用户名: 密码: 验证码:
五里湖湖滨带生态恢复和重建的基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
湖滨带是湖泊水生态系统和陆地生态系统之间的过渡带。在保持物种多样性、拦截陆源污染物质和净化水体、稳定相邻生态系统等方面发挥了积极作用,是湖泊的天然保护屏障。近年来,随着人口的增加和人类活动的加剧,越来越多的湖泊湖滨带受到人类的干扰而严重退化,湖滨带生态功能受到削弱。2003年起,国家太湖863项目在太湖的五里湖开展了一系列生态恢复和重建的研究和实践,本论文对西五里湖的生态重建工程进行了分析,对影响湖滨带生态功能的岸带结构、生物和湿地等多因素进行了深入研究,在此基础上对东五里湖生态恢复和重建规划提出初步方案。
     论文的主要内容和结果如下:
     1.从湖滨岸带结构对生态环境影响角度看,由于构造差异,其对湖水理化指标、氮磷循环菌的分布和浮游植物生物量均有显著的影响;岸带对水环境中的营养盐的去除能力为:滩地岸带>碎石岸带>硬质陡岸。夏、秋季节滩地岸带和碎石岸带对氨氮、硝酸盐氮、TN和TP的去除能力达到最高,而冬季由于磷细菌数量相对较高,碎石和滩地岸带也保持了较高的TP去除率;以NH4+、TP和TN为指标,以修正的卡尔森营养指数为基础,提出了不同岸带结构的近岸湖水营养指数(EM),以此表征不同岸带结构对近岸湖水环境的影响,三种岸带结构的指数值大小为硬质陡岸(EMv=1.85)>碎石岸带(EMs=1.76)>滩地岸带(EMw=1.72)。
     2.湖泊中水生植被的存在,能显著提高湖水中氮循环菌群的分布、降低TN、NH4+-N和NO3--N等营养盐的浓度且改善水质;同时能通过水生植物的生长代谢,影响湖水中藻类的生物量,抑制水华的发生。在生长季节、芦苇植被的生态功能最强,而在冬、春季节,植物浮床和沉水植被也有良好的生态效果。水环境生态指标的变化,可以通过人工基质上的着生生物的生物量及多样性指标反应出来。
     3.湖滨交错带芦苇湿地土壤渗滤液中N、P营养元素的分布呈现出一定的规律性。表层DON、NO3--N、TN和TP浓度较高,随土壤深度增加而下降,至60cm深度土层附近达到最低值;而NH4+-N在表层含量较低,浓度随土壤深度增加而增加。营养盐的垂直分布受土壤周期性干湿交替及季节变动的影响,与土壤TOC、ORP、温度、植物根系生物量、土壤微生物的分布密切相关。
     4.受人类活动的影响,五里湖湖滨带土壤重金属大都超过太湖地区重金属背景值,且污染具有同源性。受植物根系的影响,重金属在土壤中植物根区部分含量最低,然后再随深度增加而升高。湿地植物(芦苇和丁香蓼)对Cu、Zn和Pb的富集系数较大,根是主要贮存器官。相比之下,芦苇和丁香蓼对Cd和Cr的富集系数较小,说明总体上湖滨带的植物对这两种重金属元素的吸收能力较低。上述结果对指导太湖湖滨带生态修复,选择合适的湿地植物,控制重金属污染有一定的指导意义。
     5.湖滨岸带的景观植被具有改善景观和净化陆源污染的作用。净化能力随植物种类变化,对TN、氨氮而言,净化能力为:高羊茅>白三叶>结缕草;对TP,则是高羊茅>结缕草>白三叶;对硝酸盐氮而言是白三叶最好,其次为高羊茅和结缕草。对营养盐的净化随植被带宽度及土壤深度而增强,且缓和的坡度处理能力较强。
     6.在上述研究的基础上,本文结合东五里湖生态环境状况及无锡市对五里湖地区的整体定位,运用恢复生态学和景观生态学的理论,对东五里湖湖滨带的生态恢复和重建规划提出了设想。本规划实施后,整个东五里湖岸带结构综合指数将从目前的EM=1.84降低到EM=1.78,该指数可以作为湖滨带生态恢复工程实施后定期监测评估指标。
Aquatic-terrestrial ecotone (ATE) is an important functional interface zone between the ecosystems of freshwater and terrene, which can provide essential ecosystem services such as lakeshore stabilization, fisheries resources and habitant, food for migratory, aesthetic scenery and recreational opportunities for human populations. It also offers a protection on water body from harmful impacts of terrestrial matter such as nutritive materials and heavy metals. Due to the higher population and more activities from human population more and more ATEs have been deteriorated and the ecological function has been worse, which turns out to be an outstanding challenge for the human life environment. The ecological restoration and reconstruction has been paid more attention to. Since 2003, China has conducted a series of research and practice in Taihu Lake. This thesis focused on the research and assessment on the ecological reconstruction of Wulihu Lake, a part of Taihu Lake. Based on the completed reconstruction in west part of the lake, the influences from the multi-factors, such as the bank structure and biology as well as wetland, were researched. The plan of the ecological reconstruction on east part of Wulihu Lake was designed based on the results above.
