用户名: 密码: 验证码:
流域水热耦合平衡方程推导及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
流域蒸散发研究是明晰流域水循环机理,支撑流域水资源优化配置的基础。但是,现有的流域蒸散发理论尚不能全面揭示不同时间和空间尺度上的蒸散发变化规律。本论文的主要研究目的是:从理论上重新推导流域水热耦合平衡方程,并探讨将其用于估计流域实际蒸散发量和预测气候变化对流域蒸散发的影响。
     Budyko假设指出,多年尺度上流域实际蒸散发量E的控制性因素是降水量P和潜在蒸散发量E0,三者之间存在一定的函数关系。基于这一思想,本文提出了描述多年平均流域水热耦合平衡关系的偏微分方程,并从理论上证明该方程的解含有一个参数;由流域水文过程的基本原理给出偏微分方程的边界条件,结合量纲分析的Buckingham Pi定理,求得偏微分方程的解析解,即流域多年平均水热耦合平衡方程。
     考虑土壤初始含水量的影响,定义任意时段可利用水量的概念,推导得到任意时间尺度的水热耦合平衡方程,以此将适用于长时间尺度的Budyko假设和适用于短时间尺度的Penman假设从理论上进行了统一。
     采用通量实验站的观测数据,在田间尺度上验证了水热耦合平衡方程在月、旬和日时间尺度上的适用性。然后将方程用于模拟叶尔羌绿洲的月耗水过程,并对比干旱区平原绿洲四水转化模型的模拟结果,一定程度上说明了方程在区域尺度上的适用性,指出方程中的参数与区域综合的作物生长状况相关,这为作为水资源规划基础的耗水分析提供了工具手段。
     定量评估气候变化对水文循环的影响时,E0作为与大气状态相关的物理量,既是E变化的原因,也是E变化的结果,即E和E0同为未知量,故只依靠水热耦合平衡方程无法求解,为此引入Bouchet假设,建立定量评估E对气候变化响应的模型。
     对我国最近50年间的气象观测数据进行的分析表明,气象要素的变化具有地区差异,温室气体和气溶胶浓度的增加可能是气候变化的原因。利用模型进行的分析结果表明,不同地区实际蒸散发对气候要素变化的敏感性不同,实际蒸散发的变化趋势和起主导作用的气候要素也各不相同。
In the catchment scale, study on evapotranspiration is the basis for understanding hydrological cycle and for optimal allocation of water resources. But present theories on regional evapotranspiration have limitations to fully understand the spatial and temporal variability of evapotranspiration and for accurate estimating the actual evapotranspiration. Main objectives of present study are to derive the coupled water-energy balance equation based on existing evapotranspiration theories, and exploring its applicability for estimating the actual evapotranspiration and predicting the change trend of actual evapotranspiration due to climate change.
     Budyko hypothesis indicates that actual evapotranspiration in a catchment was dominated by precipitation and potential evapotranspiration over a long time scale, and the relationship of these three variables can be expressed as a function. Following this hypothesis, a set of partial differential equations was presented to describe the coupled water-energy balance in a catchment. Solution to these equations has only a parameter if the solution exists. Based on the hydrologic principle, the boundary conditions were given for the partial differential equations. Using the Buckingham Pi Theorem, the analytical solution was obtained, i.e. mean annual coupled water-energy balance equation.
     Considering the effect of soil moisture on actual evapotranspiration, this thesis also derived the coupled water-energy balance equation at any arbitrary time scale, and the equation was the same as the Budyko hypothesis at long-term time scale and the same as the Penman hypothesis at short time scale.
     Based on the flux observation at experiment stations in the Asia Monsoon region, the coupled water-energy balance equation was validated over different time scales, i.e., from a monthly time scale to daily time scale. The equation was used to calculate the monthly actual evapotranspiration of the Yerqiang Oasis, and the result was compared with that estimated by the oasis runoff-evapotranspiration model. It showed that the equation was usable for estimating actual evapotranspiration at regional scale. It offers a useful tool for the water consumption analysis for the water resources allocation program. The parameter of the equation has been found to have a positive correlation with the regional integral condition of vegetation.
     When evaluating the response of actual evapotranspiration (E) to climate change, potential evapotranspiration, a function of atmosphere state, it is both the result of and the cause for E. Therefore, the coupled water-energy balance equation can’t estimate E independently. Based on Bouchet and Budyko hypotheses, a model for evaluating hydrologic response to the changes of climatic factors was established.
     Using the meteorological data during the past 50 years, it was been found that changes in climatic factors have significant regional variability. The increase in greenhouse gases and aerosols may be responsible for climate change. Based on the results estimated by the model, I analyzed the regional variability in the sensitivity of actual evapotranspiration to climatic factors, as well as the trend in actual evapotranspiration and the dominative climatic factors in China.
引文
[1]芮孝芳.水文学原理,北京:中国水利水电出版社, 2004.
    [2]王燕生.工程水文学(第二版),北京:中国水利水电出版社, 1992.
    [3]雷志栋,杨诗秀,谢森传.土壤水动力学,北京:清华大学出版社, 1988.
