用户名: 密码: 验证码:
骨髓间充质干细胞的磁标记成像及移植治疗骨缺血坏死的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
股骨头缺血性坏死是临床常见病、多发病,治疗上除手术外都是基于改善股骨头周围血液循环。骨髓间充质干细胞取材方便,能在体外大量扩增,具有多种分化潜能,来源于自体骨髓的细胞移植时不存在免疫排斥,同种异体的间充质干细胞免疫原性很低,为组织损伤修复提供了新的种子细胞。
     本研究采用密度梯度离心分离法对rMSCs进行分离扩增,通过形态学和成骨、成脂方向诱导分化,证实分离得到的细胞为骨髓间充质干细胞。采用菲立磁-多聚赖氨酸对得到的rMSCs进行磁标记,标记率为100%;用1.5TMRI对标记细胞进行了体外成像研究,表明GRE T2*WI序列可以作为磁标记细胞研究的首选序列。通过注射马血清及甲泼尼龙的方法建立了兔激素性股骨头缺血坏死模型,该模型骨坏死处于0~I期,是研究早期骨坏死的理想模型。采用介入导管技术将骨髓间充质干细胞移植到兔股骨头缺血坏死模型体内,显示移植后病变部位可见明显骨修复,移植细胞可以在病变局部存活。在此基础上采用全骨髓培养法对胎儿fMSCs进行分离和扩增,并进行fMSCs磁标记成像,获得了与兔MSCs相似的结果。本研究从兔骨髓间充质干细胞研究获得经验并逐步应用到人骨髓间充质干细胞研究上,期望为进一步的骨髓间充质干细胞移植治疗股骨头缺血坏死的临床应用做些有益的探索。
Bone marrow mesenchymal stem cells(BMSCs) divide from bone marrow is a kind of progenitor cell and keep capacity for both self-renewal and multilineage differentiation. These cells can be ex vivo expanded and induced, either in vitro or in vivo,to terminally differentiate into osteoblasts, chondrocytes, adipocytes, cardicytes, myotubes, neural cells, tenocytes and hematopoietic-supporting stroma, and so on. It was considered to play an important role in cell therapy, gene therapy and regenerative medicine field. The therapeutic cells used in clinical medicine will require techniques that can monitor their migration and biodistribution in tissue after transplantation. Thus, the tracking of MSCs in vivo after transplantation has great value and attracts the attentions of the academic circle. MSCs labeling by combining superparamagnetic iron oxide (SPIO) and poly-l-lysine (PLL) can be detected by MR imaging. Avascular necrosis of femoral head (ANFH) is a usually and multiply disease in clinical, and the interventional therapy may improve the vessel supply and benefit to absorption of osteonecrosis and bone renewal. We always consider whether the interventional therapy combining with the MSCs infuse can increase the process of bone regeneration and repair in local.
     1 Study on the basic biological characteristics of rMSCs.
     Bone marrow were obtained from two Japanese big-ears albino rabbits aging two weeks, then the rMSCs were isolated from BM sample by using Ficoll(1.077g/L) density gradient separation method. Separated cells were add into L-DMEM supplemented with 20% fetal bovine serum, 10000U/L penicillin and 10000U/L streptomycin, plated into 50 ml plastic flasks at a density of 2×105cells/cm2 and incubated at 37℃in 5%CO2. At 80% confluence, cells were harvested with 0.25% trypsin and replanted in new flasks. The rMSCs were indentified by growth conditation, cell growth curves and cell cycle analysis, induced and differentiated into osteocytes and adipocytes. Most adhere cells have spindle shape and obviously polar characters. The culture cells remained dormant for 1 to 2 days and began to multiply rapidly at 3 days and reach flat phase at 7 days. Cell cycle analysis showed that 96% of exponential phase of growth cells were in G0 and S phase. The alkaline phosphates activity increased after induced by osteogenic medium and Von Kossa staining detected the formation of calcium nodus. Adipogenic differentiation was induced in the expanded rMSCs. The accumulation of lipid-rich vacuoles within cells was apparent at 10 days, and positive express by Oil-red-O staining.
     2 Study on the labeling rMSCs combining with ferumoxides and poly-l-lysine.
     The P3 exponential phase of growth rMSCs was labeled with ferumoxides (25μg/ml) and PLL(0.75μg/ml) for 12h at 37℃in a 95% air per 5% atmosphere. The cell growth curve of labeled cells was similar to the unlabeled cells, and there was no difference in the rate of apoptosis. Labeling efficiency was reproducible in approximately 100% of rMSCs by Prussian blue staining and no stainable iron was detected in the unlabeled cells. Analysis of transmission electron microscope showed that a great lot of iron particles located in labeled cells. MR imaging of cell suspensions was performed at 1.5T by using surface coil, and a dramatic signal decrease was observed in the T2 weighted MR imagines of labeled cells compared with unlabeled control cells, specially in the T2*weighted MR imagines. The results showed that the concentration of ferumoxides used in labeling stem cells was safe. 1.5T MRI scanner was able to show magnetic stem cells, which greatly promoted research and application of the magnetic stem cell. Moreover T2*WI imaging of GRE sequences can be used as the preferred method of tracking stem cells.