     The research results are followed:
     1. With impact from the three type’s lakeshore structure of ATE, the physical-chemical indexes, phytoplankton, nitrogen and phosphobacteria in the waters were influenced significantly. On the point of the ability to minimize the nutritive salt, it can be ordered as wetland lakeshore (WL), gravelly lakeshore (GL) and vertical lakeshore (VL). In summer and fall, the ability to minimize the NH4+-N、NO3--N、TN and TP by lakeshore is stronger, while in winter, with relatively high biomass of phosphobacteria, the concentration of TP was also reduced in GL and WL. The ecological lakeshore index which was proposed for the long term monitoring program of the lakeshore ecological condition,was 1.84 in the east Lake Wulihu.
     2. The results also indicated that, the hydrophytes in the lake can increase the distribution of nitrogen cycle bacteria, decreased the concentration of nutritive salt, such as TN, NH4+-N and NO3--N, improving the water quality and minimize the alga biomass. The ecology function of reed was very strong in growing seasons, while in spring and winter the planted floats and submerged plant have better ecology function. The variety of ecological indexes can be indicated by the biomass and diversity of periphyton.
     3. There were distribution rules of N, P in the soil percolate of the ATE. The concentration of DON、NO3--N、TN and TP was high in topsoil percolate and it decreased with depth. But the concentration of NH4+-N was the lowest in topsoil percolate and increased with depth. The vertical distribution of nutritive salt was dependant on the humidity and seasons. It was highly correlated with the distribution of TOC, ORP, root biomass and edaphon in soil.
     4. The study about the heavy metals in wetland and plants indicated that the concentrations of heavy metals decreased with increasing depth in the top 40 cm soil, and then increased slightly with increasing depth. investigation also indicated that the concentrations of Cd, Cr, Pb and Zn exceeded the geochemical background values in Taihu Lake area, and the concentrations of Cd at all depth soil exceeded the Environment quality Standard for Soils of China. Correlation analysis suggested the heavy metals had the same origin. The dominant plants of the wetland were reed and false loosestrife, and the root is the main organ where heavy metals were largely accumulated. The general order was root >rhizome >stem >leaf, whereas in the false loosestrife, leaf was the main organ for Cr accumulation. Both reed and false loosestrife had the highest concentration factor to the Cu.
     5. The landscape vegetation has the function of ecology as well as the scenic; the research on the simulative overland runoff indicated that the order of the purify ability of TN、NH4+-N was Festuca arundinacea>Trifolium repens > Zoysia japonica; with TP, the order was F.arundinacea>Z.japonica>T.repens, and regarding NO3--N, the order was T. repens>F.arundinacea>Z.japonica. Generally, the strength of purify function increases with higher depth and lower slope.
     6. Based on the environment status of the lake Wulihu and the basal research of the west lake Wulihu, this thesis made the primary plan for the ecological restoration and reconstruction of the east lake Wulihu. The whole lake zone was divided as ecological protection zone, plants restoration zone, eco-system reconstruction zone and else zone, then the four zones were programmed respectively. With implementation of this project, the water quality of the Lake Wulihu can be improved significantly and the ecological function can be recovered to meet the environment requirement from the Eleventh Five-Year Plan for Environmental Protection. Besides this, it also improves the ecological, economical and general social development harmoniously.
引文
[1] Huang G H, Xia J. Barriers to sustainable water quality management[J]. Environmental Management, 2001, 61:1-23
    [2]金相灿.湖泊富营养化控制和管理技术[M].北京:化学工业出版社. 2001.
    [3]祝廷成.生态系统的能量流动和物质循环[M].北京:科学普及出版社. 1984
    [4] Bourliere F, Hardely M. Combination of qualitative and quantitative approaches in Ecological Studies I, Temperate Forest Ecosystem[M]. Berlin: Spring-Verlag.1970:152-157
    [5] Landres P B. Daninel H. Ecological Indicators: Panacea or liability. Ecological indicators. Barking[M]. Elsevier science publishers Ltd. 1992:327-331
    [6] Jones R. Comparative studies of plant growth and distribution in relation to waterlogging. The uptake of iron and manganese by dune and alack plants[J]. Journal of Ecology, 1972, 60: 131-140
    [7] Duarte C M, Kalff J. Pauems in the submerged macrophytes biomass and the importance of the scale of analysis in the interpretation[J]. Canadian Journal of Fisheries and Aquatic Sciences. 1990, 47: 357-363
    [8] Quinn J M, Hickey C W. Hydraulic parameters and benthic invertebrate distribution in two gravel-bed Newland streams[J]. Freshwater Biology. 1994, 32: 489-500.