    [4]刘昌明.黄河流域水循环演变若干问题的研究.水科学进展, 2004, 15(05): 608~614.
    [5]雷志栋,倪广恒,丛振涛,等.干旱区绿洲水资源可持续利用中的几个热点问题的认识.水利水电技术, 2006, 37(02): 31~32.
    [6]雷志栋,杨诗秀,王忠静,等.内陆干旱平原区水资源利用与土地荒漠化.水利水电技术, 2003, 34(01): 36~40.
    [7]雷志栋,杨诗秀,胡和平,等.四水转化、水资源与水土姿源平衡——干旱、半干旱地区水资源平衡分析问题讨论(1).水利规划与设计, 2001, (02): 28~29.
    [8]雷志栋,杨诗秀,胡和平,等.区域水资源平衡分析——干旱、半干旱地区水资源平衡分析问题讨论(2).水利规划与设计, 2001, (03): 11~15.
    [9]雷志栋,苏立宁,杨诗秀,等.青铜峡灌区水土资源平衡分析的探讨.水利学报, 2002, (06): 9~14.
    [10]钱正英,沈国舫,潘家铮.西北地区水资源配置生态环境建设和可持续发展战略研究(综合卷),北京:科学出版社, 2004.
    [11]清华大学水利水电工程系,叶尔羌河流域管理处勘测设计院.叶尔羌河流域平原绿洲耗水研究报告: 2006.
    [12] Milly P C. CLIMATE, SOIL-WATER STORAGE, AND THE AVERAGE ANNUAL WATER-BALANCE. WATER RESOURCES RESEARCH, 1994, 30(7): 2143~2156.
    [13] Wolock D M, Mccabe G J. Explaining spatial variability in mean annual runoff in the conterminous United States. CLIMATE RESEARCH, 1999, 11(2): 149~159.
    [14] Brutsaert W. Hydrology: An Introduction, Cambridge; New York: Cambridge University Press, 2005.
    [15] Kume T, Takizawa H, Yoshifuji N, et al. Impact of soil drought on sap flow and water status of evergreen trees in a tropical monsoon forest in northern Thailand. FOREST ECOLOGY AND MANAGEMENT, 2007, 238(1-3): 220~230.
    [16]夏军.华北地区水循环与水资源安全:问题与挑战.地理科学进展, 2002, (06): 517~526.
    [17] Budyko M I. Climate and Life, New York and London: Academic press, 1974.
    [18] Lvovitch M I. World Water Balance, Symposium on World Balance Proc., ReadingSymposium. International Association of Hydrological Science Publication, 1970, 93: 401~415.
    [19] Lvovitch M I. The Global Water Blance. Transactions of the American Geophysical Union, 1973, 54: 28~42.
    [20] Baumgartner A, Reichel E. The World Water Balance, New York: Elsevier, 1975.
    [21] Korzun V I. World Water Balance and Water Resources of the Earth, Paris: UNESCO, 1978.
    [22] Ohmura A, Wild M. Is the hydrological cycle accelerating? SCIENCE, 2002, 298(5597): 1345~1346.
    [23]秦大河,丁一汇,苏纪兰,等.中国气候与环境演变:气候与环境的演变及预测,北京:科学出版社, 2005.
    [24]左洪超,吕世华,胡隐樵.中国近50年气温及降水量的变化趋势分析.高原气象, 2004, 23(02): 23~244.
    [25] IPCC. Observation: Surface and Atmospheric Climate Change, eds. By K. E. Trenberth and P. D. Jones, Cambridge UK: Cambridge University, 2007.
    [26] Stanhill G, Cohen S. Global dimming: a review of the evidence for a widespread and significant reduction in global radiation with discussion of its probable causes and possible agricultural consequences. AGRICULTURAL AND FOREST METEOROLOGY, 2001, 107(4): 255~278.
    [27]查良松.我国地面太阳辐射量的时空变化研究.地理科学, 1996, 16(03): 232~237.
    [28]杨羡敏,曾燕,邱新法,等. 1960~2000年黄河流域太阳总辐射气候变化规律研究.应用气象学报, 2005, 16(02): 243~248.
    [29] Dai A G. Recent climatology, variability, and trends in global surface humidity. JOURNAL OF CLIMATE, 2006, 19(15): 3589~3606.
    [30]石广玉,王喜红,张立盛,等.人类活动对气候影响的研究Ⅱ.对东亚和中国气候变化的影响.气候与环境研究, 2002, 17(02): 255~266.
    [31] IPCC. Climate Change 2000: The Scientific Basis, eds. By J. T. Houghton and Ding Yihui et al., Cambridge UK: Cambridge University, 2001.
    [32] Ramanathan V, Crutzen P J, Kiehl J T, et al. Atmosphere - Aerosols, climate, and the hydrological cycle. SCIENCE, 2001, 294(5549): 2119~2124.
    [33] Andreae M O, Rosenfeld D, Artaxo P, et al. Smoking rain clouds over the Amazon. SCIENCE, 2004, 303(5662): 1337~1342.
