用户名: 密码: 验证码:
面向对象的滩涂湿地遥感与GIS应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
长江河口滩涂湿地是上海市社会经济文化可持续发展的重要战略资源和物质基础,也是上海市生态安全体系的重要组成部分。其巨大的资源潜力和环境、社会、经济、生态功能决定了上海市如何可持续开发利用和保护滩涂湿地这个科学管理决定问题存在的必要性、重大性和持久性。要解决上海市滩涂湿地中所面临的发展、保护和利用问题,首要和基础条件是要弄清楚滩涂湿地各种资源与环境对象如土地、植被、鸟类、底栖动物、水文、水质、土壤等的现状和动态变化,这种现状和变化不仅要体现在数量和质量上,更重要的是要体现在地理空间上。处理地学空间域的问题,遥感和地理信息系统是一种重要的高效的技术、方法和手段。
     遥感和地理信息系统是上世纪以来兴起的一种高新技术,已广泛应用到各行各业中,在滩涂湿地上的应用已初步涉及到资源、环境、生态、系统管理等各个层次层面,其主要应用有:一是弄清滩涂湿地资源与环境现状;二是监测资源与环境动态变化;三是湿地环境因子的遥感模拟以及资源生物量、物理生化指标模型遥感反演;四是滩涂湿地资源环境信息综合遥感和地理分析及评价;五是滩涂湿地资源与环境管理系统/决策系统的建立。在已有和潜在的应用中,如何运用好遥感和GIS技术和方法,实现简单、快速、有效、准确的获取所需要的滩涂湿地数据和综合信息,需要有理论思想上的先导指引、技术上的实践可行合理以及方法技巧上的具体灵活运用。这其中,基于面向对象的思想和方法是一种非常重要的思想论、认识论和方法论。
     面向对象思想和方法的本质就是对现实问题域进行分割,建立起遵循客观事物本质特征的对象模型,然后对现实世界的客观实体进行结构模拟和行为模拟,其过程强调了人类日常的逻辑思维方法和原则。本文以上海市滩涂湿地对象为研究对象,全面系统阐述了在面向对象思想、方法指导下如何进行遥感和地理信息系统技术应用实践。结果表明,基于面向对象思想和方法运用遥感和GIS技术和手段进行滩涂湿地资源与环境的调查、分析和管理,能简单快速有效准确的分析、获取滩涂湿地资源与环境数据,同时可有效地建立起资源与环境信息服务支撑平台,实现对现有滩涂湿地遥感与GIS运用方案方法的优化以及运用深度的提升,从理论和实践上开拓了滩涂遥感与GIS应用。
     基于面向对象的滩涂湿地遥感与GIS运用实践主要涉及了以下几个部分:从地学的角度对滩涂湿地进行面向对象的理解和分解,确立了滩涂湿地对象结构和边界,明确了滩涂湿地对象的不同层面上的问题,为遥感和GIS应用指明了目标;在对滩涂湿地理解的基础上,根据问题-目标-方案-分析-运行等环节对滩涂湿地的几个典型应用进行了分析,并阐述了遥感和GIS应用方案;基于对滩涂湿地理解和分析,从地学角度对其进行了地理建模,建立起了滩涂湿地空间数据库;对面向对象的滩涂湿地遥感信息提取方法进行了详细的说明和研究,主要涉及到遥感数据的分析处理、影像对象的生成、对象空间层次语义网络结构构建以及影像对象分类识别等方面;在对滩涂湿地对象的理解、分析和地理建模以及对面向对象的遥感应用方法研究的基础上,选取了滩涂湿地岸线冲淤变化、湿地时空演替分析、滩涂湿地植被等几个典型案例,进行了基于面向对象的遥感和GIS运用思想、方法、技术和技巧的实践;基于面向对象的理论和方法,对滩涂湿地如何进行系统管理进行了研究和实现,其过程涉及到面向对象的分析、面向对象的设计、面向对象的编码、面向对象的调试以及面向对象的维护,最后以地理信息系统组件为基础,集成遥感GIS、建立起了上海市滩涂湿地资源与环境信息管理系统。
     本文的创新之一:基于面向对象的思想和方法将遥感和GIS技术和手段全面运用于滩涂湿地资源调查与监测中,包括基于面向对象思想理解分析分解滩涂湿地对象、基于面向对象进行滩涂湿地对象的地理表达和地理建模、基于面向对象进行湿地对象信息的客观快速准确的遥感提取。本文创新之二:以滩涂湿地地理空间数据库为数据基础,通过面向对象的分析、设计、编码、调试和维护,建立起了一个系统的、开放的、可扩展的、兼容性强的、较完整的、能无缝支持滩涂湿地资源环境业务管理工作和信息服务的管理系统,实现了上海滩涂湿地资源环境数量、质量、空间分布信息以及动态变化信息的科学管理,为滩涂资源可持续利用的决策实施提供信息服务支撑平台。
As the important strategic resources and material things for society economical and cultural sustainable development, the tidal wetland at Yangtze River estuary in Shanghai is also considered to be a significant part in eco-security system. Its giant resource potential and environment, economy and ecological functional value determine that it is necessary to rationally and scientifically exploit, utilize, protect and maintain this tidal wetland. Among those complex wetland research, the primary and crucial thing is entirely understand, insight and mapping quality and quantity distribution and variation of all kinds of wetland resource from spatial view, which including land-use, vegetation type, Aves, benthos, hydrology, soil and so on. Moreover, the remote sensing and GIS technology have been proved to be an effective and preferred approach to settle a particular geographic problem especially in mapping and visualizing.