    [9] Bilby R. Aspects of a spate on the macrophytes vegetation of a sueath pool[J]. Hydrobiologia. 1977, 56: 109-112
    [10] Hootsmans M J, et al. Photosynthetic plasticity in Potolnogeton Pectinatus L .from Argentina: strategies to survive adverse light conditions[J]. Hydrobiologia. 1996,340:1-5.
    [11] Flint,S., Graf, G.. Continuously measured changes in redox.potential influenced penetrating by oxygen from burrows of Callianassa subterranean[J]. Hydrobiology. 1992, 527-532.
    [12] Middethoe A L, Marker S. Depth limited and minimum light requirements of freshwater macrophytes[J]. Freshwater Biology. 1997,37:553-563.
    [13]何池全,赵魁义.湿地生态过程研究进展.地球科学进展. 2000, 18(2):165-171.
    [14] Kem-Hansen,Dawson et al. Phosphorus in sediments of a shallow bank influenced by sewage and sugar factory effluents in Trinidad, West Indies[J]. Marine pollution bulletin, 1998, 36(3): 185~192.
    [15] Barko J. Phosphate at the water-sediment interface in Puck Bay. Oceanologia. 1992, 33: 159-182.
    [16] Pelton D K, Levine S N. Measurers of phosphorus uptake by macrophytes and epiphytes from the Laplatte River using 32P in stream microcosm[J]. Freshwater Biology. 1998, 39: 285-299.
    [17]吕宪国.湿地生态系统保护与管理[M].北京:化学工业出版社. 2004
    [18] Thompson S P, Piehler M F and Paerl H W. Denitrification in an estuarine headwater creek within an agricultural watershed[J]. J. Environ.Qua1.,2000,29:1914-1923.
    [19]李怀浦.小流域治理理论与方法[M].北京:中国水利水电出版社.1998:227-231
    [20] Tilman R D,Brown T M. Wetland networks for stromwater management in subtropical urban watersheds[J].Ecological Engineering.1998,10:130-158.
    [21] Tieszen.Howes.Nitrogen transport and transport and transformation in a hallow aquifer receiving waste water discharge:amass balance approach.WaterResorce.Res.,1998, 34(2): 271-285.
    [22] Elizabeth M S, Kurt D F et al. Sustaining ecosystem services in human-dominated watersheds: biohydrology and ecosystem processes in the South Platte River Basin. Environmental Management. 1999, 24(1):39-54
    [23] Uusi-Kamppa J, Braskerud B, Jansson H, et al,. Buffer zones and constructed wetlands as filters for agricultural phosphorus[J]. J Environ Qual. 2000,29 (1): 151-158
    [24] Hickey MBC, Doran B, A Review of the efficiency of buffer strips for the maintenance and enhancement of riparian buffer zones [J]. Water Quality Research journal of Canada, 2004, 39:311-317
    [25] Lee P, Smyth C, Boutin S. Quantitative review of riparian buffer width guidelines from Canada and the United States [J]. J Environ Manage. 2004, 70 (2): 165-180
    [26] Mayer P M, Reynolds S K, Canfield T J. Riparian buffer width, vegetative cover, and nitrogen removal effectiveness: a review of current science and regulations.
    [27] Muuscutt A D, Harris S W, Davies D B. Buffer zones to improve water quality: A review of their potential use in UK agriculture [J]. Agriculture, Ecosystems, and Environment. 1993, 45:59-77
    [28] Parkyn S. Review of riparian buffer zone effectiveness[R]. Ministry of Agriculture and Forestry Technical Paper No.2004/05, Wellington, New Zealand.
    [29] Schmitt, TJ, Dosskey, MG, Hoagland, KD. Filter strip performance and processes for different vegetation, widths, and contaminants[J].J Envir Qual.1999, 28 (5): 1479-1489
    [30]严昌宙,许秋瑾,等.五里湖生态重建影响因素及其对策探讨[J].环境科学研究2004, 17(3):44-47
    [31]卢宏伟,曾光明,金相灿等.湖滨带生态恢复和重建的理论、技术及应用[J].城市环境与生态, 2003,16(6) :91-93
    [32]章家恩、徐琪.生态退化研究的基本内容与框架[J].水土保持学报,1997,17(3):46-53
    [33]王治国.关于生态修复若干概念与问题的讨论[J].中国水土保持, 2003,10:4-5
    [34] Hobbs, R.J. & Norton, D.A. Towards a conceptual framework for restoration ecology [J]. Restoration Ecology, 1996, 4:93–110.
