uses. Exp Hematol. 2000, 28(8): 875-884.
    [60]Oven, M. Lineage of osteogenic cells and Mineral Research(vol.3)(M). New York: Elsevier, 1985: 1-25.
    [61]Prockop DJ. Marrow stromal cell as stem cells for nonhematopoietic tissures. Science, 1997, 276: 71-74.
    [62]Pittenger MF, Mackay AM, Beck SC, etal. Multilineage potential of adult human mesenchymal stem cells. Science, 1999, 284: 143-147.
    [63]戴文达,方涛林,李熙雷,等.骨髓间充质干细胞的分离培养、多向分化与鉴定.复旦学报(医学版).2008,5,35(3):448-452.
    [64]Friedenstein AJ, Gorskaja JF, Kulagina NN. Fibroblast precursors in normal and irradaiated mouse hematopoietic organs. Exp Hematol, 1976, 4(5): 267-274.
    [65]Conget PA, Minguell JJ. Phenotypical and functional properties of human bonemarrow mesenchymal progenitor cells. J Cell Physiol,1999,181:67–73.
    [66]路艳蒙,傅文玉,朴英杰,等.人骨髓间充质干细胞的超微结构.电子显微学报,2002,04:373-374.
    [67]李善宗,张成,吴金浪,等.体外培养大鼠骨髓间质干细胞的超微结构.中山大学学报(医学科学版),2003,24(1):11-15.
    [68]Bruder SP, Jaiswal N, Haynesworth SE. Growth kinetics, self-renewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation. J Cell Biochem, 1997, 64(2): 278-294.
    [69]Bianchi G, Banfi A, Mastrogiacomo M, Notaro R,et al. Ex vivo enrichment of mesenchymal cell progenitors by fibroblast growth factor 2, Exp. Cell Res, 287: 98-105, 2003.
    [70]Simonsen JL, Rosada C, Serakinci N, et al. Telomerase expression extends the proliferative life-span and maintains the osteogenic potential of human bone marrow stromal cells. Nat Biotechnol, 2002, 20: 592–596.
    [71]Shi S, Gronthos S, Chen S, et al. Bone formation by human postnatal bone marrow stromal stem cells is enhanced by telomerase expression. Nature Biotechnol. 2002, 20: 587–591.
    [72]D. Baksh, L. Song, R. S. Tuan. Adult mesenchymal stem cells: characterrization, differentiation, and application in cell and gene therapy. J Cell Mol Med, 2004, 8(3): 301-316.
    [73]Song L, Tuan RS. Transdifferentiation potential of human mesenchymal stem cells derived from bone marrow. FASEB J, 2004 ,18(9): 980-982.
    [74]Lange C, Bruns H, Kluth D, et al. Hepatocytic differentiation ofmesenchymal stem cells in cocultures with fetal liver cells.World J Gastroenterol, 2006 , 12(15): 2394-2397.
    [75]Chen LB, Jiang XB, Yang L. Differentiation of rat marrow mesen- chymal stem cells into pancreatic islet betacells. World J Gastro-enterol, 2004, 15, 10(20): 3016-3020.
    [76]Wislet-Gendebien S, Hans G, Leprince P, et al. Plasticity of cultured mesenchymal stem cells: switch from nestin-positive to excitable neuron-like phenotype. Stem Cells, 2005, 23(3): 392-402.
    [77]裴雪涛.干细胞技术.化学工业出版社,2002,第一版:36.
    [78]Chopp M, Zhang XH, Li Y, et al. Spinal cord injury in rat: Treatment with bone marrow stromal cell transplantation. Neuroreport, 2000, 11(13): 3001-3005.
    [79]Jiang W, Ma A, Wang T, et al. Homing and differentiation of mesen- chymal stem cells delivered intravenously to ischemic myocardium in vivo: a time-series study. P flugers Arch, 2006 ,453(1): 43-52.
    [80]Koji Natsu, Mitsuo Ochi, Yu Mochizuki, et al. allogeneic bone-derived mesenchymal stromal cells promote the regeneration of injured skeletal muscle without differentiation into myofibers. tissue engineering, 2004, 10: 1093-1099.
    [81]Chen J, Li Y, Wang L, et al. Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats. Stroke, 2001, 2(4):1005-1011.
    [82]Le Blanc K. Mesenchymal stromal cells: Tissue repair and immune modulation. Cytotherapy, 2006, 8(6): 559-561.