     Remote sensing and GIS technology, which begun from last century and has been widely using in various aspects, and even now are being involved with resource, environment, ecological and information system development for tidal wetland. There are some tidal wetland applications benefited from remote sensing and GIS technology, which include investigation of resource, monitoring resource and environment dynamical change; remote sensing on wet biomass evaluation; resource and environment geo-analysis and assessment; geo-information software system development for decision-making. how to suitably and rationally using remote sensing to conveniently, quickly and precisely acquire important tidal wetland information depends on the general principal, reasonable technical practice and flexible application of varied skills and methods. And object-oriented principal is a critical and popular theory among those theories and methods people often used before.
     The essential of object oriented theory is identifying reality object, then building an object-oriented model followed by its internal characteristics, and simulating the structure and behavior of the real world's object, from which the process emphasis on the people's general logical thinking and principles. Based on the object oriented theory, this paper elaborates the remote sensing and GIS application on investigating and monitoring the resource and environment of tidal wetland in shanghai. The result shows that: following on object-oriented thinking and theory, the use remote sensing and GIS method for investigating, analyzing and managing on tidal wetland resource and its environment prove to be effectively and quickly way to get and analyze the resource of tidal wetland and the environmental data; the object-oriented method also could effectively build resource environment information service platform; it is obviously and remarkably optimize and broaden current tidal wetland remote sensing and GIS approach and application, which in turn theoretically and practically enlarge and enhance remote sensing and GIS application principle.
     Object-oriented tidal wetland remote sensing and GIS technology's application can be divided into the following sections. Section I describes the object-oriented knowledge and identification on tidal wetland, establishing its structure and boundary, and analyzing tidal wetland object's problem from different levels, as formulating a clear target for remote sensing and GIS application. Section II elaborates the procedure of practical application on wetland according to basic knowledge of tidal wetland, which is following Question-Aim-Case Selection-Analysis-Reality steps. And also gives a specific approach for remote sensing and GIS technology. How to build up tidal wetland geo-database is available in section III, which also particularly explains the method of picking up tidal wetland remote information and does some research on remote sensing data analyzing, object's image creation, and object space semantic network building and identification on object-image. Based on knowledge and method mentioned above, section IV selects the coastline erosion and accretion in Yangtze River, the alternate investigation of tidal wetland resource and the tidal vegetation analysis as examples to utilize and carry out object-oriented remote sensing and GIS technology in image pre-processing, image segmentation, image object hierarchical network building and image classification. The last section concerns how to build up an integral tidal wetland geographic information system which including the object oriented software analyses, design, development, deployment and maintenance.
     There are two primary innovative ideas in this study. The first one is the approach of how object oriented theory synthetic to remote sensing and GIS method for investigation, monitoring on tidal wetland resource and environmental situation, of which mainly focuses on analyzing varied tidal wetland based on object-oriented, geographically expressing and building model according to tidal wetland object data, quickly and precisely acquiring and extracting tidal wetland information. The other one is the development of tidal wetland resource and environment geographic information system which involving object-oriented theory to system analyses, design, code, debug and maintain. The systems are service-based information system and have some characteristics featured as simple, systematic, developed, expanding and seamless. Deployment of this tidal wetland geographic information system provides a platform for decision-making and scientific management of resource and environment for all policy-making, supervisor, mangers and researchers, who closely associated with tidal wetland in Shanghai.
引文
1. Ballinger, K., 2004. Net Web Services 架构与实现. 北京: 中国电力出版社.
    
    2. Bastin, L., 1997, Comparison of fuzzy c-mean classification, linear mixture modeling and MLC probabilities as tools for unmixing modeling and MLC probabilities as tools for unmixing coarse pixels. International Journal of Remote Sensing, 18, 3629-3648.