    [35] Bradshaw, A.D. Restoration ecology as a science [J]. Restoration Ecology, 1993, 1:71–73.
    [36]彭少麟.恢复生态学与植被重建[J].生态科学,1996,15(2):36-41
    [37] John A. Wiens. Riverine landscapes: taking landscape ecology into water [J]. Freshwater Biology, 2002, 47:501-515
    [38] Coveney M F, Stites D L, and et al., Nutrient removal from eutrophic lake water by wetland filtration[J]. Ecological engineering. 2002. 19:141-159
    [39] Platt, R B. Conference summary[C]. In: Carins, Jr. J., K. L. Dickson & E. E. Herricks eds. Recovery and restoration of damaged ecosystems. Charlottesville: University Press of Virginia. 1977, 526-531
    [40]杜晓军,高贤明等.生态系统退化程度的诊断:生态恢复的基础和前提[J].植物生态学报. 2003,27(5):700-708
    [41] Malmqvist B & Rundle S. Threats to the running water ecosystems of the world [J]. Environmental conservation, 2002, 29:134-153.
    [42] Whisenant, S G. Repairing damaged wildlands: a process-oriented, landscape-scale approach [M]. England: Cambridge University Press. 1999.
    [43] Hobbs, R J & J A Harris. Restoration ecology: repairing the earth’s ecosystems in the new millennium [J]. Restoration Ecology, 2001, 9:239-246.
    [44]杜晓军,姜凤歧,沈慧等.辽宁省西部地区生态退化程度的定量研究[J].应用生态学报, 2001, 12:156-158
    [45]章家恩,徐琪.恢复生态学研究的一些基本问题探讨[J].应用生态学报.1999,10(1): 109-113
    [46] Bakker, J P, Grootjans, A P, Hermy, M. How to define targets for ecological restoration? ----Introduction[J]. Applied Vegetation Science, 2000, 3: 3-6
    [47]陈荷生.太湖生态修复治理工程[J].长江流域资源与环境, 2001,(10)2: 173-178.
    [48] Ni le-yi. Stress of fertile sediment on the growth of submerged macrophytes in Eutrophic waters. Acta Hydrobiologia Sinica. 2001. 25(4):399-405
    [49]李文朝.东太湖茭草植被改造实验研究[J].中国环境科学. 1997, 17(3):244-246
    [50]濮培民,王国祥,李正魁等.健康水生态系统的退化及其修复—理论、技术及应用[J].湖泊科学. 2003,13(3):193-201
    [51]杨龙元,梁海棠等.太湖北部滨岸带水生植被自然修复观测研究[J].湖泊科学2002,14(1):60-66
    [52]倪乐意,大型水生植物[C].自:刘健康主编,高级水生生物学.北京:科学出版社.1999: 224-240
    [53]李文朝,浅型富营养湖泊的生态恢复――五里湖水生植被重建实验[J].湖泊科学,1996,8(增刊):1-10
    [54]金相灿,王圣瑞,庞燕.太湖沉积物磷形态及pH值对磷释放的影响[J],中国环境科学. 2004, 24(6):707-711
    [55]唐孟成,贾之慎,朱荫湄.西湖沉积物磷释放影响因子的研究[J].浙江农业大学学报. 1997, 23(3):289-292
    [56]崔新红,陈家宽.长江中下游湖泊水生植被调查方法[J].武汉植物学研究. 1999,17(4):357-361
    [57]单保庆,王刚.草海水生植被演替系列的数量研究[J].草业学报. 1998, 7(2):23-33
    [58]王伯荪编,植物群落学[M],北京:高等教育出版社,1987
    [59]严昌宙,许秋瑾,等.五里湖生态重建影响因素及其对策探讨[J].环境科学研究2004, 17(3):44-47
    [60]陈中义,雷泽湘.梁子湖六种水生植物种群数量和生物量周年动态[J].水生生物学报. 2000, 24(6):582-588
    [61] Klinge M, Grimm M P, et al., Eutrophication and ecological rehabilitation of Dutch lakes:presentation of a new conceptual framework[J]. Wat. Sci..Tech..1995.31(8) :207-207
    [62]杨清心,李文朝.高密度网围养鱼对水生植被的影响及生态对策探讨[J].生态学报1997, 7(1):83-88
    [63]王海珍.生物操纵对滇池浮游植物的群落结构和初级生产力的影响研究[D]上海:上海师范大学, 2002
    [64] Emery Roe, Michel van Eeten. Threhold---based resource management: A framework for comprehensive ecosystem management[J]. Environmental Management.2001,27(2): 95-214
    [65] Malakoff, D. The river doctor [J]. Science, 2004, 305: 937–939.