    [83]Tse WT, Pendleton JD, Beyer WM, et al. Suppression of allogeneic T-cell proliferation by human marrow stromal cells: implications in transplantation. Transplantation, 2003,75: 389–397.
    [84]McIntosh KR, Bartholomew A. Stromal cell modulation of the immune system: a potential role for mesenchymal stem cells. Graft, 2000, 3: 324–328.
    [85]Di Nicola M, Carlo-Stella C, Magni M, et al. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood, 2002, 99: 3838–3843.
    [86]Le Blanc K, Tammik L, Sundberg B, et al. Mesenchymal stem cells inhibit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the major histocompatibility complex. Scand J Immunol, 2003, 7: 11–20.
    [87]Corcione A, Benvenuto F, Ferretti E. Human mesenchymal stem cells modulate B cell functions. Blood, 2006, 107(1): 367-372.
    [88]Le Blanc K, Tammik C, Rosendahl K, et al. HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells. Exp Hematol, 2003, 31: 890–896.
    [89]Zhou HP, Yi DH, Yu SQ, et al. Administration of donor-derived mesenchymal stem cells can prolong the survival of rat cardiac allograft. Transplant Proc, 2006, 38(9): 3046-3051.
    [90]El-Badri NS, Maheshwari A, Sanberg PR. Mesenchymal stem cells in autoimmune disease. Stem Cells Dev, 2004, 3(5): 463-472.
    [91]Jones OY, Good RA, Cahill RA. Nonmyeloablative allogeneic bone marrow transplantation for treatment of childhood overlap syndrome and small vessel vasculitis. Bone Marrow Transp lant, 2004, 33( 10 ): 1061 -1063.
    [92]Minguell, Alejandro Erices, Paulette Conget. Mesenchymal Stem Cells. Experimental Biology and Medicine, 2001, 226: 507-520.
    [93]Bianco P, Riminucci M, Gronthos S, et al. Bone marrow stromal stem cells: nature, biology, and potential applications. Stem Cells, 2001, 19(3): 180-192.
    [94]Martinez C, Hofmann TJ, Marino R, et al. Human bone marrow mesenchymal stromal cells express the neural ganglioside GD2: a novel surface marker for the identification of MSCs. Blood, 2007, 30:[Epub ahead of print].
    [95]D.Baksh, L.Song, R. S.Tuan. Adult mesenchymal stem cells: characteri -zation, differentiation, and application in cell and gene therapy. Cell Mol, 2004, 8(3): 301-316.
    [96]Yoshikawa T, Nakajima H, Yamada E, et al. In vivo osteogenic capability of cultured allogeneic bone in porous hydroxyapatite: immuno- suppressive and osteogenic potential of FK506 in vivo[J]. J Bone Miner Res, 2000, 15: 1147-1157.
    [97]Woodbury D, Schwarz EJ, Prockop DJ, et al. Adult rat and human bone marrow stromal cells differentiate into neurons. J Neruosci Resm 2000, 61: 364-370.
    [98]Bruder SP, Horowitz MC, Mosca DJ, et al. Monoclonal antibodies reactive with human osteogenic cell surface antigens. Bone, 1997, 21(3): 225-235.
    [99]郭子宽,杨靖清,刘晓丹,等.中华医学杂志(英文版),2001,114(9):950-953.
    [100]高波,柳川.骨髓间充质干细胞定向分化的研究进展.生理科学进展,2000,31(3):249-252.
    [101]张勇,杜宏伟,邹仲敏,等.人骨髓间充质干细胞的分离培养及部分生物学特性的实验研究.第三军医大学学报,2005,25(4):291-293.
    [102]Bossolasco P, Cova L, Calzarossa C, et al. Neuroglial differenti- ation of human bone marrow stem cells in vitro. Exp Neurol. 2005, 193(2): 312-325.
    [103]Scintu F, Reali C, Pillai R, et al. Differentiation of human bone marrow stem cells into cells with a neural phenotype: diverse effects of two specific treatments. BMC Neurosci. 2006, 16(7): 14
    [104]Dezawa M, Takahashi I, Esaki M, et al. Sciatic nerve regeneration in rats induced bytransplantation of in vitro differentiated bone marrow stromal cells. Eur J neurosci, 2001,14(11): 1771-1776..
    [105]Sanchez Ramos,Song S,Cardozo PE,et al.Adult bonge marrow stromal cells differentiate into neural into neural cells in vitro.Exp Neurol,2000,164(2):247-256.