     3 Interventional treatment of avascular necrosis of femoral head in rabbit by transplantation of rMSCs.
     The rabbit model of avascular necrosis of femoral head was established by injecting the horse serum and methylprednisolone. The femoral heads were taken out and evaluated by pathology at 1, 4, 7 weeks after imageological examination (CR, CT, MRI and vascular angiography). CR and CT had no difference of bone density difference at 7 weeks. MR showed bone marrow edema in femoral head and wire-like, spot-like middle signals in T1-weighted imaging and asymmetrical high signals in T2-weighted imaging. Vascular angiography showed a decrease in vascular supply and fewer obstructed blood vessels in the femoral head. HE staining of pathological sections showed necrosis and rupture of bone trabeculae, an increased proportion of empty osteocyte lacunae, hematopoietic decreased and fat cell hypertrophy. On the study of stem cells transplantation by interventional method, the 2.7F micro-catheter was superselected into artery of femoral head, infusion the dilatation and thrombus dissolution drugs after angiography, then inject the rMSCs about 5×106 /5ml into the target vascular. At 1, 4, 7 weeks after cell transplantation, the femoral heads were taken out and pathological examination was made after imagological examination. Compared with the control group, MR showed hat abnormal signals significantly decreased area of in femoral head in the therapy group, and hydrarthrosis disappeared. Vascular angiography showed the increase of vascular supply and richness of vessel branch. Pathological examination showed the decrease of bone trabeculae necrosis and number of empty osteocyte lacunae, active bone formation, the thickness and number of chondrocyte increased in the therapy group, no significantly difference between the labeled and unlabeled groups. Blue staining particles ware detected in cartilage and subchondral bone tissues in labeled groups by Prussian Blue staining, which indicated that rMSCs might live in the necrosis area of femoral head after transplantation by interventional method. The results suggested that simply perfusion of dilatation and thrombus dissolution drugs obviously improved local blood supply and promoted bone repair and reconstruction. Furthermore, after a certain amount of perfusion through catheter,MSCS could survive topically, which provided a theoretical and practical basis for the clinical application.
     4 Isolation and differentiation of human fetal mesenchymal stem cells in vitro
     Bone marrow were obtained from aborted fetal (4-6 months) four limbs, and washed bone marrow by DMEM, then the separated cells were added into L-DMEM /F12 supplemented with 20% fetal bovine serum, 10000U/L penicillin and 10000U/L streptomycin, plated into 100mm plastic dish at a density of 2-5×105cells/cm2 and incubated at 37℃in 5%CO2. At 80% confluence, cells were harvested with 0.25% trypsin and replanted in new dish. The fMSCs were indentified by growth conditation, cell growth curves, cell cycle analysis, immune-phenotypical characterization and differentiation into osteocytes and adipocytes. Most adhered cells have spindle shaped with obviously polar characters. The culture cells remained dormant for 1 to 2 days and then began to multiply rapidly at 3 days and reach flat phase at 7 days. Cell cycle analysis showed that 85% of exponential phase of P3 growth cells were in G0 and S phase. They were positive for CD29 and CD105, negative for CD45. The Von Kossa staining detected the formation of calcium nodus at 21 days after induced by osteogenic medium, and the osceocalcin (OC) mRNA was expressed in the inductor group but no expressed in the control group assayed with the reverse transcript polymerase chain reaction. Adipogenic differentiation was induced in the expanded fMSCs, the accumulation of lipid-rich vacuoles within cells was apparent at 10 days, and positive express by Oil-red-O staining. Our study indicated that the cells isolated from fetal bone marrow have the characteristic of MSCs.
     5 Study on the labeling fMSCs combining with ferumoxides and poly-l-lysine
     The P3 exponential phase of growth fMSCs labeled with ferumoxides(25μg/ml) and PLL(0.75μg/ml) for 12h at 37℃in a 5% CO2 atmosphere. The cell growth curve of labeled cells was similar to the unlabeled cells, and there was no difference in the rate of apoptosis. Labeling efficiency was reproducible in approximately 98% of fMSCs by Prussian blue staining and no stainable iron was detected in the unlabeled cells. Analysis of transmission electron microscope showed that a great lot of iron particles locate in endosoma of labeled cells. MR imaging of cell suspensions was performed at 1.5T by using surface coil, and a dramatic signal decrease was observed in the T2 weighted MR imagines of labeled cells compared with unlabeled control cells, specially in the T2*weighted MR imagines. The fMSCs were successfully labeled with Ferumoxides and PLL, which provides experimental basis for tracking magnetic labeled MSCs in clinical application.
     We isolated and expanded rMSCs and fMSCs by density gradient separation method and whole bone marrow culture methods, and confirmed the characteristic of MSCs by growth conditation, immunephenoty and multipotentiality. The model of ANFH was established in rabbit and investigated rMSCs transplantation by interventional therapy. Our results may provide references for clinical research on magnetic labeling MCSs and necrosis therapy of stem cells transplantation.
引文
[1]Bizzozero G. An address on growth and regeneration of the organism [J]. Br. Med, 1894, 1:728-782.
    [2]Thomson JA, Itskovitz-Eldor J, Shapiro SS, et al. Embryonic stem cell lines derived from human blastocysts[J]. Science, 1998, 282:1145-1147.
    [3]Shamblott MJ, Axelman J, Gearhart JD, et al. Derivation of pluripotent stem cells from cultured human primordial germ cells[J]. Proc Natl Acad Sci USA, 1998, 95:13726-13731.
    [4]裴雪涛.干细胞生物学[M].科学出版社2003.北京.
    [5]Williams JT, Southerland SS. Cell isolate from adult human skeletalmuscle capable of differentiation into multiple mesenchymal phenotypes [J]. Am Surg, 1999, 65(l):22-26.
    [6]Bowie MB, Mcknight KD, Kent DG, et al. Hematopoietic stem cells proliferate until after birth and show a reversible phase-specific engraftment defect[J]. J Clin Invest, 2006,116(10): 2808-2816.
    [7]Buske D, Clirmm H, Feuring-Buske M. Stem cell therapy[J]. Biology of hematopoietic stem cells. Internist(Berl), 2006, 47:459-464.
    [8]Minguell JJ, Erices A, Conget P. Mesenchymal stem cells[J]. Exp Biol Med(Maywood), 2001, 226:507-520.