    [66] M. A. Palmer, E. S. Bernhardt, et al. Standard for ecologically successful river restoration[J]. Journal of Applied Ecology. 2005, 1-10
    [67] Paul S. Giller. River restoration: seeking ecological standards. Editor’s introduction[J]. Journal of Applied Ecology. 2005,42:201-207
    [68] Costanza, R., R. d’Arge, et al. The value of the world’s ecosystem services and natural capital[J]. Nature. 1997, 387: 253-260.
    [1]中国科学院南京土壤研究所编著.土壤理化分析[M].上海:上海科技出版社, 1978
    [2] Mclean E O. Soil pH and lime requirement. In Methods of Soil Analysis, part 2, 2nd Ed. Chemical and Microbiological Properties[M]. A.L. Page (ed.).ASA, Madison, WI, 1982
    [3]鲍士旦主编.土壤农化分析[M].第三版,北京:中国农业出版社, 2000
    [4]金相灿,屠清瑛,章宗涉,等.湖泊富营养化调查规范[M].北京:中国环境科学出版社, 1990
    [5] EPA Method 3051. Microwave assisted acid digestion of sediments, sludges, soils, and oils[S]. 1994, pp14
    [6] Microwave Application Notes for Acid Digestion. Application Note EW-4,CEM Corporation
    [7]水和废水监测分析方法编委会.水和废水监测分析方法[M],第四版.北京:中国环境科学出版社, 2002
    [8]中国科学院南京土壤研究所微生物室,土壤微生物研究法[M].北京:科学出版社, 1985
    [9]许光辉,郑洪元.土壤微生物分析方法手册[M].北京:农业出版社, 1986
    [10] [日]土壤微生物研究会.土壤微生物实验法[M] .叶维青,张维谦,周鹏里,等译.北京:科学出版社, 1983
    [11]章宗涉,黄祥飞.淡水浮游生物研究方法[M].北京:科学出版社, 1991
    [12]沈蕴芬,章宗涉,红循矩,等.微型生物研究新技术[M].北京:中国建筑工业出版社,1990
    [13]杨红军,袁峻峰,张锦平.着生生物群落在黄浦江水质监测中的应用[J].上海环境科学.2002, 21(11):686-689
    [1]金相灿.湖泊富营养化控制和管理技术[M].北京:化学工业出版社.2001
    [2]王金凤,刘永,郭怀成,等.城市水系生态景观设计研究.城市环境与城市生态[J]. 2005, 18(6):4-6
    [3] Wetzel R G. Limnology: Lake and River Ecosystems 3rd edition [M]. San Diego, San Francisco, New York: Academic Press. 2001
    [4]张运林,秦伯强,陈伟民,等.太湖水体悬浮物研究[J] .长江流域资源与环境. 2004, 13 (3):266-271.
    [5]王洪君,王为东,尹澄清,等.湖滨带氧化还原环境的时空变化及其环境效应[J].环境科学学报,2007, 27(1): 23-27
    [6]秦伯强,胡维平,陈伟民,等.太湖水环境演化过程与机理[M].北京:科学出版社. 2004
    [7]沈蕴芬,章宗涉.微型生物监测新技术[M].北京:中国建筑工业出版社. 1990
    [8]刘健康.东湖生态学研究[M].北京:科学出版社. 1990
    [9]陆渝蓉,地球水环境化学[M].南京:南京大学出版社, 1999
    [10] Brix H. Schierup H H. Soil oxygenation in constructed reed beds: The role of maerophyte and soil atmosphere interface oxygen transport.. In: Cooper P F. Findlater B C. Constructed Wetlands in Water Pollution Control[C]. London:Pergamon Press, 1990. pp: 53-66
    [11]田伟君,郝芳华,王超,等.太湖典型入湖河道中氨氮去除研究[J].生态环境, 2006, 15(6): 1138-1141
    [12]左一鸣,崔广柏,冯健.太湖水质指标相关关系的研究[J].人民长江. 2005, 36(10): 2-5
    [13]史龙新,张运林,秦伯强.太湖梅梁湾水源地示范区水质改善初探[J].长江流域资源与环境, 2006, 15 (2): 5-10
    [14]王晓娟,张荣社.人工湿地微生物硝化和反硝化强度对比研究[J].环境科学学报, 2006. 26 (2) : 225-229
    [15] Lazzarova V, Manem J. Biofilm characterization and activity analysis in water and wastewater treatment[J]. Water Research, 1995, 29 (10) :2227-2245
    [16]张锡辉.高等环境化学与微生物学原理及应用[M].北京:化学工业出版社, 2001, 4: 158-161
    [17] . Duncan J R, Hanahan R A, Pleasant M E, et al. Restoration techniques for urban streams[J]. International Water Resources Engineering Conference-Proceedings, 1998(1): 381-386.