    [106]Caddick J, Kingham PJ, Gardiner NJ, et al. Phenotypic and functional characteristics of mesenchymal stem cells differentiated along a Schwann cell lineage. Glia, 2006, 54(8): 840-849.
    [107]Cuevas P, Carceller F, Dujovony M, et al. peripheral nerve regeneration by marrow stromal cells[J]. Neurol Res, 2002, 24(7): 634-638.
    [108]张培训,姜保国,何湘君,等.骨髓间充质干细胞向雪旺细胞分化的体内外实验研究.中华手外科杂志,2004,4:200-202.
    [109]Mimura T, Dezawa M, Kanno H, et al. Peripheral nerve regeneration by transplantation of bonge marrow stromal cell-derived schwann cells in adult rats. J Neurosurg, 2004, 101(5): 806-812.
    [110]Tohill M, Mantovani C, Wiberg M, et al. Rat bone marrow mesenchymal stem cells express glial markers and stimulate nerve regeneration. Neurosci, 2004, 27, 362(3): 200-203.
    [111]Zhang P,He X, Zhao F, et al. Bridging small gap peripheral nerve defects using biodegradable chitin conduits with cultured schwann and bone marrow stromal cells in rats. J Reconstr Microsurg, 2005, 21(8): 565-571.
    [112]Keilhoff G, Goihl A, Stang F, et al, Peripheral nerve tissue engi- neering: autologous Schwann cells vs. transdifferentiated mesenchymal stem cells. Tissue Eng, 2006, 12(6): 1451-1465.
    [113]Choi BH, Zhu SJ, Kim BY, et al. Transplantation of cultured bonge marrow stromal cells to improve peripheral nerve regeneration. Int J Oral Maxillofac Surg, 2005, 34(5): 537-542.
    [114]Caylan R, Bektas D, Dikmen T, et al. Mesenchymal stem cells in iatrogenic facial nerve paralysis: a possible role in the future. Eur Arch Otorhinolaryngol, 2006, 263(10): 963-967.
    [115]Chen J, Li Y, Wang L, et al. Therapeutic benefit of intracerebral transplantation of bone marrow stromal cells after cerebral ischemia in rats. J Neurol Sci. 2001, 15, 189(1-2):49-57.
    [116]Yukinori Akiyama, Christine Radtke, Jeffery D. Remyelination of the Rat Spinal Cord by Transplantation of Identified Bone Marrow Stromal Cells. Journal of Neuroscience, 2002, 22(15): 6623–6630.
    [117]刘厚奇,傅继梁.白血病抑制因子受体与细胞内信号分子[J].国外医学·分子生物学分册,1998, 20(4):166-169.
    [118]Murphy M, Dutton R, Koblar S, et al. Cytokines which signal through the LIF receptor and their actions in the nervous system[J]. Prog Neurobiol, 1997, 52(2): 355-378.
    [119]楚燕飞,朱刚,王宪荣.白血病抑制因子与周围神经再生的研究进展[J].医学综述,2002,8(2):110-111.
    [120]Bartoe JL, Nathanson NM. Differential Regulation of Leukemia Inhibitory Factor Stimulated Neuronal Gene Expression by Protein Phosphatases SHP–1 and SHP–2 Through Mitogen_Activated Protein Kinase_Dependent and Independent Pathways[J]. J Neurochem, 2000, 74(5): 2021-2032.
    [121]Haas CA, Hofmann HD, Kirsch M. Expression of CNTF/LIF receptor components and activation of STAT3 signaling in axotomized facial motoneurons: evidence for a sequential postle_sional function of the cytokines[J]. J Neurobiol, 1999, 41(4): 559-571.
    [122]Taga T. gp130 a shared signal transducing receptor component for hematopoietic and neuropoietic cytokines[J]. J Neurochem, 1996, 67(1): 1-10.
    [123]Metcalf D, Bachert C, Gevaert P, et al. The unsolved enigmas of leukemia inhibitory factor[J]. Stem Cells, 2003, 21: 5-14.
    [124]羡慕,魏永祥.白血病抑制因子与嗅感觉神经元再生[J].国外医学·耳鼻咽喉科学分册, 2005,29(2):86-87.
    [125]Turnley AM, Bartlett PF. Cytokines that signal through the leukemia inhibitory factor receptor_beta complex in the nervous system[J]. J Neurochem, 2000, 74: 889-891.