    3. Batistella, M., Robeson, S. and E. F. Moran, 2003. Settlement design, forest fragmentation and landscape change in Rondonia Amazonia. Phtotgrammetric Engineering & Remote Sensing, 69(7), 805-812.
    4. Battz, M. and A. Schape, 2000. Multiresolution segmentation: An optimization approach for high quality multi-scale image segmentation. In: Strobl, J., Blaschke, T., and G. Griesebner. Angewandte Geographiche Informationsverarbeitung XII, Heidelberg: Wichmann-verlag, PP. 12-23.
    5. Battz, M., Benz, U., Dehghani, S., Henmen, M., Holtje, A., Hofmann, P., Ligenfelder, I., Mimler, M., Sohlbach, M., Weber, M. and G. Willhauck, 2001.eCognition user guide. Munich: Defineens Imaging GmbH.
    6. Benz, U., 2001. Definiens imaging GmbH: object-oriented classification and feature detection. IEEE Geoscience and Remote Sensing Society Newsletter, (9), 16-20.
    7. Benz, U.C., Hofmann, P., Willhauck, G., 2004. Lingenfelder I & Heynen M. Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information. ISPRS Journal of Photogrammetry and Remote Sensing, 58, 239-258.
    8. Blodget, H.W., Taylor, P.T., Roark, J.H., 1991. Shoreline changes along the Rosetta-Nile Promontory: Monitoring with satellite observations. Marine Geology, 99,67-77.
    9. Bourgeau- Chavez, L. L., Kasischke, E.S., Brunzell, S.M., 2001. Analysis of space- borne SAR data for wetland mapping in Virginia riparian ecosystems.International. Journal of Remote Sensing, 22(18), 3665-3687.
    10. Breiman, L., 1996. Bagging predictors. Machine Learning, 24,123-140.
    11. Bronge, L.B., Naslund, L.B., 2002. Wetland classification for Swedish CORINE Land Cover adopting a semi- automatic interactive approach.Canadian Journal of Remote Sensing,28(2), 139-155.
    12. Burnett, C, Blaschke, T., 2003. A multi-scale segmentation/object relationship modeling methodology for landscape analysis. Ecological Modeling, 168(3), 233-249
    13. Butera, M.K., 1983. Remote Sensing of Wetlands. IEEE Transaction on Geoscience and Remote Sensing, NE221,383-392.
    14. Caselles, V. and M.J.L., Garcia, 1989. An alternative simple approach to estimate atmosphere correction in multitemporal studies. International Journal of Remote Sensing, 10(6), 1127-1134.
    15. Chu, Z.X., Sun, X.G., Zhai, S.K., Xu, K.H., 2006. Changing pattern of accretion/erosion of the modern Yellow River (Huanghe) subaerial delta, China: Based on remote sensing images. Marine Geology, 227, 13-30.
    16. Conel, J.E., 1990. Determination of surface reflectance and estimates of atmospheric optical depth and single scattering Aledo from Landsat Thematic Mapper data. International Journal of Remote Sensing, 11, 783-828.
    17. Dechka, J.A., Franklin, S.E., Watmough, M.D., 2002. Classification of wetland habitat and vegetation communities using multi-temporal Ikonos imagery in southern Saskatchewan. Canadian Journal of Remote Sensing, 28(5), 679-685.
    18. Definiens Imaging, 2004. ECongnition User guilde. Germany. 2008
    19. Du, Y., Teillet, P.M., Cihlar, J., 2002. Radiometric normalization of multitemporal high-resolution satellite images with quality control for land cover change detection. Remote Sensing of Environment, 82, 123.
    20. Duda, R.O., Hart, P.E., Stork, D. G., 2001. Pattern classification. New York: John Wiley & Sons.
    21. Evjen, B., 2003. Introducing XML Web services. Database and Network Journal, 33(3), 6-9.
    22. Foody, G., 2002. Ml Status of land-cover classification accuracy assessment. Remote Sensing of Environment, 80,185-201.
    23. Forman, R.T.T., 1995. Land mosaics: the ecology of landscapes and regions. Cambridge: Cambridge University Press.
    24. Friedl M.A., C.E.Brodley. Decision tree classification of land cover from remotely sensed data [J]. Remote Sensing of Environment, 1997, 61(3):399-409.
    25. Friedl, M.A., Brodley, C.E., 1999. Maximizing Land Cover classification Accuracies Produced by Decision Tree at Continental to Global scales. IEEE Transactions on Geoscience and Remote Sensing, 37(2), 969-977.