    [18] USEPA, EMAP-Surface waters field operations manual for lakes. U.S. EPA, Environmental monitoring Systems Laboratory, Las Vegas, NV. 1994.
    [19] USEPA, EMAP-Surface waters 1991 pilot report. EPA 620/R-93/003. U.S. EPA, Environmental Research Laboratory, Corvallis OR. 1993.
    [20] USEPA, EMAP-Surface waters monitoring research plan, fiscal year 1991. EPA 620/R-91/022. U.S. EPA, Environmental Research Laboratory, Corvallis OR. 1991.
    [21] USEPA, Lake and reservoir bioassessment and biocriteria, technical guidance document. U.S. EPA, Office of water, Washington DC, 1998.
    [22] Carlson, R E. A trophic state index for lakes. Limnology and Oceanography. 1977, 22: 361-369
    [23] Carlson, R E. Expanding the trophic state concept to identify non-nutrient limited lakes and reservoirs. in Enhancing the state’s lake management programs: Proceedings of a conference, Chicago, 1991. North American lake management society, Madison, WI. 1992.
    [24] Carson R E, J. Simpson. Volunteer lake monitoring in the upper mid-west: Programs, Techniques, and Technical recommendations. North American lake management society. Madison WI. 1996
    [25]陈德辉.种间竞争及蓝藻水华形成的生物学过程研究(博士论文)[D].武汉:中国科学院水生生物研究所, 1999
    [26]黄漪平主编.太湖水环境及其污染控制[M].北京:科学出版社,2001:162-186.
    [27]袁秀静,黄漪平.环太湖河道污染负荷量的初步研究[J].海洋与湖沼,1993, 24(5): 485-493
    [28] Ruiz G, Jeison D, Rubilar O et al. Nitrificationdenitrification via nitrite accumulation for nitrogen removal from wastewaters[J]. Bioresoure Technol, 2006. 97(2): 330–335.
    [29] Martin T L, Kaushik N K, Trevors J T et a1.Review: denitrification in temperate climate riparian zones. Water, Air, and Soil Pollution. 1999, 111(1/4): 171-186.
    [30]许航.水生植物塘脱氮除磷的效能及机理研究[J].哈尔滨建筑大学学报, 1999,32 (4): 69-73
    [1]谢平.论蓝藻水华的发生机制--从生物进化生物地球化学和生态学视点[M].北京:科学出版社, 2007
    [2]朱斌,陈飞星.利用水生植物净化富营养化水体的研究进展[J].上海环境科学. 2002, 21 (9) : 564-567
    [3]陈德辉.种间竞争及蓝藻水华形成的生物学过程研究(博士论文)[D].武汉:中国科学院水生生物研究所, 1999
    [4]高吉喜.水生植物对面源污水净化效率研究[J].中国环境科学, 1997, 17(3): 247-251.