    [9]Barry L, Murphy JM. Mesenchymal stem cells: Clinical applications and biological characterization[J]. Int J Biochem Cell Biol, 2004, 36:568-584.
    [10]Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells[J]. Science 1999, 284:143-147.
    [11]Friedenstein AJ, Petrakova KV, Kurolesova AI, et al. Heterotopic transplants of bone marrow, analysis of precursor cells, for osteogenic and hematopotic tissues[J]. Transplantation, 1968, 6:230-232.
    [12]Piersma AH, Brockbank KG, Ploemacher RE, et al. Characterization of fibroblastic stromal cells from murine bone marrow[J]. Hematol, 1985, 13:237-241.
    [13]Pittenger MF, Mackay AM, Beek SC, et al. Multilineage Potential of adulthuman mesenchymal stem cells[J]. Science, 1999, 284:143-147.
    [14]Hasegawa Y,Ohgushi H,Ishimura M,et a1.Marrow cells culture on poly-L-laetie acid fabrics[J]. Clin Orthop, 1999, 358:235-243.
    [15]Dazzi F, Ramasamy R, Glennie S, et al. The role of mesenchymal stem cells in haemopoiesis[J]. Blood Rev, 2006, 20:161-171.
    [16]Sotiropoulou PA, Perez SA, Salagianni M, et al. Characterization of the optimal culture conditions for clinical scale production of human mesenchymal stem cells[J]. Stem Cells. 2006, 24(2):462-471.
    [17]Sotiropoulou PA, Perez SA, Salagianni M, et al. Characterization of the optimal culture conditions for clinical scale production of human mesenchymal stem cells[J]. Stem Cells, 2006, 24:462-471.
    [18]Spees JL, Gregory CA, Singh H, et al. Internalized antigens must be removed to prepare hypo-immunogenic mesenchymal stem cells for cell and gene therapy[J]. Mol Ther, 2004, 9:747-756.
    [19]Bernardo ME, Avanzini MA, Perotti C, et al. Optimization of in vitro expansion of human multipotent mesenchymal stromal cells for cell-therapy approaches: Further insights in the search for a fetal calf serum substitute[J]. J Cell Physiol, 2007, 211:121-130.
    [20]Sotiropoulou PA, Perez SA, Salaqianni M, et al. Cell culture medium composition and translational adult bone marrow-derived stem cell research[J]. Stem Cells, 2006, 24:1409-1410.
    [21]鄂征.组织培养技术及其在医学研究中的应用[M].中国协和医科大学出版社. 2004,北京.
    [22]Conget PA, Minguell JJ. Phenotypical and functional properties of human bone marrow mesenchymal progenitor cells[J]. J Cell Physiol, 1999, 181(1):67-73.
    [23]Koc ON, Peters C, Aubourg P, et al. Bone marrow derived mesenchymal stem cells remain host derived despite successful hematopoietic engraftment after allogeneic transplantation in patients with lysosomal and peroxisomal storage diseases[J]. Exp Hematol, 1999, 27(11):1675-1681.
    [24]Pittenger M F, Mackay AM,Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells[J]. Science, 1999, 284(11):143-147.
    [25]赛音其木格,侯相麟,赵丽,等.成人骨髓间充质干细胞分化为成骨细胞的研究[J].临床血液学杂志. 2005,18(4):200-203.
    [26]房佰俊,韩钦,杨少光,等. TGFβ-1对成人骨髓CD105+间充质干细胞增殖与分化的影响[J].西安交通大学学报, 2005, 26(3):228-231.
    [27]Conget P, Minguel JJ. Adenoviral-mediated gene transfer into ex vivo expanded human bone marrow mesenchymal progenitor cells[J]. Exp Hematol, 2000, 28:382-390.
    [28]Muraglia A, Cancedda R, Qrarto R. Clonal mesenchymal progenitors from human bone marrow differentiates in vitro according to a hierarchical model[J]. J Cell Sci, 2000, 113:1161-1166.
    [29]Lou J, Xu F, Merkel K, et al. Gene therapy: adenovirus-mediated human bone morphogenetic protein-2 gene transfer induces mesenchymal prongitor cell proliferation and differentiation in vitro and bone formation in vivo[J]. J Orthop Res, 1999, 17:43-50.
    [30]Mbalaviele G, Jaiwal N, Meng A, et al. Human mesenchymal stem cells promote human osteoclast differentiation from CD34+ bone marrow hematopoietic progenitors[J]. Endocrinology, 1999, 140:3736-3743.
    [31]Toma C, Pittenger MF, Cahill KS, et al. Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart[J]. Circulation, 2002, 105:93-98.
    [32]Reyes M, Verfaillie CM. Turning marrow into brain: Generation of glial and neuronal cells from adult bone marrow mesenchymal stem cells[J]. Blood, 1999, 94:377-380.
    [33]Friedman MS, Long MW, Hankenson KD. Osteogenic differentiation of human mesenchymal stem cells is regulated by bong morphogenetic protein-6[J]. Cell Biochem, 2006, 98:538-554.
    [34]Jaisaw N, Haynesworth SF, Caplan Al, et al. Osteogenic differentiation of pue-expanded human mesenchymal stem cells in vitro[J]. Biochem, 1997, 64:295 -299.
    [35]Lecklin RM, Willianison MC, Beresford JN, et al. In vitro effects of growth factors and dexamethasone on rat marrow stromal cells[J]. Clinorthop, 1995, 313 (4):27-35.
    [36]Bereford JN, Bennett JH, Devlin C, et al. Evidence for an in verse relationship between the differentiation of adipocytic and osteogenic cells in rat marrow stromal cell[J]. Exp Biol Med, 2001, 226:507-520.
    [37]Coshima J, Goldberg VM, Caplan Al, et al. The osteogenic potential of culture-expanded rat marrow mesenchymal cells assayed in vivo in calcium phosphate ceramic blocks[J]. Clin Orthop, 1991, 262:298-311.