    [126]杜宪兴,施渭康.白血病抑制因子与发育和干细胞生长、分化[J].生命科学,1996,8(1):27-30.
    [127]汪吉明,孔抗美,崔华中,等.白血病抑制因子与神经再生的研究进展.汕头大学医学院学报,2006,19(4):249-251.
    [128]Sun Y, Zigmond RE. Leukaemia inhibitory factor induced in the sciatic nerve afteraxotomy is involved in the induction of galanin in sensory neurons[J]. Eur J Neurosci, 1996, 8(10): 2213-2220.
    [129]Curtis R, Scherer SS, Somogyi R, et al. Retrograde axonal transport of LIF is increased by peripheral nerve injury: correlation with increased LIF expression in distal nerve[J]. Neuron, 1994, 12(1): 191-204.
    [130]刘峰,袁贤瑞.白血病抑制因子在周围神经损伤修复中的应用Journal of International Neurology and Neurosurgery,2005,32(5):442-444.
    [131]Scherer SS, Xu Y, Roling D.et al. Axonsmodulate the expression of leukemia inhibitory factor by Schwann cells. SocNeurosci Abstr. 1993, 19(1): 246.
    [132] Matsuoka I, Nakane A, Kurihara K. Induction ofLIF-mRNA by TGF-beta 1 in Schwann cells. Brain Res. 1997, 776 ( 1-2 ): 170-180.
    [133]Dowsing BJ, MorrisonWA, NicolaNA,et al. Leukemia inhibitory factor is an autocrine survival factor for Schwann cells. J Neurochem . 1999. 73(1): 96-104.
    [134]Schweizer U, Gunnersen J, Karch C.et al. Conditional gene ablation ofStat3 reveals differential signaling requirements for survival of motoneurons during development and after nerve injury in the adult. The Journal ofCell Biology, 2002, 156(2): 287-298.
    [135]Kato R, Kiryu-Seo S, Kiyama H. Damage-induced neuronal endopeptidase (DINE/ECEL) expression is regulated by leukemia inhibitory factor and deprivation ofnerve growth factor in rat sensory ganglia after nerve injury. JNeurosci, 2002, 22(21): 9410-9418.
    [136]Cheema SS, Richards LJ, MurphyM.et al. Leukaemia inhibitory factor rescues motoneurones from axotomy-induced cell death. Neuroreport. 1994, 5(8): 989-992.
    [137] Cheema SS, Richards L, MurphyM.et al. Leukemia inhibitory factor prevents the death of axotomised sensory neurons in the dorsal root ganglia of the neonatal rat. J Neurosci Res. 1994, 37(2): 213-218.
    [138]Cafferty WB, Gardiner NJ, Gavazzi I. et al. Leukemia inhibitory factor determines the growth status of injured adult sensory neurons. J Neurosci. 2001, 21(18): 7161-7170.
    [139]Tham S, Dowsing B, Finkelstein D.et al. Leukemia inhibitory factor enhances the regeneration of transected rat sciatic nerve and the function of reinnervated muscle. J Neurosci Res. 1997, 47(2): 208-215.
    [140]Tofaris GK, Patterson PH, Jessen KR.et al. Denervated Schwann cellsattractmacrophages by secretion of leukemia inhibitory factor (LIF) and monocyte chemoattractant protein-1 in a process regulated by interleukin- 6 and LIF. J Neurosci. 2002, 22(15): 6696-6703.
    [141]Sugiura S, Lahav R, Han J.et al. Leukaemia inhibitory factor is required for normal inflammatory responses to injury in the peripheral and central nervous systems in vivo and is chemotactic for macrophages in vitro. Eur JNeurosci. 2000, 12(2): 457-466.
    [142]Brown DL, BennettTM, Dowsing BJ.et al. Immediate and delayed nerve repair: improved muscle mass and function with leukemia inhibitory factor. J Hand Surg, 2002, 27 (6): 1048-1055.
    [143]McKayHart A, Wiberg M, Terenghi G. Exogenous leukaemia inhibitory factor enhances nerve regeneration after late secondary repair using a bioartificial nerve conduit. Br J Plast Surg. 2003, 56(5): 444-450.
    [144]Gillespie LN, Clark GM, Bartlett PF.et al. LIF is more potent than BDNF in promoting neurite outgrowth ofmammalian auditory neurons in vitro. Neuroreport, 2001, 12(2): 275-279.