    [5]王国祥.用镶嵌组合植物群落控制湖泊饮用水源区藻类及氮污染[J].植物资源与环境, 1998, 7(2): 35-41
    [6]沈蕴芬,章宗涉.微型生物监测新技术[M].北京:中国建筑工业出版社. 1990
    [7] Smoot J C, Donald E L, Andrew J R. Periphyton growth on submerged artificial substrate as a predicator of phytoplankton response to nutrient enrichment[J]. Journal of Microbiological Methods. 1998, 32:11-19
    [8]杨红军,袁峻峰,张锦平.着生藻类群落在黄浦江水质监测中的应用[J].上海环境科学. 2002, 21(11): 686-693
    [9]由文辉.淀山湖着生藻类群落结构与数量特征[J].环境科学,1999, 20: 59-62
    [10] Roman A D, Ekelund N G A. The use of epiphyton and epilithon data as a base for calculating ecological indies in monitoring of eutrophication in lakes in central Sweden[J]. The Science of theTotal Environment, 2000,248:63-70
    [11]袁信芳,施华宏,王晓蓉.太湖着生藻类的时空分布特征[J].农业环境科学学报. 2006,25(4):1035-1040
    [12] Kitner M, Poulickova A. Lilloral diatom as indicators for the eutrophication of shallow Lakes[J]. Hydrobiologia, 2003,36:23-33
    [13]许航.水生植物塘脱氦除磷的效能及机理研究[J].哈尔滨建筑大学学报,1999, 32(4):69-73
    [14] James F Reilly.Nitrate removal from a drinkingwater supply with 1arge free-sufface constructed wetlands prior to groundwater recharge[J]. Ecological Engineering, 2000, 14: 33-47
    [15]陆庆轩,纪凯.草坪建植与养护管理[M].沈阳:辽宁科学技术出版社. 2000
    [16]王国祥,濮培民,黄宜凯,等.太湖反硝化、硝化、亚硝化及氨化细菌分布及其作用[J].应用与环境生物学报. 1998, 5(2): 190-194
    [17]王国祥,濮培民,黄宜凯.太湖人工生态系统中氮循环细菌分布[J].湖泊科学, 1996, 11(12):160-164
    [18]冯胜,高光,朱广伟.基于16S rDNA-DGGE和FDC技术对富营养化湖泊不同生态修复工程区细菌群落结构的研究[J].应用与环境生物学报. 2007, 13(4): 535-540
    [19] Ingersoll T L, Baker L A. Nitriate removal in wetland microcosms[J]. Wat Res. 1998, 32(3): 677-684
    [20]谢平.论蓝藻水华的发生机制[M].北京:科学出版社, 2007
    [21]游亮,崔莉凤,刘载文.藻类生长过程中DO、pH与叶绿素相关性分析[J].环境科学与技术. 2007, 30 (9): 42-44
    [22]刘春光,金相灿,孙凌. pH值对淡水藻类生长和种类变化的影响[J].农业环境科学学报. 2005,24(2): 294-298
    [23] William Y B.中国太湖1950年以来主要环境的变化和迅速富营养化的开始[J].古生物学报. 1996,35(2): 156-174
    [24]左一鸣,崔广柏,冯健.太湖水质指标相关关系的研究[J].人民长江. 2005, 36(10): 2-5
    [25]顾詠洁,王秀芝,廖祖荷.利用着生生物群落动态变化监测水质的研究[J].华东师范大学学报(自然科学版). 2005, 4: 87-94
    [26] Max M Tlizer. Introduction to limnology[M]. Constance University Press. 1991
    [27]张锡辉.高等环境化学与微生物学原理及应用[M].北京:化学工业出版社, 2001, 4: 158-161
    [28]汤琳,张锦平,朱刚.苏州河氨化菌分布及生理生化研究[J].中国环境监测. 2006, 22(6): 89-91
    [29] Wen Chenglu, Li Heng, Wang Pengbo. Progress in phototaxis mechanism research and micromanipulation techniques of algae cells[J]. Progerss in Natural Science. 2007, 17(3): 254-260
    [30] Roux D J, van Vliet h R, van Veelen M. Towards integrated water quality monitoring: Assessment of ecosystem health. Water SA, 1993,19(4):275-280
    [31]王晓娟.人工湿地微生物硝化和反硝化强度对比研究[J].环境科学学报, 2006. 26 (2): 225-229
    [32] Yang H J , Shen Z M , Zhang J P, et al. Water quality characteristics along the course of the Huangpu River (China)[J]. Journal of Environmental Sciences. 2007, 19: 1193–1198
    [33] Ruiz G, Jeison D, Rubilar O et al. Nitrificationdenitrification via nitrite accumulation for nitrogen removal from wastewaters[J]. Bioresoure Technol, 2006. 97(2): 330–335.
    [34] Martin T L, Kaushik N K, Trevors J T et a1.Review: denitrification in temperate climate riparian zones. Water, Air, and Soil Pollution. 1999, 111(1/4): 171-186.
    [1]王庆所.生态交错带和生态流[J].生态学杂志,1997, 16 (6): 52-58
    [2] Mitsh W J, 1995. Restoration of our lakes and rivers with wetlands: an important application of ecological engineering[J]. Water Sci. & Tech.31, 167-177
    [3] Huang Y P, 2001. Water environment and pollution control in Taihu Lake[M]. Science Press. Beijing, China. pp, 21-22
    [4]金相灿.湖泊富营养化控制和管理技术[M].北京:化学工业出版社. 2001.
    [5] Arrouays D, Pelissier P. 1994. Modeling carbon storage profiles in temperate forest humic loamy soils of France[J]. Soil Sci ,157 :185-192
    [6] Jobbagy EG,Jackson RB. 2002. The vertical distribution of soil organic carbon and it’s relation to climate and vegetation[J]. Ecol Appl,10 (2) :423-436
    [7] Cookson W R, Murphy D V. Quantifying the contribution of dissolved organic matter to soil nitrogen cycling using 15N isotopic pool dilution[J]. Soil Biology & Biochemistry, 2004, 36: 2097-2100.