    [38]Ohgushi H, Caplan AI. Stem cell technology and bioceramics: from cell to gene engineering[J]. J Biomed Mater Res, 1999, 48(6):913-927.
    [39]唐文洁,李玛琳,邱垂源,等. FGF-2对人骨髓间充质干细胞增殖和向成骨细胞分化的影响[J].细胞生物学杂志, 2005, 27(6):673-678.
    [40]Fleet JC, Hock JM. Identification of osteocalcin mRNA in nonosteoid tissue of rats and humans by reverse transcription-polymerase chain reaction[J]. J Bone Miner Res, 1994, 9(10):1565-1573.
    [41]Ntambi JM,Young-Cheul K. Adipocyte differentiation and gene expression [J]. J Nutr, 2000, 130:3122-3126.
    [42]Alison MR, Poulsom R, Forbes S, et al. An introduction to stem cells[J]. J Pathol, 2002, 197:419-423.
    [43]Toma C, Pittenger MF, Cahil1 KS, et al. Human mesenchyma1 stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart[J]. Circulation 2002, 105: 93-98.
    [44]Orlic D, Kaistura J, Chimenti S, et al. Bone marrow cells regenerate infracted myocardium[J]. Nature, 2001, 410:701-705.
    [45]Colter DC, Sekiya I, Prockop DJ, et al. Identification of subpopulation of rapidly self-renewing and multipotential adult stem cells in colonies of human marrow stromal cells[J]. Proc Natl A cad Sci USA, 2001, 98(14):7841-7845.
    [46]Awad HA, Bulter DL, Harris MT, et al. In vitro characterization of mesenchymal stem cell-seeded collagen scaffolds for tendon repair: effects of initial seeding density on contraction kinetics[J]. J Biomed Mater Res, 2000, 51(2): 233-240.
    [47]Phinney DG, Kopen G, saacson RL, et al. Pla-stic adherent stromal cellsfrom the bone marrow of commonly used strains of inbred mice variations in yield, growth, and differentiation[J]. J Cell Biochem, 1999, 72(4):570-585.
    [48]方利君,付小兵.骨髓间充质干细胞分化为血管内皮细胞的实验研究[J].中华烧伤杂志, 2003, 19(1):22-24.
    [49]鄂征,刘流.医学组织工程技术与临床应用[M].北京出版社, 2004,北京.
    [50]Bruder SP, Kraus KH, Goldbery VM, et al. The effect of implants loaded with autologous mesenchymal stem cells on the healing of canine segmental bone defects J bone defects[J]. J Bone Joint Surg(Am), 1998, 80(7):985-996.
    [51]Gronthos S, Zannettino AW, Hay SJ, et al. Molecular and cellular characterization of highly purified stromal stem cells derived from human bone marrow[J]. J Cell Sci, 2003, 116:1827-1835.
    [52]Riew KD, Lou J, Wright NM, et a1. Thoracoscopic intradiscal spine fusion using a minimally invasive gene-therapy technique[J]. J Bone Joint Surg(Am), 2003, 85(5):866-871.
    [53]Chamberlain JR, Schwarze U, Wang PR, et al. Gene targeting in stem cells from individuals with osteogenesis imperfect[J]. Science, 2004, 303:1198-1201.
    [54]Wakitani S, Goto T, Pineda SJ, et al. Mesenchymal cell based repair of large, full thickness defects of articular cartilage[J]. J Bone Joint Surg Am, 1994, 76:579-592.
    [55]Noth U, Tuli R, Osyezka AM, et al. In vitro engineered cartilage constructs produced by press-coating biodegradable polymer with human mesenchymal stem cells[J]. Tissue Eng, 2002, 8:131-144.
    [56]Young RG, Butler DL, Weber W, et al. Use of mesenchymal stem cells in a collagen matrix for achilles tendon repair [J]. J Orthop Res, 1998, 16:4064-4071.
    [57]Strauer BE, Brehm M, Zeus T, et al. Intracoronary human autologous stem cell transplantation for myocardial regeneration following myocardial infarction [J]. Dtsch Med Wochenschr, 2001, 126:932-938.
    [58]Weissleder R. Molecular imaging: the next frontier [Review] [J] .Radiology, 1999, 212:609-610.
    [59]Bogdanov AJY, Marecos E, Cheng HC, et al. Treatment of experimentalbrain tumors with trombospondin-1 derived peptides: an in vivo imaging study [J]. Neoplasia, 1999, 1: 438-441.
    [60]Cherry SR. In vivo molecular and genomic imaging: new challenges for imaging physics[Review][J]. Phys Med Biol, 2004, 4(9):13-17.
    [61]Tai YC, Chatziioannou AF, Yang Y, et al. Micro PET II: Design development and initial performance of an improve micro PET scanner for small-animal imaging [J]. Phys Med Biol, 2003, 48:1519-1521.
    [62]Weissleder R, Mahmood. Molecular imaging [Review] [J]. Radiology, 2001, 219:316-320.
    [63]Gambhir SS, Bauer E, Black ME, et al. A mutant herpes simplex virus type I thymidine kinase reporter gene show sim proved sensitivity for imaging reporter gene expression with positron emission tomography [J]. Proc Natl Acad Sci, 2000, 97:785-790.
    [64]Doubrovin M, Ponomarev V, Beresten T, et al. Imaging transcriptional regulation of P53-dependent genes with positron emission tomography in vivo[J]. Proc Natl Acad Sci, 2001, 98:9300-9304.
    [65]Politi LS. MR based imaging of neural stem cells[J]. Neuroradiology, 2007, 49:523-534.