    [34] Borys R D, Lowenthal D H, Cohn S A, et al. Mountaintop and radar measurements of anthropogenic aerosol effects on snow growth and snowfall rate. GEOPHYSICAL RESEARCH LETTERS, 2003, 30(10), 1538, doi:10.1029/2002GL016855.
    [35] Gunn R, Phillips B B. An experimental investigation of the effect of air pollution on the initiation of rain. Journal of Meteorology, 1957, 14: 272~280.
    [36] Rosenfeld D. Suppression of rain and snow by urban and industrial air pollution. SCIENCE, 2000, 287(5459): 1793~1796.
    [37] Cui Z Q, Carslaw K S, Yin Y, et al. A numerical study of aerosol effects on the dynamics and microphysics of a deep convective cloud in a continental environment. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2006, 111, D05201, doi:10.1029/2005JD005981.
    [38] Huang Y, Chameides W L, Dickinson R E. Direct and indirect effects of anthropogenic aerosols on regional precipitation over east Asia. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2007, 112, D03212, doi:10.1029/2006JD007114.
    [39]周秀骥,李维亮,罗云峰.中国地区大气气溶胶辐射强迫及区域气候效应的数值模拟.大气科学, 1998, 22(04): 418~427.
    [40] Ramanathan V, Chung C, Kim D, et al. Atmospheric brown clouds: Impacts on South Asian climate and hydrological cycle. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102(15): 5326~5333.
    [41]陈隆勋,周秀骥,李维亮,等.中国近80年来气候变化特征及其形成机制.气象学报, 2004, 62(05): 634~645.
    [42] Zhao C S, Tie X X, Lin Y P. A possible positive feedback of reduction of precipitation and increase in aerosols over eastern central China. GEOPHYSICAL RESEARCH LETTERS, 2006, 33(11), L11814, doi:10.1029/2006GL025959.
    [43] Zhang X B, Zwiers F W, Hegerl G C, et al. Detection of human influence on twentieth-century precipitation trends. NATURE, 2007, 448(7152): 461~464.
    [44] Lau K M, Kim K M. Observational relationships between aerosol and Asian monsoon rainfall, and circulation. GEOPHYSICAL RESEARCH LETTERS, 2006, 33(21), L21810, doi:10.1029/2006GL027546.
    [45] Yang F L, Lau K M. Trend and variability of China precipitation in spring and summer: Linkage to sea-surface temperatures. INTERNATIONAL JOURNAL OF CLIMATOLOGY, 2004, 24(13): 1625~1644.
    [46] Hobbins M T, Ramirez J A, Brown T C. Trends in pan evaporation and actual evapotranspiration across the conterminous US: Paradoxical or complementary? GEOPHYSICAL RESEARCH LETTERS, 2004, 31, L13503, doi:10.1029/2004GL019846.
    [47] Karl T R, Knight R W, Easterling D R, et al. Indices of climate change for the United States. BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 1996, 77(2): 279~292.
    [48] Golubev V S, Lawrimore J H, Groisman P Y, et al. Evaporation changes over the contiguous United States and the former USSR: A reassessment. GEOPHYSICAL RESEARCH LETTERS, 2001, 28(13): 2665~2668.
    [49] Peterson T C, Golubev V S, Groisman P Y. EVAPORATION LOSING ITS STRENGTH. NATURE, 1995, 377(6551): 687~688.
    [50] Roderick M L, Farquhar G D. Changes in Australian pan evaporation from 1970 to 2002. INTERNATIONAL JOURNAL OF CLIMATOLOGY, 2004, 24(9): 1077~1090.
    [51] Roderick M L, Farquhar G D. Changes in New Zealand pan evaporation since the 1970s. INTERNATIONAL JOURNAL OF CLIMATOLOGY, 2005, 25(15): 2031~2039.
    [52] Thomas A. Spatial and temporal characteristics of potential evapotranspiration trends over China. INTERNATIONAL JOURNAL OF CLIMATOLOGY, 2000, 20(4): 381~396.
    [53] Liu B H, Xu M, Henderson M, et al. A spatial analysis of pan evaporation trends in China, 1955-2000. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2004, 109(D15): 0~0.
    [54]左洪超,李栋梁,胡隐樵,等.近40 a中国气候变化趋势及其同蒸发皿观测的蒸发量变化的关系.科学通报, 2005, (11): 1125~1130.
    [55]任国玉,郭军.中国水面蒸发量的变化.自然资源学报, 2006, 21(01): 31~44.
    [56] Milly P C, Dunne K A. Trends in evaporation and surface cooling in the Mississippi River basin. GEOPHYSICAL RESEARCH LETTERS, 2001, 28(7): 1219~1222.
    [57] Walter M T, Wilks D S, Parlange J Y, et al. Increasing evapotranspiration from the conterminous United States. JOURNAL OF HYDROMETEOROLOGY, 2004, 5(3): 405~408.
    [58] Penman H L. Natural evaporation from open water, bare soil and grass. Proceeding of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1948, 193(1032): 120~145.