    [145]Kerr BJ, Patterson PH. Potent pro-inflammatory actions of leukemia inhibitory factor in the spinal cord of the adult mouse. Exp Neurol, 2004, 188(2): 391-407.
    [146]Gospodarowicz D. Localization of fibroblast growth factor and its effect alone and with hydrocortisone on 3T3 cell growth. Nature, 1974, 249: 123.
    [147]Gospodarowicz D. Fibroblast growth factor chemical structure and biological function. Clin Orthop Relate Res,1990, 257:231.
    [148]Hom DB. Three effects and potential in soft tissue wound healing. Ann Otol Rhinol laryngod, 1992, 101: 349.
    [149]Coltrini D. Biochemical bases of the interaction of human basic fibroblast growth factor with glycosamine-glycans. Eur J Biochem, 1993, 214: 51.
    [150]傅小兵.生长因子与创伤修复.第一版,北京,人民军医出版社,1991:86.
    [151]Aoyagi A, Nishikawa K, Sait OH. Characterization of bFGF-mediated acceleration of axonal bronching in cultured rat hippocampal neurons. Brain Res, 1994, 661(1): 117.
    [152]Laquerriere A, Peulve P, Jin O. Effects of bFGF and alpha-melanocytic stimulating hormone on nerve regeneration through a collagen channel. Microsurgery, 1994, 15(3): 203.
    [153]Deloulme JC, Gensburger C, Sarham S. Effects of bFGF on the development of GABA ergic neurons in culture. Neurosci, 1991, 42(2): 561.
    [154]Togari A, Baker D, Dicken G. The neurite-promoting effect of FGF on PC-12 cells. Biochem Biophys Res Common, 1983, 114(3): 1189.
    [155]Unsicker K, Reichert PJ, Schmidt Ret al, Astroglial and FGF have neurotropic functions for cultured peripheral and centrol nervous system neurons. Proc Natl Acad Sci USA, 1987, 84(15): 5459.
    [156]Pettmann B, Weibel M, Sensenbrenner M. Purification of two astroglial factors from bovine brain. FEBS LETT, 1985, 189(2): 102.
    [157]Risan W. Developing brain produces an angiogenesis factor. Proc Natl Acad Sci USA, 1986, 83(11): 3855.
    [158]Laird J, Mason GS, Thomas KA. et al. Acidic fibroblast growth factor stimulates motor and sensory axon regeneration after sciatic nerve crush in the rat.Neuroscience, 1995, 65: 209.
    [159]Neuberger TJ. De Vries GH. Distribution of fibroblast growth factor in cultured dosal root gahglion neurons and schwann Cells. Neurocytol,1993, 2(6), 436.
    [160]Pettman B, Labourdette G, Weibel M. et al. The brain fibroblast growth factor is localized in neurons. Neurosci Lett, 1986, 68(2): 175.
    [161]Cuevas P, Carceller F. Acidic fibroblast growth facfor prevents death of spinal cord motoneurona in newborn rats after nerve section. Neurol Res, 1995, 17(5): 396.
    [162]Iwasaki Y, Shiojima T, Ikeda K. et al. Acidic fibroblast growth factor and basic fibroblast growth factor enhance neurite outgrowth in cultured rat spinal cord neurons. Neurological Res, 1995, 17(2): 70.
    [163]Walter MA, Kurouglu R. Caulfield JB, et al. Enhanced peripheral nerve regeneration by acidic fibroblast growth factor. Lymphokine Cytokine Res, 1993, 12: 135.
    [164]Miyake A, Minami M, Satoh Met al. Transient expression of FGF receptor mRNA in the rat cerebellum during postnatal development. Mol Brain Res, 1995, 31(2): 95.
    [165]Esch F, Veno N, Baird Aet al. Primary structure obovine brain aFGF. Biochem Biophys Res Commun, 1985, 133(2): 554.
    [166]Harper JW, Lobb RR. Reductive methylation of lysine residues in aFGF: effect onmitogenic activity and heparin affinity. Biochem, 1988, 27(2): 671.
    [167]Gospodarowicz D, Ferrara N, Schweigerer Let al. Structural characterization and biological functions of fibroblast growth factor. Endocrine Rev, 1987, 8(2): 95.
    [168]Jaye M, Howk R, Burgess Wet al. Human endothelial cell growth factors: cloning, nucleotide sequence and chromosome localization. Science, 1986, 233(4763): 541.