    [66]Song YS,Ku JH, Song ES, et al. Magnetic resonance evaluation of human mesenchymal stem cells in corpus cavernous of rats and rabbits[J]. Asian J Androl, 2007, 9(3):361-367.
    [67]Politi LS, Bacigaluppi M , Brambilla E, et a1. Magnetic resonance based tracking and quantification of intravenously injected neura1 stem cell accumulation in the brain of mice with experimental multiple sclerosis[J]. Stem Cells, 2007, 25(10):2583-2592.
    [68]Oude Engberink RD, van der Pol SM, Dopp EA, et al. Comparison of SPIO and USPIO for in vitro labeling of human monocytes: MR detection and cell function [J]. Radiology, 2007, 243(2):467-474.
    [69]Modo M, Cash D, Mellodew K, et al. Tracking transplanted stem cell migration using bifunctional, contrast agent enhanced, magnetic resonance imaging[J]. Neuroimage, 2002, l7:803-811.
    [70]Kim D, Hong KS, Song J. The present status of cell tracking methods in animal models using magnetic resonance imaging technology [J]. Mol Cell, 2007, 23 (2):132-137.
    [71]Shapiro EM, Skrtic S, Sharer K, et al. MRI detection of single particles for cellular imaging[J]. Proc Natl Acad Sci USA, 2004, 101:10901-10906.
    [72]Ju S, Teng GJ, Lu H, et al. In vivo MR tracking of mesenchymal stem cells in rat liver after intrasplenic transplantation[J]. Radiology, 2007, 245(1):206-215.
    [73]Ju S, Teng G, Zhang Y, et al. In vitro labeling and MRI of mesenchymal stem cells from human umbilical cord blood[J]. Magn Reson Imaging, 2006, 24(5): 611-617.
    [74]Smirnov P, Lavergne E, Oazeau F, el al. In vivo cellular imaging of lymphocyte trafficking by MRI: a tumor model approach to cell-based anticancer therapy[J]. Magn Reson Med, 2006, 56(3):498-508.
    [75]Arbab AS, Bashaw LA, Miller BR, et al. Characterization of biophysical and metabolic properties of cells labeled with superparamagnetic iron oxide nanoparticles and transfection agent for cellular MR imaging [J]. Radiology, 2003, 229(3):838-846.
    [76]Frank JA, Miller BR, Arbab AS, et al. Clinically applicable labeling of mammalian and stem cells by combining superparamagnetic iron oxides and transfection agents[J]. Radiology, 2003, 228:480-487.
    [77]Kraitchman DL, Heldman A, Atlar E, et al. In vivo magnetic resonance imaging of mesenchymal stem cells in myocardial infarction[J]. Circulation, 2003, 107: 2290-2293.
    [78]Bulte JW, Douglas T, Witwer B, et al. Magnetodendrimers allow endosomal magnetic labeling and in vivo tracking of stem cells[J]. Nat Biotechnol, 2001, 19:1141-1147.
    [79]Hoehn M, Kustermann E, Blunk J, et a1.Monitoring of implanted stem cell migration in vivo: a highly resolved in vivo magnetic resonance imaging investigation of experimental stroke in rat[J]. Proc Natl Acad Sci USA, 2002, 99: 16267-16272.
    [80]Bulte JW, Zhang S, van Gelderen P, et a1. Neurotransplantation ofmagnetically labeled oligodendrocyte progenitors: magnetic resonance tracking of cell migration and myelination[J]. Proc Natl Acad Sci USA, 1999, 96:1525-1526.
    [81]Lee IH,Bulte JWM ,Schweinhardt P,et al.In vivo magnetic resonance tracking of olfactory ensheathing glia grafted into the rat spinal cord[J]. Experimental Neurology, 2004, 187:509-516.
    [82]Dick AJ, Guttman M A, Raman VK, et al. Magnetic resonance fluoroscopy allows targeted delivery of mesenchymal stem cells to infarct borders in swine[J]. Circulation, 2003, 108:2899-2904.
    [83]Hill JM, Dick AJ, Raman VK, et al. Seriacardiac magnetic resonance imaging of injected mesenchymal stem ceils[J]. Circulation, 2003, 108:1009-1014.
    [84]Himes N, Min JY, Lee R, et al. In vivo MRI of embryonic stem cells in a mouse model of myocardial infarction[J]. Magn Reson Med, 2004, 52:1214-1219.
    [85]Bos C, Delmas Y, Desmouliere A, et a1. In vivo MR imaging of intravascularly injected magnetically labeled mesenchymal stem cells in rat kidney and liver[J]. Radiology, 2004, 233:781-789.
    [86]王平,王建华,颜志平,等.超顺磁性氧化铁标记大鼠骨髓基质细胞经门静脉移植MRI活体示踪的研究[J].中华放射学杂志, 2006, 40:133-139.
    [87]Jones LC, Hungerford DS. The pathogenesis of osteonecrosis[J]. Instr Course Lect, 2007, 56:179-196.
    [88]孙伟.股骨头坏死的病因、病理和发病机制[J].中华全科医师杂志, 2006 (2):75-77.
    [89]李子荣,孙伟,屈辉,等.皮质类固醇与骨坏死关系的临床研究[J].中华外科杂志, 2005, 43: 1048-1053.
    [90]姜文学. 2004年国家级股骨头坏死最新治疗进展专题研讨会会议纪要[C].实用骨科杂志, 2005,11(2):190-192.
    [91]Gangji V, Hauzeur JP. Treatment of osteonecrosis of the femoral head with implantation of autologous bone-marrow cells[J]. Surgical technique. J Bone Joint Surg 2005; 87 Suppl 1(Pt 1):106-112.
    [92]Nakamura T, Mastsumoto T, Nishino M, et a1. Early magnetic resonance imaging and histologic findings in a model of femoral head necrosis[J]. Clin Orthop, 1997, 334:68-73.