    [59] Brutsaert W, Parlange M B. Hydrologic cycle explains the evaporation paradox. NATURE, 1998, 396(6706): 30~30.
    [60] Kahler D M, Brutsaert W. Complementary relationship between daily evaporation in the environment and pan evaporation. WATER RESOURCES RESEARCH, 2006, 42, W05413, doi:10.1029/2005WR004541.
    [61] Dooge J C, Bruen M, Parmentier B. A simple model for estimating the sensitivity of runoff to long-term changes in precipitation without a change in vegetation. ADVANCES IN WATER RESOURCES, 1999, 23(2): 153~163.
    [62] Qiu X F, Zeng Y, Miao Q L, et al. Estimation of annual actual evapotranspiration from nonsaturated land surfaces with conventional meteorological data. SCIENCE IN CHINA SERIES D-EARTH SCIENCES, 2004, 47(3): 239~246.
    [63] Bouchet R. Evapotranspiration reelle evapotranspiration potentielle, signification climatique. Int Assoc Sci Hydrol Proc, 1963, 62: 134~142.
    [64] Shuttleworth W J.蒸发:水文学手册. ) M (.北京:科学出版社, 2002104~155.
    [65] Allen R G, Pereira L S, Raes D, et al. Crop evapotranspiration: Guidelines for computing crop water requirements, 1998.
    [66]刘钰,Pereira L. S.对FAO推荐的作物系数计算方法的验证.农业工程学报, 2000, 16(05): 26~30.
    [67]康绍忠,熊运章.干旱缺水条件下麦田蒸散量的计算方法.地理学报, 1990, 45(04): 475~483.
    [68] Yang D W, Li C, Hu H P, et al. Analysis of water resources variability in the Yellow River of China during the last half century using historical data. WATER RESOURCES RESEARCH, 2004, 40, W06502, doi:10.1029/2003WR002763.
    [69]杨大文,李翀,倪广恒,等.分布式水文模型在黄河流域的应用.地理学报, 2004, 59(01): 143~154.
    [70]贾仰文,王浩,王建华,等.黄河流域分布式水文模型开发和验证.自然资源学报, 2005, 20(2): 300~308.
    [71] Budyko M I. The Heat Balance of the Earth's Surface, Washington, D.C.: U.S. Department of Commerce, 1958.
    [72] Schreiber P. Ueber die Beziehungen zwischen dem Niederschlag und der Wasserfvhrung der flvsse in Mitteleuropa. Meteorol. Z., 1904, 21: 441~452.
    [73] Ol'dekop E M. On evaporation from the surface of river basins. Transactions on Meteorological Observations University of Tartu, 1911, 4: 200.
    [74] Turc L. Le bilan d'eau des sols. Relations entre les precipitations, l'evaporation et l'ecoulement. Anna ls of Agronomy, 1954, 5: 491~596.
    [75] Pike J G. The estimation of annual run-off from meteorological data in a tropical climate. Journal of Hydrology, 1964, 2(2): 116~123.
    [76] Budyko M I. Evaporation under natural conditions, Leningrad: GIMIZ, 1948.
    [77] Rosenberg N J, Blad B L, Verma. Microclimate: the biological environment, New York: Wiley, 1983.
    [78] Rijks D A. Water Use by Irrigated Cotton in Sudan. III. Bowen Ratios and Advective Energy. The Journal of Applied Ecology, 1971, 8: 643~663.
    [79] Wright J L, Jensen M E. Peak water requirements of crops in southern Idaho. Journal of Irrigation and Drainage Division, 1972, 96: 193~201.
    [80] Rosenberg N J, Verma S B. Extreme Evapotranspiration by Irrigated Alfalfa: A Consequence of the 1976 Midwestern Drought. Journal of Applied Meteorology, 1976, 17:934~941.
    [81] Schaake J C. From climate to flow: Climate Change and U.S. Water Resources. Waggoner. New York: John Wiley, 1990177~206.
    [82] Arora V K. The use of the aridity index to assess climate change effect on annual runoff. JOURNAL OF HYDROLOGY, 2002, 265(1-4): 164~177.
    [83] Koster R D, Suarez M J. A simple framework for examining the interannual variability of land surface moisture fluxes. JOURNAL OF CLIMATE, 1999, 12(7): 1911~1917.
    [84] Yang H B, Yang D W, Lei Z D, et al. New analytical derivation of the mean annual water-energy balance equation. Water Resources Research, 2008, 44.
    [85]傅抱璞.论陆面蒸发的计算.大气科学, 1981, 5(01): 23~31.
    [86] Choudhury B J. Evaluation of an empirical equation for annual evaporation using field observations and results from a biophysical model. JOURNAL OF HYDROLOGY, 1999, 216(1-2): 99~110.
    [87] Zhang L, Dawes W R, Walker G R. Response of mean annual evapotranspiration to vegetation changes at catchment scale. WATER RESOURCES RESEARCH, 2001, 37(3): 701~708.
    [88] Bagrov N A. Mean long-term evaporation from land surface. Meteorol. Gidrol., 1953, 10(10): 20~25.