    26. Goetz, J., You F., 2003. Developing and validating XML Web services within distributed and heterogeneous environment. In: Grzech A, Wilimowska Z. Information Systems Applications and Technology ISAT 2003. Wroclaw: Wroclaw University of Technology Press, PP.108-115.
    27. Gong, P., Pu,R., Chen,J., 1996, Mapping ecological lands systems and classification uncertainties from digital elevation and forest-cover data using neural networks. Photogrammetric Engineering and Remote Sensing, 62, 1249-1260.
    28. Gordon, A.D., Pucella, R., 2005. Validating a web service security abstraction by typing. Formal Aspects of Computing, 17(3), 277-318.
    29. Haboudane, D., Miller, J.R., Tremblaly, N., Zarco-Tajada, P.J., Dextraxe, L., 2002. Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture. Remote Sensing of Environment, 81,416-426.
    30. Hall, F.G., Strebel, D.E., Nickeson, J. E., Goetz, S. J., 1991. Radiometric rectification: Toward a common radiometric response among multidate, multisensor images. Remote Sensing of Environment, 35, 11-27.
    31. Hansen, M., Dubayah, R., Defries, R., 1996. Classification trees: An alternative to traditional land cover classifiers. International Journal of Remote Sensing, 17(5), 1075-1081
    32. Heo, J. and F.W., Fitzhugh, 2000. A standardized radiometric Normalization method for change detection using remotely sensed imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 60, 173-181.
    33. Herald, M., Scepan, J., Clarke, K.C., 2002. The use of remote sensing and landscape metrics to describe structures and changes in urban land uses. Environment and Planning A, 34, 1443-1458.
    34. Hirano, A., Madden, M., Welch, R., 2003. Hyperspectral image data for mapping wetland vegetation. Wetlands, 23(2), 436-448.
    35. Houhoulis, P.F., and W.K., Michener, 2000. Detecting wetland change: a rule- based approach using NWI and SPOT- XS data. Photogrammetric Engineering and Remote Sensing, 66(2), 205-211.
    36. Huang, X. Q., Jensen, J.R., 1997. A Machine Learning Approach to Automated Know ledge based Building for Remote Sensing Image Analysis with GIS Data. Photogrammetric Engineering & Remote Sensing, 63 (10), 1185-1194.
    37. Inspec, 2002. ACORN 4.0 User's Guide. Boulder, CO: Analytical Imaging and Geophysics.
    38. Ji, M. and J.R., Jensen, 1996. Fuzzy training in supervised digital image processing. Geographic Information Science, 2(1), 1-11.
    39. Ji, M. and J.R., Jensen, 1999. Effectiveness of subpixel analysis in detecting and quantifying urban imperviousness from Landsat Thematic Mapper imagery. Geocarto International: A Multidisciplinary Journal of Remote Sensing and GIS, 14(4), 39-49.
    40. Kawata, Y., Ohtani, A., Kusaka, T., Ueno, S., 1990. Classfication Accuracy for the MOS-1 MESSR data before and after the atmospheric correction. IEEE Transactions on Geoscience Remote Sensing, 28, 755-760.
    41. Kumar, P., Sanabada, M.K., Mohanty, P.R., 1994. Applications of remote sensing in spatial and temporal analysis of Coastal Wetlands Vulnerability- a Case Study on Samung Lake of Orissa. In Proceedings of the 15the Asian Conference on Remote Sensing. 17-23 November, Bangalore, India.
    42. Kushwaha, S.P.S., Dwivedi, R.S., Rao, B.R. M., 2000. Evaluation of various digital image processing techniques for detection of coastal wetlands using ERS- 1 SAR data. International Journal of Remote Sensing, 21(3), 565-579.
    43. Kushwaha, S.P.S., Dwivedi, R.S., Rao, B.R.M., 2000. Evaluation of Various Digital Image Processing Techniques for Detection of Coastal Wetlands Using ERS21 SAR Data. International Journal of Remote Sensing, 21 (3), 565-579.
    44. Laliberte, A.S., Rango, A., Havstad, K.M., Parid, J.F., Beck, R.F., Mcneely, R., Gonzalez, A.L., 2004. Object-oriented image analysis for mapping shrub encroachment from 1937 to 2003 in southern New Mexico. Remote Sensing of Environment, 93,198-210.
    45. Lillesand, T.M., Kiefer, R.W., 2000. Remote sensing and image interpretation. Fourth Edition. New York: John Wiley & Sons.