    [93]北京积水潭医院放射科.骨缺血坏死的创伤性关节炎(兔股骨颈骨折动物实验)[C].创伤骨科参考资料1976, 1:28-29.
    [94]Matsui M, Santo S, Ohzono K, et a1. Experimental steroid-induced osteonecrosis in adult rabbits with hypersensitivity vasculitis [J]. Clin Orthop, 1992, 277:61-72.
    [95]Yamamoto T, Hirano K, Tsutsui H, et a1. Corticosteroid enhances the experimental induction of osteonecrosis in rabbits with Schwartzman reaction[J]. Clin Orthop, 1995, 316:235-243.
    [96]Lehner CE, Adams WM, Dubielzig RR, et al. Dysbaric steonecrosis in divers and caisson workers, an animal model[J]. Clin Orthop Relat Res, 1997, 34: 320-332.
    [97]Crawford CJ, LaBerge M, Allen BL, et al. Growth profiles and articular cartilage characterization in a goat model of Lrgg-Calve-Perthes[J]. Invest Surg, 1995, 8(6):391-395.
    [98]Fordyce MJF, Solomon L. Early detection of avascular necrosis of the femoral head by MRI[J]. The Journal of Bone and Joint Surgery, 1993, 75(3):365- 367.
    [99]Steinberg ME, Hayken GD, Steinberg DR. A quantitative system for staging avascular necrosis [J]. J Bone Joint Surg[Br], 1995,77:34-41.
    [100]任安,张雪哲.股骨头缺血性坏死的研究简况[J].中华放射学杂志, 1997, 31(3):199-200.
    [101]屈辉,程克斌.正确评价各种影像学方法在检查骨坏死中的作用[J].中华放射学杂志, 2004, 38(3):229-230.
    [102]粘朝晖,陈世勇,吴宏,等.股骨头无菌坏死的MRI诊断[J].实用医学影像杂志, 2002,3(2): 91-93.
    [103]刘吉华,高振华,徐爱德.早期成人股骨头缺血坏死的影像学对比研究及检查途径探讨[J].中华放射学杂志,2004, 38: 244-248.
    [104]刘春红,徐爱德,刘吉华,刘晓红.成人股骨头缺血坏死的MRI研究[J].中国医学影像技术, 2003,19(1): 79-81.
    [105](Association Research Circulation Osseous ), Committer on terminology and classification. ARCO News, 1992, 4:41-42.
    [106]Hoffman S, Masers B. Osteonecrosis natural course and conservative therapy [J]. Orthopedic, 2000, 29:403-410.
    [107]陆裕朴.实用骨科学(第2版) [M].人民军医出版社,北京, 1991.
    [108]李子荣,张念非,史振才,等.股骨头坏死塌陷的预测与治疗方法的选择[J].中华骨科杂志, 2003,23(4):193-196.
    [109]Ficat RP. Idiopathic bone necrosis of the femoral head: Early diagnosis and treatment[J]. J Bone Joint Surg(Br) 1985, 67 (1):3-9.
    [110]李喜东,范力军,李国力,等.介入治疗激素性股骨头坏死的实验研究[J].中华放射学杂志, 1998, 32(1):32-35.
    [111]李喜东,韩晓梅,邵培坚,等.成人外伤性股骨头无菌坏死的介入治疗[J].临床放射学杂志,1997,16(3):170-171.
    [112]曹殿波,杨海山,赵永生,等.成人股骨头缺血坏死介入治疗的临床疗效分析[J].白求恩医科大学学报, 2001,27(5):529-531.
    [113]权毅,何远忠,潘显明,等.股骨头缺血坏死介入治疗的临床观察[J].骨与关节损伤杂志, 2001, 16(5):336-338.
    [114]Hernigou P, Beaujean F. Treatment of osteonecrosis with autologous bone marrow grafting [J]. Clin Orthop Relat Res, 2002, 405: 14-23.
    [115]Gangji V, Toungouz M, Hauzeur JP. Stem cell therapy for osteonecrosis of the femoral head [J]. Expert Opin Biol Ther, 2005, 5: 437-442.
    [116]Gangji V, Hauzeur JP. Treatment of osteonecrosis of the femoral head with implantation of autologous bone-marrow cells surgical technique [J]. Bone Joint Surg (Am), 2005, 87: 106-112.
    [117]Yan ZQ, Chen YS, Li WJ, et al. Treatment of osteonecrosis of the femoral head by percutaneous decompression and autologous bone marrow mononuclear cell infusion [J]. Chin J Traumatol, 2006, 9: 3-7.
    [118]杨晓凤,王红梅,许亿峰,等.经动脉骨髓干细胞移植治疗股骨头坏死63例[J].中国临床康复, 2006, 10: 3-5.
    [119]Vlasselaer PV, Falla N, Snoeck H, et al. Characterization and purification of osteogenic cells from murine bone marrow by two-color cell sorting using anti-Sca-monoclonal antibody and wheat germ agglutinin[J]. Blood, 1994, 84(3): 753-763.
    [120]马力,刘大军,李德天,等.不同分离方法及培养条件对兔骨髓间充质干细胞生长增殖及生物学特性的影响[J].中国组织工程研究与临床康复, 2008, 12:7401-7406.
    [121]潘锋,柏树令.兔BMSCs体外培养及其向成骨细胞分化的实验研究[J].解剖学进展, 2005,11(1):12-15.
    [122]Duan PR, Wu L, Lin YF,et al. The gene expression patterns of bone-marrow mesenchymal stem cells under different osteogenic induction [J]. Sichuan Da Xue Xue Bao Yi Xue Ban. 2006, 37(6):856-859.