    [169]Baird A, Schubert D, Ling N. Receptor-and heparin binding domains of bFGF. Proc Natl Acad Sci USA, 1988, 85(7): 2324.
    [170]Schubert D, Ling N, Baird A. Multiple influences of heparin-binding growth factor on neuronal development. J Cell Biol, 1987, 104(3): 635.
    [171]Harper JW, Strydom DJ, Lobb RR. Human class heparin-binding growth factor: structure and homology to bovine acidic brain FGF. Biochem, 1986, 25(14): 4097.
    [172]Seno C, Sasada R, Iwane Met al. Stabilizing bFGF using protein engineering. Biochem Biophy Res Commun, 1988, 151(2): 701.
    [173]Jaye M, Burgess WH, Shaw AB. Biological equivalenc of natural bovine and recombinant humanα-endotheliacell growth factors[J]. Biol Chem, 1987, 262(34): 16612.
    [174]杨雪飞,王玉新.成纤维生长因子与周围神经在生.解剖学进展,1996,2(4):322-325.
    [175]池雷霆,杨志明.碱性成纤维细胞生长因子与神经再生综述.中国修复重建外科杂志, 1997,11(5):269-271.
    [176]Linares HA. From wound to scar[J]. Burns, 1996, 22(5): 339.
    [177]莫济贤,罗少军,梁杰.等.瘢痕疙瘩形成机制的研究进展[J].医学综述, 2006,12(12):705-706.
    [178]刘德伍,李国辉.瘢痕的发病机制和治疗进展.中国美容医学,2003,12(2):217-220.
    [179]Cohen JK. Highlights on the etiology of keloid[J]. Surg Forum, 1971, 22(5): 488-496.
    [180]王炜.整形外科学[M].第1版.杭州:浙江科学技术出版社.1999:428.
    [181]陈璧,贾赤宇,汤朝武,等.碱性成纤维细胞生长因子对增生性瘢痕的作用[J].中华普通外科杂志,2002,17(1):45-47. 74
    [182]Santucci M, Brogognoni L, Reali UM, et al. Keloids and hypertrophic scars ofCaucasians show distinctive morphologic and immunophenotypic profiles[J]. Virchows Arch, 2001, 438(5): 463-457.
    [183]李卫华,李德水,刘洪琪.增生性瘢痕成纤维细胞与正常皮肤成纤维细胞生长差异比较.武警医学院学报,2005,14(2):104-107.
    [184]Rifkin DB, Moscatelli D, Bizik J, et al. Growth factor control of extra-cellular proteolysis. Cell Differ Dev, 1990,32:313-318.
    [185]盛志勇,郭振荣.主编.危重烧伤治疗与康复学.第1版:北京科学出版社,2000:388-390.
    [186]Niessen FB, Andriessen MP, Schalkwijk J, et al. Keratinocyte-derived growth factors play a role in the formation of hypertrophic scar[J]. Palhol,2001,194(2):207-216.
    [187]Pralhiba V, Rao KS, Cupla PD. Altered expression of keralins during abnormal wound healing in human skin [J]. Cytobios, 2001, 104 (405): 43-51.
    [188]Reno F, Crazianelli P, Carnnas M. Effects of mechanical compression on hypertrophic scars: prostaglandin E2 release[J]. Burns, 2001,27(3): 215-218.
    [189]Kossi J, Pellonen J, Uotila P, Differential effects of hexoses and sucrose, and platelet- derived growth factor isoforms on cyclooxygenase-1 and-2 mRNA expression in Keloid, hyperlrophic scar and granulation tissue fibroblasts [J]. Arch Derrnalol Res, 2001, 293 (3): 126-132.
    [190]Yamamoto T, Hartmann K, Eckes B, el al. Role of seem cell factor and monocyte chemoattractant protein-1 in the inleraelinn helween fibroblasts and mast cells in fibrosis[J]. J Dermatol Sci, 2001, 26(2): 106-111.
    [191]Hilton D J. LIF: lots of interesting functions [J]. Trends in Biochemical Sciences, 1992, 17: 72-76.
    [192]Banner LR, Patterson PH. Major changes in the expression of the mRNAs for cholinergic differentiation factor/leukemia inhibitory factor and its receptor after injury to adult peripheral nerves and ganglia[J]. Proc Natl Acad Sci USA, 1994, 91(15): 7109-7113.