    [89]高国栋,陆渝蓉,李怀瑾.我国陆面蒸发量和蒸发耗热量的研究.气象学报, 1980, 38(02): 165~176.
    [90]高国栋,陆渝蓉.中国的热量平衡.中国科学B辑, 1982, (10): 951~960.
    [91] Mezentsev V S. More on the calculation of average total evaporation. Meteorol. Gidrol., 1955, 5: 24~26.
    [92]崔启武,孙延俊.论水热平衡联系方程.地理学报, 1979, 34(02): 9~178.
    [93] Yang D W, Sun F B, Liu Z Y, et al. Interpreting the complementary relationship in non-humid environments based on the Budyko and Penman hypotheses. GEOPHYSICAL RESEARCH LETTERS, 2006, 33, L18402, doi:10.1029/2006GL027657.
    [94] Yang D W, Sun F B, Liu Z Y, et al. Analyzing spatial and temporal variability of annual water-energy balance in nonhumid regions of China using the Budyko hypothesis. WATER RESOURCES RESEARCH, 2007, 43, W04426, doi:10.1029/2006WR005224.
    [95] Milly P C D. An Analytic Solution of the Stochastic Storage Problem Applicable to Soil Water. Water Resources Research, 1993, 29(11): 3755~3758.
    [96] Potter N J, Zhang L. Water balance variability at the interstorm timescale. WATER RESOURCES RESEARCH, 2007, 43, W05405, doi:10.1029/2006WR005276.
    [97] Sivapalan M, Bloschl G, Zhang L, et al. Downward approach to hydrological prediction.HYDROLOGICAL PROCESSES, 2003, 17(11): 2101~2111.
    [98] Sivapalan M, Zhang L, Vertessy R, et al. Preface - Downward approach to hydrological prediction. HYDROLOGICAL PROCESSES, 2003, 17(11): 2099~2099.
    [99]任玉敦,崔远来,江炜.参考作物腾发量长期年际变化规律及其机理探讨.灌溉排水学报, 2007, 26(04): 8~10.
    [100] Brutsaert W, Stricker H. An advection-aridity approach to estimate actual regional evapotranspiration. Water resources research, 1979, 15(2): 443~450.
    [101] Morton F I. Operational estimates of areal evapotranspiration and their significance to the science and practice of hydrology. Journal of hydrology, 1983, 66: 1~76.
    [102] Granger R J. A complementary relationship approach for evaporation fiom nonsaturated surfaces. Journal of Hydrology, 1989, 111: 31~38.
    [103] Hobbins M T, Ramirez J A, Brown T C. The complementary relationship in estimation of regional evapotranspiration: An enhanced Advection-Aridity model. WATER RESOURCES RESEARCH, 2001, 37(5): 1389~1403.
    [104] Hobbins M T, Ramirez J A, Brown T C, et al. The complementary relationship in estimation of regional evapotranspiration: The Complementary Relationship Areal Evapotranspiration and Advection-Aridity models. WATER RESOURCES RESEARCH, 2001, 37(5): 1367~1387.
    [105]刘绍民,孙睿,孙中平,等.基于互补相关原理的区域蒸散量估算模型比较.地理学报, 2004, 59(03): 331~340.
    [106] Ramirez J A, Hobbins M T, Brown T C. Observational evidence of the complementary relationship in regional evaporation lends strong support for Bouchet's hypothesis. GEOPHYSICAL RESEARCH LETTERS, 2005, 32, L15401, doi:10.1029/2005GL023549.
    [107] Morton F I. Climatological estimates of evapotranspiration. J. Hydraul. Div. Proc. ASCE, 1976, 102: 275~291.
    [108] Parlange M B, Katul G G. An advection-aridity evaporation model. Water resources research, 1992, 28: 127~132.
    [109] Brutsaert W. Indications of increasing land surface evaporation during the second half of the 20th century. GEOPHYSICAL RESEARCH LETTERS, 2006, 33, L20403, doi:10.1029/2006GL027532.
    [110] Morton F I. Catchment evaporation and potential evaporation: further development of a climatologic relationship. Journal of Hydrology, 1971, 12: 81~99.
    [111] Szilagyi J. On Bouchet's complementary hypothesis. JOURNAL OF HYDROLOGY, 2001, 246(1-4): 155~158.
    [112] Lydolph P E. The Russian Sukhovey. Annals of the Association of American Geographers,1964, 54(3): 291~309.
    [113] Stern W R. Seasonal evapotranspiration of irrigated cotton in a low latitude environment. Australian Journal of Agricultural Research, 1967, 18: 259~269.
    [114] Tanner C B. Factors affecting evaporation from plants and soil. Journal of Soil and Water Conservation, 1957, 12: 221~227.
    [115] Slatyer R O, Mcllroy I C. Practical microclimatology, Melbourne, Australia: CSIRO, 1961.
    [116] Kim C P, Entekhabi D. Feedbacks in the land-surface and mixed-layer energy budgets. BOUNDARY-LAYER METEOROLOGY, 1998, 88(1): 1~21.