    [123]Jorgensen NR, Henriksen Z, Sorensen OH, et al. Dexamethasone, BMP-2 and l,25-dihydroxyvitamin D enhance a more differentiated osteoblast phenotype: validation of an in vitro model for human bone marrow-derived primary osteoblasts[J]. Steroids, 2004, 69(4):219-226.
    [124]Fried Benayahu D. Dexamethasone regulation of marrow stromal-derived osteoblast cell[J]. J Cell Biochem, 1996, 62:476-479.
    [125]Meqillan DJ, Richardson MD, Bateman JF. Matrix deposition by a calcifying human osteogenic sarcoma cell line (SAOS-2)[J]. Bone, 1995, 16:415- 419.
    [126]Takafumi Yoshikawa. Bone reconstruction By cultured bone graft[J]. Materials Science and Engineering C, 2000,13:29-32.
    [127]Maniatopoulos C, Sodek J, Melcher AH, et al. Bone formation in vitro by stromal cells obtained from bone marrow of young adult rats[J]. Tissue Res, 1998, 254:317-319.
    [128]Colter DC, Sekiya I, Prockop DJ. Indentification of a subpopulation of rapidly self-renewing and multipotential adult stem cells in colonies of human marrow stromal cells[J]. Proc Natl Acad Sci USA, 2001, 98(14):7841-7845.
    [129]岑洪,林茂芳,黄河,等.雌激素受体α和β在间充质干细胞体外成骨、成脂肪分化中的表达变化[J].广西医科大学学报, 2005,22(6):883-885.
    [130]Rodriguez JP, Garat S, Gajardo H, et al. Abnorma1 osteogenesis in osteoporotic patients is reflected by altered mesenchymal stem cells dynamics[J]. J Cell Biochem, 1999, 75(3):414-423.
    [131]Yeh TC, Zhang W, Ildstad ST, et al. In vivo dynamic MRI tracking of ratT-cells labeled with superparamagnetic iron-oxide particles[J]. Magn Reson Med, 1995, 33: 220-208.
    [132]Josephson L, Tung CH, Moore A, et al. High-efficiency intracellular magnetic labeling with novel superparamagnetic-Tat peptide conjugates[J]. Bioconjug Chem, 1999, 10:186-191.
    [133]Unger EC. How can superparamagnetic iron oxides be used to monitor disease and treatment [J]? Radiology, 2003, 229:615-616.
    [134]许乙凯,颜江华,张嘉宁,等.标记抗人肺癌单抗超顺磁性氧化铁粒子的磁共振免疫显像实验[J].临床放射学杂志, 1998,17:310-312.
    [135]Kraitchman DL, Heldman AW, Atalar E, et a1. In vivo magnetic resonance imaging of mesenchymal stem cells in myocardial infarction[J]. Circulation, 2003, 107(18):2290-2293.
    [136]居胜红,滕皋军,毛曦,等.脐血间充质干细胞磁探针标记和MR成像研究[J].中华放射学杂志, 2005, 39(1):101-106.
    [137]蔡金华,冯敢生,王新.大鼠骨髓间充质干细胞磁标记及MR成像研究[J].中华放射学杂志. 2006, 40:155-159.
    [138]朱文珍,李祥,漆剑频,等.神经干细胞超顺磁性氧化铁标记及体内外MRI示踪[J].中华放射学杂志. 2006,40:160-164.
    [139]Boss JH, Misselevich I. Osteonecrosis of the femoral head of laboratory animals: the lessons learned from a comparative study of osteonecrosis in mall and experimental animals [J]. Vet Pathology, 2003, 40:345-354.
    [140]Laporte DM, Mont MA. Multifocal osteonecrosis[J]. J Rheumatol, 1998, 25:1968-1974.
    [141]Creuss RL. Osteonecrosis of bone, current concept as to etiology and pathogenesis [J]. Clin Orthop, 1986,208:30-33.
    [142]Sakai T, Sugano N, Nishii T, et al. MR findings of necrotic lesions and the extralesional area of osteonecrosis of the femoral head[J]. Skektal Radiol, 2000, 29 (2):133-141.
    [143]Fujioka M, Kubo T, Nakamura F, et al. Initial changes of nontraumatic osteonecrosis of femoral head in fat suppression images: bone marrow edema was not found before the appearance of band patterns[J]. Magn Reson Imaging, 2001,19(7):985-991.
    [144]储玉山,曹建民,孔伟东,等.非创伤性股骨头缺血性坏死骨髓水肿的数字减影血管造影研究[J].医学研究生学报, 2006, 19(8):712-715.
    [145]Schweitzer ME, White LM. Does altered biomechanics cause marrow edema [J]? Radiology JT-Radiology, 1996, 198(3):851-853.
    [146]Kim YM, Oh HC, Kim HJ. The pattern of bone marrow edema on MRI in osteonecrosis of the femoral head[J]. J Bone Joint Surg(Br), 2000, 82(6):837-841.
    [147]Huang GS, Chan WP, Chang YC, et al. MR imaging of bone marrow edema and joint effusion in patients with osteonecrosis of the femoral head: relationship to pain[J]. AJR Am J Roentgen, 2003, 181(2):545-549.
    [148]Iida S, Harada Y, Shimizu K, et al. Creation between bone marrow edema and collapse of the femoral head in steroid-induced osteonecrosis[J]. AJR Am J Roentgenol, 2000, 174(3):735-743.
    [149]Campagnoli C, Roberts IAG, Kumar S, et al. Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver and bone marrow[J]. Blood, 2001, 98:2396-2402.
    [150]朱美玲,陈汝光,刘华,等.人中期胚胎、新生儿脐血及成人骨髓间质干细胞基本生物学特性的比较[J].中山大学学报(医学科学版), 2004, 25:504- 507.
    [151]何念海,赵文利,王宇明,等.人胎儿骨髓间充质干细胞的分离、培养及生物学特性鉴定[J].中华肝脏病杂志, 2005,13:213-217.