    [193]刘峰.白血病抑制因子在周围神经损伤修复中的应用. Journal of Neurology and Neurosurgery[J]. 2005, 32(5): 442-444.
    [194]蔡景龙,张宗学。现代瘢痕治疗学[M].北京:人民卫生出版社,1998:30.
    [195]卞徽宁,利天增,谢举临,等.碱性成纤维细胞生长因子对兔耳增生性瘢痕形成的影响[J]。中华创伤杂志,2004;20(4):242-245.
    [196]Imaizumi T, Jena-Louis F, Dubertret ML, et al. Effect of human basic fibroblast growth factor on fibroblast proliferation, cell volume, collagen lattice contraction: in comparison with acidic type [J]. J Dermatol Sci, 1996, 11: 134-141.
    [197]Tan EM, Hoffren J, Rouda S, et al. Decorin, vesican, and biglycan gene expression by keloid and normal dermal fibroblasts: defferential regulation by basic fibroblast growth factor [J]. Exp Cell Res, 1993, 209: 200-207.
    [198]Tan EM, Rouda S, Greenbaum SS, et al. Acidic and basic fibroblast growth factors down-regulate collagen gene expression in keloid fibroblasts [J]. Am J Pathol, 1993, 142: 463-470.
    [199]Yoon J, Shim WJ, Ro YM, et a1.Transdifferentiation of mesenchymal stem cells into cardiomyocytes by direct cell-to-cell contact with neonatal cardiomyocyte but not adult cardiomyocytes[J]. Ann Hematol, 2005, 84(11): 715-721.
    [200]Kohei Tsuchiya, Chen GP, Takashi Ushidac. et a1. The effect of coculture of chondrocytes with mesenchymal stem cells on their cartilaginous phenotype in vitro[J]. Materials Science Engineering, 2004, 24(3): 391-396.
    [201]辛华.细胞生物学实验.科学出版社. 2001:100-103.
    [202]Krampera M, Marconi S, Pasini A, et al. Induction of neural-like differentiation in human mesenchymal stem cells derived from bone marrow, fat, spleen and thymus. Bone, 2007, 40(2): 382-390.
    [203]Kern S,Eichler H,Stoeve J,et al.Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells,2006,24(5):1294-1301.
    [204]Campagnoli C,Roboerts AG,Kumar S,et al.Multilineage potential ofadult human mesenchymal stem cells.Science,1999,248:143-147.
    [205]J.E. Dennis, J. P. Carbillet, A.I. Caplan, et al. The STRO-1+ marrow cell population is multipotential.Cells Tissues Organs,170(2002): 73-82.
    [206]Tondreau T, Lagneaux L, Dejeneffe M, et al. Isolation of BM mesenchymal stem cells by plastic adhesion or negative selection: phenotype, proliferation kinetics and differentiation potential. Cytotherapy, 2004,6(4): 372-379.
    [207]Guillermo Mu?oz-Elías, Dale Woodbury, Ira B. Black.Marrow Stromal Cells,Mitosis, and Neuronal Differentiation: Stem Cell and Precursor Functions,Stem Cells,2003,21:437-448.
    [208] Richard Tulia, Suraj Tulia,Sumon Nandia, et al.Characterization of Multipotential Mesenchymal Progenitor Cells Derived from Human.Trabecular Bone Stem Cells, 2003, 21:681-693.
    [209]Tremain N, Korkko J, Ibberson D,et al.MicroSAGE analysis of 2353 expressed genes in a single cell-derived colony of undifferentiated human mesenchymal stem cells reveals mRNAs of multiple cell lineages. Stem Cells,2001,19(5):408-418.
    [210]Meuleman N, Tondreau T, Delforge A,et al. Human marrow mesenchymal stem cell culture: serum-free medium allows better expansion than classical alpha-MEM medium. Eur J Haematol, 2006 ,76(4): 309-316.
    [211]滕晓华,徐如祥,邹雨汐,等.不同浓度血清对大鼠骨髓基质细胞生长的影响.中国病理生理杂志,2005,07:1452-1454.
    [212]韦育林,李楚强,伍卫,等.大鼠骨髓间充质干细胞生长特性和表面标志与培养基中胎牛血清浓度的关系.中国临床康复.2006.01:28-30.
    [213]鄂征.组织培养和分子细胞学技术[M].第一版:北京出版社.1995:16-19.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700