    [117] Sugita M, Usui J, Tamagawa I, et al. Complementary relationship with a convective boundary layer model to estimate regional evaporation. WATER RESOURCES RESEARCH, 2001, 37(2): 353~365.
    [118] Morton F I. Estimating evaporation and transpiration from climatological observations. Journal of Applied Moteorology, 1975, 14: 488~497.
    [119] Priestley C H B, Taylor R J. On the assessment of surface heat flux and evaporation using large-scale parameters. Monthly Weather Review, 1972, 100(2): 81~92.
    [120] Eagleson P S. Ecohydrology: Darwinian expression of vegetation form and function, Cambridge: Cambridge University Press, 2002.
    [121]莫兴国.用平流─干旱模型估算麦田潜热及平流.中国农业气象, 1995, 16(06): 1~4.
    [122] Brutsaert W, Chen D Y. Diurnal variation of surface fluxes during thorough drying (or severe drought) of natural prairie. WATER RESOURCES RESEARCH, 1996, 32(7): 2013~2019.
    [123] Pettijohn J C, Salvucci G D. Impact of an unstressed canopy conductance on the Bouchet-Morton complementary relationship. WATER RESOURCES RESEARCH, 2006, 42, W09418, doi:10.1029/2005WR004385.
    [124] Szilagyi J. On the inherent asymmetric nature of the complementary relationship of evaporation. GEOPHYSICAL RESEARCH LETTERS, 2007, 34, L02405, doi:10.1029/2006GL028708.
    [125] Stewart R B, Rouse W R. A simple method for determining the evaporation from shallow lakes and ponds. Water Resources Research, 1976, 12: 623~628.
    [126] Stewart R B, Rouse W R. Substantiation of the Priestley-Taylor parameter = 1.26 for potential evaporation in high latitudes. Journal of Applied Meteorology, 1977, 16: 649~650.
    [127] Davies J A, Allen C D. Equilibrium, potential, and actual evaporation from cropped surfaces in southern Ontario. Journal of Applied Meteorology, 1973, 12: 649~657.
    [128] Eichinger W E, Parlange M B, Stricker H. On the concept of equilibrium evaporation and the value of the Priestley-Taylor coefficient. WATER RESOURCES RESEARCH, 1996,32(1): 161~164.
    [129] Debruin H A R, Keijman J Q. The Priestley-Taylor evaporation model applied to a large shallow lake in the Netherland. Journal of Applied Meteorology, 1979, 18: 898~903.
    [130]刘振兴.论陆面蒸发量的计算.气象学报, 1956, 27(04): 337~344.
    [131]孙福宝.基于Budyko水热耦合平衡假设的流域蒸散发研究[博士学位论文].北京:清华大学, 2007.
    [132] Dooge J C I. Hydrologic models and climate change. Journal of Geophysical Research, 1992, 97(D3): 2677~2686.
    [133] Dooge J C I. Sensitivity of Runoff to Climate Change: A Hortonian Approach. Bulletin of the American Meteorological Society, 1992, 73(12): 2013~2024.
    [134] Doorenbos J, Pruitt W O. Crop Water Requirements, Irrigation and Drainage Paper, 24, Rome, Italy: UN Food and Agriculture Organization, 1977.
    [135] Budyko M I, Zubenok L I. Determination of evaporation from the land surface (in Russian). Izv. Akad.Nauk SSR, Ser. Geogr., 1961, 6: 3~17.
    [136] Packer R W, Sangal B P. The heat and water balance of southern Ontario according to the Budyko method. The Canadian Geographer, 1971, 15(4): 262~286.
    [137]谭冠日,王宇,方锡林,等.陆面蒸发公式的检验.气象学报, 1984, 42(02): 231~237.
    [138]孙福宝,杨大文,刘志雨,等.基于Budyko假设的黄河流域水热耦合平衡规律研究.水利学报, 2007, 38(04): 409~416.
    [139]孙福宝,杨大文,刘志雨,等.海河及西北内陆河流域的水热平衡研究.水文, 2007, (02): 7~10.
    [140]雷慧闽,杨大文,沈彦俊,等.黄河灌区水热通量的观测与分析.清华大学学报(自然科学版), 2007, 47(06): 801~804.
    [141]陈发祖.微气象学研究的若干进展--兼评涡度相关技术的作用.见:中国农业小气候研究进展.北京:气象出版社, 1993. 18~25.
    [142] Rodriguez-iturbe I, Porporato A, Ridolfi L, et al. Probabilistic modelling of water balance at a point: the role of climate, soil and vegetation. PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1999, 455(1990): 3789~3805.
    [143] Laio F, Porporato A, Ridolfi L, et al. Plants in water-controlled ecosystems: active role in hydrologic processes and response to water stress - II. Probabilistic soil moisture dynamics. ADVANCES IN WATER RESOURCES, 2001, 24(7): 707~723.
    [144]王菱,倪建华.以黄淮海为例研究农田实际蒸散量.气象学报, 2001, 59(06): 784~794.