    46. Loudjani, P., 1999. The Lacoast project: land cover changes survey of European coastal zones. In: Proceedings of Symposium on Operational Remote Sensing for Sustainable Development, Balkema, And The Netherlands.
    47. Lyon, J.G., Cartby, J.M., 1995.Wetland and Environmental Applications of GIS. Lews Publishers, N Y.
    48. Ma, J.W., Hasi, B.G., 2005. Land-use classification using ASTER data and self-organized neutral networks. International journal of Applied Earth Observation and Geo-information, 7(3), 183-188.
    49. Macdnald, H.C., Waite, W.P., Demarcke, J.S., 1980. Use of Seasat Satellite Radar Imagery for the Detection of Standing Water beneath Forest Vegetation. In Proceedings of the American Society of Photogrammetry. Annual Technical Meeting, Niagara Falls.
    50. Marakas, G.M., 2003. Decision support system in the 21st century. Upper Saddle River, NJ: Prentice-Hall.
    51. Mather, P.M., 2004. Computer processing of remotely-sensed images: an introduction. Hoboken: John Wiley & Sons.
    52. Mather, P.M., 2004. Computer processing of remotely-sensed images: an introduction. Hoboken: John Wiley & Sons.
    53. Moran, M.S., Bryant, R., Thome, K., 2001. A refined empirical line approach for reflectance factor retrieval from Landsat-5 TM and Landsat-7 ETM+. Remote sensing of environment, 78,71-82.
    54. Moreau, S., Bosseno, R., Xing, F.G., 2003. Assessing the biomass dynamics of Andeanbo fedal and totora high - protein wetland grasses from NOAA /AVHRR. Remote Sensing of Environment, 85 (4), 516-529.
    55. Moreau, S., Thuy, L.T., 2003. Biomass quantification of Andean wetland forages using ERS satellite SAR data for op timizing livestock management. Remote Sensing of Environment, 84 (4), 477-492.
    56. Munyati, C, 2000. Wetland change detection on the Kafue Flats, Zambia, by classification of a multi-temporal remote sensing image dataset. International Journal of Remote Sensing, 21(9), 1781-1806.
    57. Narumalani, S., Zhou, Y., Jensen, J.R., 2002. Information extraction from remotely sensed data. In: Bossier, J.D., Jensen, J.R., McMaster, R.B., Rizos, C. Manual of Geospatial Science and Technolgy, New York: Taylor & Frances, 298-324.
    58. Pal, M., Mather, P.M., 2003. An assessment of the effectiveness of decision tree methods for land cover classification. Remote sensing of environment, 86(4), 54-565.
    59. Phillips, R.L., Beeri, O., DeKeyser, E.S., 2005. Remote wetland assessment for Missouri coteau prairie glacial basins. Wetlands, 25(2), 335-349.
    60. Phinn, S.R., Stow, D.A., Mouwerik, D.V., 1999. Remotely sensed estimates of vegetation structural Characteristics in restored wetland, Southern California. Photogrammetric Engineering & Remote Sensing, 65 (4), 485-493.
    61. Rio, J.N. R., Lozano~Garcia, D.F., 2000. Spatial Filtering of Radar Data (RADARSAT) for Wetlands (Brackish Marshes) Classification. Remote Sensing of Environment, 73(2), 143-151.
    62. Riolo, F., 2006. A geopgraphic information system for fisheries management in American Samoa. Environmental Modelling & Software, 21, 1025-1041.
    63. Roberts, D.A., Yamagushi, Y., Lyon, R.J.P., 1986. Comparison of various techniques for calibration of AIS data.In: Vane, G. and A. F. H. Goetz. 2nd Airborne Imaging Spectrometer Data Analysis Workshop. Pasadena: NASA Jet Propulsion Laboratory, JPL Publication, 35, 21-30.
    64. Sader, S.A., Liou, W.S., 1995. Accuracy of L andsat2TM and GIS Rule2Based Methods for Forest Wetland Classification in Maine. Remote Sensing of Environment, 53, 133-144.
    65. Salem, F., Kafatos, M., EL-Ghazawi, T., 2005. Hyperspectral image assessment of oil- contaminated wetland. International Journal of Remote Sensing, 26(4), 811-821.
    66. Schmid, T., Koch, M., Gumuzzio, J., 2004. A spectral library for a semi- arid wetland and its application to studies of wetland degradation using hyperspectral and multispectral data. International Journal of Remote Sensing, 25(13), 2485-2496.
    67. Schott, J.R., Salvaggio, C, Wolchok, W.J., 1988. Radiometric scene normalization using pseudo invariant features. Remote Sensing of Environment, 26,1-16.