    [152]Colter DC, Class R, Digirolamo CM, et al. Rapid expansion of recycling stem cells in cultures of plastic adherent ceils from human bone marrow[J]. Proc Matl Acad Sci, 2000, 97(7):3213-3218.
    [153]Lange C, Cakiroglu F, Spiess AN,et al. Accelerated and safe expansion of human mesenchymal stromal cells in animal serum-free medium for transplantation and regenerative medicine[J]. J Cell Physiol, 2007, 213:18-26.
    [154]Bartmann C, Rohde E, Schallmoser K, et al. Two steps to functional mesenchymal stromal cells for clinical application[J]. Transfusion, 2007, 47:1426 -1435.
    [155]Nagai A, Kim WK, Lee HJ, et al. Multilineage potential of stable humanmesenchymal stem cell line derived from fetal marrow[J]. PLOS ONE. 2007, 2(12):e1272.
    [156]Crisan M, Yap S, Casteilla L, et al. A perivascular origin for mesenchymal stem cells in multiple human organs[J]. Cell Stem Cell. 2008, 3(3): 301-313.
    [157]Levesque JP, Takamatsu Y, Nilsson SK et al. Vascular cell adhesion molecule-1(CD106) is cleaved by neutrophil proteases in the bone marrow following hematopoietic progenitor cell mobilization by granulocyte colony-stimulating factor[J]. Blood, 2001, 98:1289-1297.
    [158]Conley BA, Koleva R, Smith JD, et al. Endoglin controls cell migration and composition of focal adhesions [J]. J Biol Biochem, 2004, 279:27440-27449.
    [159]Tondreau T, Lagneaux L, Dejeneffe M, et al. Bone marrow-derived mesenchymal stem cells already express specific neural proteins before any differentiation [J]. Differentiation, 2004, 72: 319-326.
    [160]D’Ippolito G, Diabira S, Howard GA, et al. Marrow isolated adult multilineage inducible (MIAMI) cells, a unique population of postnatal young and old human cells with extensive expansion and differentiation potential [J]. J Cell Sci, 2004, 17: 2971-2981.
    [161]Wagner W, Wein F, Seckinger A, et al. Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood[J]. Exp Hematol, 2005, 33:1402-1416.
    [162]Moerman EJ, Teng K, Lipschitz DA et al. Aging activates adipogenic and suppresses osteogenic programs in mesenchymal marrow stroma/stem cells: The role of PPAR-gamma2 transcription factor and TGFbeta/BMP signaling pathways[J]. Aging Cell, 2004, 3:379-389.
    [163]Babic M, Horák D, JendelováP, et al. Poly(N,N-dimethylacrylamide)- coated magnetite nanoparticles for stem cell labeling[J]. Bioconjug Chem, 2009, 20 (2):283-294.
    [164]Flexman JA, Minoshima S, Kim Y, et al. Magneto-optical labeling of fetal neural stem cells for in vivo MRI tracking[J]. Conf Proc IEEE Eng Med Biol Soc, 2006, 1:5631-5634.
    [165]Henning TD, Boddington S, Daldrup-Link HE, et al. Labeling hESCs andhMSCs with iron oxide nanoparticles for non-invasive in vivo tracking with MR imaging[J]. J Vis Exp, 2008, 31;(13). pii: 685. doi: 10.3791/685.
    [166]Yamada M, Yang P. In vitro labeling of human embryonic stem cells for magnetic resonance imaging. J Vis Exp[J], 2008, 3 (17). pii: 827. doi: 10. 3791/827.
    [167]Sch?fer R, Kehlbach R, Müller M, et al. Labeling of human mesenchymal stromal cells with superparamagnetic iron oxide leads to a decrease in migration capacity and colony formation ability[J]. Cytotherapy. 2009, 11(1):68-78.
    [168]Pawelczyk E, Arbab AS, Pandit S, et al. Expression of transferring receptor and ferritin following ferumoxides-protamine sulfate labeling of cells: implications for cellular magnetic resonance imaging[J]. NMR Biomed. 2006,19(5): 581-92.
    [169]刘永强,莫敖,吴诚义,等.磁探针标记乳腺癌干细胞的实验研究[J].重庆医学, 2008,37:1776-1778.
    [170]Saldanha KJ, Piper SL, Ainslie KM, et al. Magnetic resonance imaging of iron oxide labeled stem cells: applications to tissue engineering based regeneration of the intervertebral disc[J]. Eur Cell Mater, 2008,16:17-25.
    [171]Honma T, Honmou O, Iihoshi S, et al. Intravenous infusion of immortalized human mesenchymal stem cells protects against injury in a cerebral ischemia model in adult rat[J]. Exp Neurol, 2006,199(1):16-19.
    [172]Jin XH, Yang L, Duan XJ, et al. In vivo MR imaging tracking of magnetic iron oxide nanoparticle labeled, engineered, autologous bone marrow mesenchymal stem cells following intra-articular injection[J]. Joint Bone Spine. 2008, 75(4):432- 438.
    [173]薛静,高培毅,李晋,等.胎鼠神经干细胞超顺磁性氧化铁颗粒标记移植后MRI研究[J].放射学实践, 2006, 2:110-114.
    [174]徐锋,吴惺,朱剑虹,等.骨髓基质干细胞靶向胶质瘤迁徙的MRI示踪研究[J].中华神经外科杂志, 2007,2:684-689.
    [175]Ittrich H, Lange C, T?gel F, et al. In vivo magnetic resonance imaging of iron oxide-labeled, arterially-injected mesenchymal stem cells in kidneys of rats with acute ischemic kidney injury: detection and monitoring at 3T[J]. J Magn ResonImaging. 2007, 25(6):1179-1191.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700