    [145] Legates D R, Mccabe G J. Evaluating the use of "goodness-of-fit" measures in hydrologic and hydroclimatic model validation. WATER RESOURCES RESEARCH, 1999, 35(1):233~241.
    [146] Dooge J C I. Linear theory of hydrological system, Washington D C: US Department of Agriculture, Agricultural Research Service, 1973.
    [147] Zhang L, Hickel K, Dawes W R, et al. A rational function approach for estimating mean annual evapotranspiration. WATER RESOURCES RESEARCH, 2004, 40, W02502, doi:10.1029/2003WR002710.
    [148] Klemes V. Conceptualization and scale in hydrology. Journal of Hydrology, 1983, 65: 1~23.
    [149] Jarvis P G. Prospects for bottom-up models: California: Academic Press, 1993.
    [150] Milly P C. A minimalist probabilistic description of root zone soil water. WATER RESOURCES RESEARCH, 2001, 37(3): 457~463.
    [151] Milly P C. CLIMATE, INTERSEASONAL STORAGE OF SOIL-WATER, AND THE ANNUAL WATER-BALANCE. ADVANCES IN WATER RESOURCES, 1994, 17(1-2): 19~24.
    [152] Woods R. Seeing catchments with new eyes. Hydrological Processes, 2002, 16: 1111~1113.
    [153] Potter N J, Zhang L, Milly P C, et al. Effects of rainfall seasonality and soil moisture capacity on mean annual water balance for Australian catchments. WATER RESOURCES RESEARCH, 2005, 4, W06007, doi:10.1029/2004WR003697.
    [154] Woods R. The relative roles of climate, soil, vegetation and topography in determining seasonal and long-term catchment dynamics. ADVANCES IN WATER RESOURCES, 2003, 26(3): 295~309.
    [155]许继军,杨大文,刘志雨,等.长江上游大尺度分布式水文模型的构建及应用.水利学报, 2007, 38(02): 182~190.
    [156] Von Genuchten M T. A closed form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 1980, 44: 892~898.
    [157]叶柏生,李翀,杨大庆,等.我国过去50a来降水变化趋势及其对水资源的影响(Ⅱ):月系列.冰川冻土, 2005, (01): 100~105.
    [158] Yue S, Wang C Y. Applicability of prewhitening to eliminate the influence of serial correlation on the Mann-Kendall test. WATER RESOURCES RESEARCH, 2002, 38(6), 1068, doi:10.1029/2001WR000861.
    [159]雷志栋,杨汉波,倪广恒,等.干旱区绿洲耗水分析.水利水电技术, 2006, 37(01): 15~20.
    [160]雷志栋,胡和平,杨诗秀,等.塔里木盆地绿洲耗水分析.水利学报, 2006, 37(12): 1470~1475.
    [161]黄盛璋.绿洲研究,北京:科学出版社, 2003.
    [162]王海锋.干旱区水资源利用模式与社会经济格局相互影响机制研究[博士学位论文].北京:清华大学, 2005.
    [163]雷志栋,胡和平,杨诗秀,等.以土壤水为中心的农区——非农区水均衡模型.灌溉排水, 1999, 18(01): 47~51.
    [164]胡和平,汤秋鸿,雷志栋,等.干旱区平原绿洲散耗型水文模型——Ⅰ模型结构.水科学进展, 2004, 15(02): 140~145.
    [165]汤秋鸿,田富强,胡和平.干旱区平原绿洲散耗型水文模型——Ⅱ模型应用.水科学进展, 2004, 15(02): 146~150.
    [166]董新光,邓铭江,董慧.干旱内陆区水平衡基本原理与模型.新疆农业大学学报, 2004, 27(01): 35~38.
    [167]赵长森.和田绿洲散耗型水文模型研究与应用[硕士学位论文].西安:西安理工大学, 2005.
    [168]黄聿刚.干旱区绿洲四水转化模型及其应用[博士学位论文].北京:清华大学, 2006.
    [169]汤秋鸿.干旱区平原绿洲散耗型水文模型研究[硕士学位论文].北京:清华大学, 2003.
    [170] Yang H, Lei Z, Wang J, et al. Impact of climate change on water resources in Yerqiang River Basin: Proceedings of the International Symposium on Flood Forecasting and Water Resources Assessment for IAHS-PUB. Liu Z, Yang D. Beijing:中国水利水电出版社, 2006.
    [171]水利部国际合作司(编译).美国国家灌溉工程手册,北京:中国水利水电出版社, 1998.
    [172] Sankarasubramanian A, Vogel R M. Annual hydroclimatology of the United States. WATER RESOURCES RESEARCH, 2002, 38(6), 1083, doi:10.1029/2001WR000619.
    [173] Xiong L H, Guo S L. A two-parameter monthly water balance model and its application. JOURNAL OF HYDROLOGY, 1999, 216(1-2): 111~123.
    [174]许继军.分布式水文模型在长江流域的应用研究[博士学位论文].北京:清华大学, 2007.
    [175] Komatsu H, Yoshida N, Takizawa H, et al. Seasonal trend in the occurrence of nocturnal drainage flow on a forested slope under a tropical monsoon climate. BOUNDARY-LAYER METEOROLOGY, 2003, 106(3): 573~592.