    68. Smith, G.M. and E.J., Milton, 1999. The use of the empirical line method to calibrate remotely sensed data to reflectance. International Journal of Remote Sensing, 20, 2653-2662.
    69. Smith, G.M., Milton, E.J., 1999. The use of empirical line method to calibrate remotely sensed data to reflectance. International Journal of Remote Sensing, 20, 2653-2662.
    70. Song, C, Woodcock, C.E., Soto, K.C., Lenney, M.P., Macomber, S.A., 2001. Classfication and change detection using Landsat TM data: When and how to correct atmosphere affects. Remote Sensing of Environment, 75, 230-244.
    71. Thiemann, S., Hermann, K., 2002. Lake water quality monitoring using hyperspectral airborne data- a semi empirical multisensor and multitemporal approach for Mecklenburg Lake District, Germany. Remote Sensing of Environment, 81, 228-237.
    72. Townsend, P.A., 2002. Estimating forest structure in wetlands using multitemporal SAR. Remote Sensing of Environment, 79(2-3), 288-304.
    73. Turner, M.G., Gardner, R.H., O'Neill, R.V., 2001. Landscape ecology in theory and practice: pattern and process .New York: Springer-Verlag.
    74. Waite, W.P., Macdonald, H.C., 1971. Vegetation Penetration with K2 band Imaging Radars. IEEE Transactions on Geoscience and Electronics, GE29, 147-155.
    75. Wang, L., Sousa, W.P., Gong, P., 2004. Comparison of IKONOS and QuickBird images for mapping mangrove species on the Caribbean coast of Panama. Remote Sensing of Environment, 91 (3), 432-440.
    76.Woodcock,C.E.,Strahler,A.H.,1987.The factor of scale in remote sensing.Remote Sensing of Environment,21(3),311-332.
    77.Zhu,G.B.,Blumberg,D.G.,2002.Classification using ASTER data an SVM algorithms;The case study of Beer Sheva,Israel.Remote sensing of Environment,80(2),233-240.
    78.布和敖斯尔,刘纪远,王长耀.遥感技术在我国资源和环境变化研究中的作用[J].科技导报,1997,(8):14-17.
    79.布朗.大规模基于构件的软件开发[M].北京:机械工业出版社,2003.
    80.蔡述明,张晓阳.江汉平原湿地资源及其动态变化遥感分析[A].IN:陈宜瑜.中国湿地研究[C].长春:吉林科技出版社,1995.
    81.曹宝,秦其明,马建海,邱云峰.面向对象方法在SPOT5遥感影像分类中的应用-以北京市海淀区为例[J].地理与地理信息科学,2006,22(2):46-49.
    82.曹爽,梁君霞,李浩.面向对象的建模在GIS软件中的应用探讨[J].测绘与空间地理信息.2005,28(3):69-70.
    83.陈基炜,梅安新,袁江红.从海岸滩涂变迁看上海滩涂土地资源的利用[J].上海地质,2005,(1):18-20.
    84.陈吉余,陈沈良.中国河口海岸面临的挑战[J].海洋地质动态,2002,18(1):1-5.
    85.陈立,吴门伍,张俊勇.三峡工程蓄水运用对长江口径流来沙的影响[J].长江流域资源与环境,2003,12(1):50-54.
    86.陈述彭.遥感大词典[M].北京:科学出版社,1990.
    87.陈云浩,冯通,史培军,王今飞.基于面向对象和规则的遥感影像分类研究[J].武汉大学学报(信息科学版),2006,31(4):316-320.
    88.程博,刘少峰,杨巍然.Terra卫星ASTER数据的特点与应用[J].华东地质学院学报,2003(3):15-17.
    89.程博,刘少峰,杨巍然.Terra卫星aster数据的特点与应用[J].华东地质学院学报,2003,26(1):15-17.
    90.池宏康,周广胜,许振柱,肖春旺,袁文平.表观反射率及其在植被遥感中的应用[J].植物生态学报,2005,29(1):74-80.
    91.代侦勇 杜清运.全新的GIS体系结构模式:g.net[J].测绘信息与工程,2003,28(1):29-30.
    92.邓劲松,王坷,李君等.决策树方法从SPOT-5卫星影像中自动提取水体信息研究[J].浙江大学学报(农业与生命科学版),2005,31(2):171-174.
    93.邓劲松,王珂,李君,董云奇.决策树方法从SPOT-5卫星影像中自动提取水体信息研究[J].浙江大学学报(农业与生命科学版,2005,3(2):171-174.
    94.丁丽霞,周斌,王人潮.遥感监测中5种相对辐射校正方法研究[J].浙江大学学报(农业与生命科学版),2005,31(3):269-276.