    [176] Tanaka K, Takizawa H, Tanaka N, et al. Transpiration peak over a hill evergreen forest in northern Thailand in the late dry season: Assessing the seasonal changes in evapotranspiration using a multilayer model. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2003, 4533, doi:10.1029/2002JD003028.
    [177] Brutsaert W. Evaporation into the Atmosphere: Theory, Hisstory and Application, Dordrecht, Holland/Boston. USA: D. Reidel Pub. Co, 1982.
    [178] Wieringa J. Representative roughness parameters for homogeneous terrain. Boundary-LayerMeteorology, 1993, 63: 323~363.
    [179] Allen R, Smith M, Perrier A, et al. An update for the definition of reference evapotranspiration. ICID Bulletin, 1994, 43(2): 1~34.
    [180] Monteith J I. Evaporation and environment. Symp. Soc. Exp. Biol., 1965, 19: 205~234.
    [181] Culf A D. EQUILIBRIUM EVAPORATION BENEATH A GROWING CONVECTIVE BOUNDARY-LAYER. BOUNDARY-LAYER METEOROLOGY, 1994, 70(1-2): 37~49.
    [182] Xu C Y, Singh V P. Evaluation of three complementary relationship evapotranspiration models by water balance approach to estimate actual regional evapotranspiration in different climatic regions. JOURNAL OF HYDROLOGY, 2005, 308(1-4): 105~121.
    [183]程大珍,陈民,史世平,等.永定河上游人类活动对降雨径流关系的影响.水利水电工程设计, 2001, 20(02): 19~21.
    [184]王静怡,王晓燕.密云水库流域径流变化特征及影响因素分析.首都师范大学学报(自然科学版), 2007, 28(02): 89~92.
    [185]夏军.华北地区水循环与水资源安全:问题与挑战(一).海河水利, 2003, (03): 1~3.
    [186]陈民,谢悦波,冯宇鹏.人类活动对海河流域径流系列一致性影响的分析.水文, 2007, 27(03): 57~59.
    [187]王纲胜,夏军,万东晖,等.气候变化及人类活动影响下的潮白河月水量平衡模拟.自然资源学报, 2006, 21(01): 86~90.
    [188]郝杰.潘家口水库入库径流减小的原因及对策分析.水利水电技术, 2007, 38(06): 8~10.
    [189]徐宗学,巩同梁,赵芳芳.近40年来西藏高原气候变化特征分析.亚热带资源与环境学报, 2006, 1(01): 24~32.
    [190]徐宗学,孟翠玲,赵芳芳.山东省近40a来的气温和降水变化趋势分析.气象科学, 2007, 24(04): 387~393.
    [191]徐宗学,张楠.黄河流域近50年降水变化趋势分析.地理研究, 2006, 25(01): 27~34.
    [192] Von Storch H. Misuses of statistical analysis in climate research: Analysis of Climate Variability: Application of Statistical Techniques. Von Storch H, Navarra. Berlin: Springer-Verlag, 1995.
    [193]傅抱璞.山地蒸发的计算.气象科学, 1996, 16(04): 328~334.
    [194] Liou K N.大气辐射导论(第2版),郭彩丽周诗健.北京:气象出版社, 2004.
    [195] Rosenfeld D, Dai J, Yu X, et al. Inverse relations between amounts of air pollution and orographic precipitation. SCIENCE, 2007, 315(5817): 1396~1398.
    [196] Tao W K, Li X W, Khain A, et al. Role of atmospheric aerosol concentration on deep convective precipitation: Cloud-resolving model simulations. JOURNAL OFGEOPHYSICAL RESEARCH-ATMOSPHERES, 2007, 112, D24S18, doi:10.1029/2007JD008728.
    [197] Wang C. Impact of direct radiative forcing of black carbon aerosols on tropical convective precipitation. GEOPHYSICAL RESEARCH LETTERS, 2007, 34, L05709, doi:10.1029/2006GL028416.
    [198] Hartmann D L. Global Physical Climatlology, New York: Academic Press, 1994.
    [199]杨明珠,丁一汇,李维京,等.印度洋海表温度主模态及其与亚洲夏季季风的关系.气象学报, 2007, 65(04): 527~536.
    [200]陈志恺.全球气候变暖对水资源的影响.中国水利, 2007, (08): 1~3.
    [201] Xu M, Chang C P, Fu C B, et al. Steady decline of east Asian monsoon winds, 1969-2000: Evidence from direct ground measurements of wind speed. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2006, 111, D24111, doi:10.1029/2006JD007337.
    [202] Ramanathan V, Li F, Ramana M V, et al. Atmospheric brown clouds: Hemispherical and regional variations in long-range transport, absorption, and radiative forcing. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2007, 112, D22S21, doi:10.1029/2006JD008124.
    [203]王艳君,姜彤,许崇育,等.长江流域1961-2000年蒸发量变化趋势研究.气候变化研究进展, 2005, 1(03): 99~105.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700