    95.杜凤兰,田庆久,夏学齐,惠凤鸣.面向对象的地物分类法分析与评价[J].遥感技术与应用.2004,19(1):20-23
    96.杜红艳,张洪岩,张正祥.GIS支持下的湿地遥感信息高精度分类方法研究.遥感技术与应用,2004,19(4):244-248.
    97.傅庆林,王建红.GIS在浙江省海涂农业管理中的应用[J].浙江农业科学,1999(1):33-35.
    98.高龙华,程芳.基于QuickBird影像的滩涂资源监测研究[J].遥感技术与应用,2004,19(2):95-97.
    99.高曼娜,黄韦良等.海岸带环境遥感信息提取与分析--TM和SAR数据在河口海岸研究中的应用[J].中国航天,1998,(10):8-10.
    100.关元秀,刘高焕.黄河三角洲盐碱地遥感调查研究[J].遥感学报,2001,5(1):46-52.
    101.桂智明,晏磊.基于XML Web Service体系的网络地图服务[J].测绘通报,2003,(1):53-55.
    102.郭宁,杨一平.软件工程实用教程[M].北京:人民邮电出版社.2006.3.
    103.郭伟,李书恒.海岸带网络地理信息系统的研究探讨[J].江西师范大学学报:自然科学版, 2004,28(3):266-270.
    104.韩敏,刘长山,孟华.基于WEB的扎龙湿地GIS系统的建立[J].计算机工程与应用,2003,(3):19-21.
    105.韩敏,刘慧,李天吴,等.基于UML的湿地地理信息系统设计和开发[J].计算机应用研究,2004,(6):168-170.
    106.黄海军,李成治,郭建军.卫星影像在黄河三角洲岸线变化研究中的应用[J].海洋地质与第四纪地质,1994,14(2):29-37.
    107.黄惠萍.应用GIS技术研究广东省海岸带湿地资源与环境[J].热带地理,1999,19(2):178-183.
    108.黄慧萍,吴炳方.地物大小、对象尺度、影像分辩率的关系分析[J].遥感技术与应用,2006,21(3):243-248.
    109.黄进良.洞庭湖湿地的面积变化与演替[J].地理研究,1999,18(3):297-304.
    110.霍东民,孙家炳,刘高焕.3S技术在黄河三角洲土壤盐份分析样点采集中的应用[J].遥感信息,2001(2):35-37.
    111.简钟,王时绘.GIS开发中面向对象方法的几个关键技术的应用研究[J].计算机与现代化.2005,117(5):31-33.
    112.金建君,恽才兴,巩彩兰.海岸带综合管理的核心目的及有关技术的应用[J].海洋湖沼通报,2002,(1),26-32.
    113.金旭亮.编程的奥秘--.NET软件技术学习与实践[M].北京:电子工业出版社,2006.
    114.李波,王娓娓,何建敏..NET框架下N层结构信息系统的设计与实现[J].计算机与现代化,2005,(1):60-62.
    115.李德仁,朱欣焰,龚健雅.从数字地图到空间信息网格[J].武汉大学学报:信息科学版,2003,18(6):642-650.
    116.李海涛,田庆久.ASTER数据产品的特性及其计划介绍[J].遥感信息,2004(3):53-55.
    117.李慧,陈健飞,余明.线性光谱混合模型的aster影像植被应用分析[J].地球信息科学,2005,7(1):103-106.
    118.李建平,张柏,张冷,王宗明,宋开山.湿地遥感监测研究现状与展望[J].地理科学进展,2007,26(1):33-43.
    119.李仁东,刘纪远.应用Landsat ETM数据估算鄱阳湖湿生植被生物量[J]1地理学报,2001,56(5):532-540.
    120.李学谦.海南岛湿地遥感编图研究[J].遥感信息,1998,(3),20-24.
    121.刘凯,黎夏,王树功等.珠江口近20年红树林湿地的遥感动态监测[J].热带地理,2005,25(2):111-116.
    122.刘莹.ArcGIS Engine的开发及应用研究[J].城市勘察,2006,02:37-40.
    123.刘永学,张忍顺,李满春.江苏淤泥质潮滩地物信息遥感提取方法研究[J].海洋科学进展,2004,22(2):210-214.
    124.吕宪国.湿地生态系统观测方法[M].北京:中国环境科学出版社,2005.
    125.彭建,王仰麟.我国沿海滩涂的研究[J].北京大学学报(自然科学版),2000,36(6):832-839.
    126.浦瑞良,宫鹏.高光谱遥感及其应用[M].北京:高等教育出版社,2000.
    127.钱巧静,谢瑞,张磊,颜长珍,吴炳方.面向对象的土地覆盖信息提取方法研究[J].遥感技术与应用.2005,20(3):338-342.
    128.阮建武,邢立新.遥感数字图像的大气辐射校正应用研究[J].遥感技术与应用,2004,19(3):206-208.
    129.沙宗尧,边馥苓.基于面向对象知识表达的空间推理决策及应用[J].遥感学报.2004,8(2):165-171.
    130.孙东川,林福永.系统工程引论[M].北京:清华大学出版社,2004,10.
    131.孙晓霞,张继贤,刘正军.利用面向对象的分类方法从IKONOS全色影像中提取河流和道路[J].测绘科学,2006,31(1):61-63.
    132.田波,丁丽霞,周云轩,等.多层分布式林业信息服务平台的构建[J].浙江林学院,2006,23(4):429-434.
    133.田波,周云轩,李俊红,宗玮.基于.NET和ArcGIS Engine开发上海市滩涂资源管理系统[J].计算机工程与应用,2007,43(14):184-186.
    134.田庆久,郑兰芬,童庆禧.基于遥感影像的大气辐射校正和反射率反演方法[J].应用气象学报1998,9(4):456-461.
    135.童庆禧,郑兰芬.湿地植被成象光谱遥感研究[J]1遥感学报,1997,(1):50-57.
    136.汪爱华,张树清,张柏.遥感和地理信息系统技术在湿地研究中的应用[J].遥感技术与运用,2001,16(3),200-204.
    137.王炳雪.面向对象的空间环境信息系统的设计与开发[J].计算机应用研究.2005,(5):202-204.
    138.王红,宫鹏,刘高焕.黄河三角洲土地利用/土地覆盖变化研究现状与展望[J].自然资源学报,1994,75(7):1861-1876.
    139.王军,许世远,陈振楼,等.长江口滨岸湿地环境信息系统的建立与应用[J].地理学报,2004,59(6):927-937.
    140.王树功,黎夏,钟凯文,周永章,刘凯.遥感与GIS技术在湿地定量研究中的应用趋势分析[J].热带地理,2005,25(3),201-205.
    141.王宪礼,胡远满,布仁仓.辽河三角洲湿地的景观变化分析[J].地理科学,1996,16(3):260-265.
    142.王晓咏,杨明福.基于.NET平台的构件开发若干问题研究[J].计算机应用与软件,2005,22(2):27-30
    143.吴广谋.系统原理与方法[M].南京:东南大学出版社,2005,5.
    144.吴曙亮,蔡则健.江苏沿海滩涂资源及发展趋势遥感分析[J].国土资源遥感,2002,(3):24-28.
    145.吴昀昭,田庆久,金震宇,张宗贵,惠凤鸣.ETM+数据绝对反射率反演方法分析[J].遥感信息,2004,(2):9-12.
    146.肖海,武伟,刘洪斌.基于ArcGIS Engine的农业资源信息管理系统的研究[J].计算机与现代化,2006,(1):76-78.
    147.谢小惠,向南平.基于ArcGIS Engine的开发原理和方法的探讨[J].城市勘察,2006,02:46-49.
    148.杨肖琪,林敏基.海洋,海岸带环境与灾害遥感监测[J].集美大学学报:自然科学版,1997,2(1):13-19.
    149.叶庆华,刘高焕.基于GIS的时空复合体-土地利用变化图谱模型研究方法[J].地理科学进展,2002,21(4):349-357.
    150.恽才兴.海洋遥感进展与展望[J].地球科学进展,1993,8(1):14-20.
    151.张柏.遥感技术在中国湿地研究中的应用[J].遥感技术与应用,96,11(1):67-71.
    152.章立民.ADO.NET+VB.NET数据库应用开发指南[M].北京:中国铁道出版社,2004.
    153.赵英时.遥感应用分析原理与方法[M].北京:科学出版社,2003.
    154.郑军,陈正阳.基于.net平台集成二次开发GIS的方法[J].兵工自动化,2005,24(1):88-90.
    155.周成虎,骆剑承,杨晓梅.遥感影像地学理解与分析[M].北京:科学出版社,2001.
    156.周良勇,刘健.加拿大海岸带调查工作[J].海洋地质动态,2003,19(1):1-4.
    157.朱黎江,秦其明,陈思锦.Aster遥感数据解读与应用[J].国土资源遥感,2003,(2):59-63.
    158.宗梅,马小平.基于.NET的三层Client/server的结构及其应用[J].计算机工程与设计,2005,26(2):520-522.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700