    [8] Williams B L, Edwards A C. Processes influencing dissolved organic nitrogen, phosphorus and sulphur in soils[J]. Chem Ecol. 1993,8:203-215
    [9]高美英,刘和,冀常军,等.覆盖对果园土壤氨化细菌数量年变化的影响[J].土壤通报. 2000, (31) 6:273-274
    [10] Fish M C ,Schmidt S K. 1995. Nitrogen mineralization and microbial biomass dynamics in three alpine tundre communities [J] .Soil Sci . Soc. A m. J . ,59 :1036-1043
    [11]丁洪,蔡贵信,王跃思,等.华北平原几种主要类型土壤的硝化与反硝化活性[J].农业环境保护.2001,20(6)390-393
    [12]殷士学,沈其荣。缺氧土壤中硝态氮还原菌的生理生化特征[J].土壤学报.2003, 40 (4):624-629
    [13] Buresh R J, Patrick W H. Nitrate reduction to ammonium in anaerobic soils[J]. Soil Sci.Soc.Am.1978,42:913-918
    [14] Wang Z H, Li S X. Effects of N forms and rates on vegetable growth and nitrate accumulation[J]. Pedosphere. 2003,13 (4):309-316
    [15] Van Der, Valk R W J. Recommendation for research to develop guidelines for the use of wetland to control rural nonpointsource pollution[J]. Ecological Engineering, 1992,1: 115- 134.
    [16] Williams B L, Edwards A C. Processes influencing dissolved organic nitrogen, phosphorus and sulphur in soils[J]. Chem. Ecol. 1993, 8:203-215
    [17]尹大强,覃秋荣,阎航.环境因子对五里湖沉积物磷释放的影响[J].湖泊科学. 1994, 6 (3): 240-244
    [18]明道绪,耿社民.生物统计附实验设计[M].(第三版),中国农业出版社,2001
    [19] Williams B L, Buttler A, Grosvernier P. the fate of NH4+NO3 added to sphagnum magellanicum carpets at five European mire sites[J]. Biogeochemistry. 1999, 45:73-93
    [20]汪文霞,周建斌,严德翼.黄土区不同类型土壤微生物量碳、氮和可溶性有机碳、氮的含量及其关系[J].水土保持学报. 2006, 20(6):103-106
    [21] Quallsa R G, Bridgham S D. Mineralization rate of 14C-labelled dissolved organic matter from leaf litter in soils of a weathering chronosequence[J]. Soil Biology & Biochemistry, 2005, 37: 905-916
    [22] Yu Z, Zhang Q, Kraus T E C, Dahlgren R A, Anastasio C, Zasoski R J. Contribution of amino compounds to dissolved organic nitrogen in forest soils[J]. Biogeochemistry, 2002, 61: 173-198.
    [23] Zaman M, Di H J, Cameron K C, Frampton C M. Gross nitrogen mineralization and nitrification rates and their relationships to enzyme activities and the soil microbial biomass in soils treated with dairy shed effluent and ammonium fertilizer at different water potentials[J]. Biology and Fertility of Soils, 1999, 29: 178-186.
    [24]韩成卫,李忠佩,刘丽.去除溶解性有机质对红壤水稻土碳氮矿化的影响[J].中国农业科学2007,40(1):107-113
    [25] Peng P Q, Zhang W J, 2005. Vertical distribution of soil organic carbon, Nitrogen and microbial biomass C, N at soil profile in wetlands of Dongting Lake floodplain[J]. Journal of soil and water conservation. (19)1, 49-53
    [1] Wang QS, Feng ZW. 1997. Ecotone and ecological flows[J]. Acta Ecologica Sinica 16: 52-58.
    [2] Blackwell MSA, Hogan DV. 1999. The use of conventionally and alternatively located buffer zones for the removal of nitrate from diffuse agricultural run-off[J]. Water Sci Technol 39: 157-164.
    [3] Mitsh WJ. 1995. Restoration of our lakes and rivers with wetlands: an important application of ecological engineering[J]. Water Sci Technol 31:167-177.
    [4]郑喜坤,鲁安怀,高翔.土壤中重金属污染现状与防治方法[J].土壤与环境. 2002.11(1): 79-84
    [5] Facchinelli A, Sacchi E, Mallen L. Multivariate statistical and GIS-based approach to identify heavy metal sources in soils[J]. Environmental Pollution. 2001,114:313-324
    [6] Fakoyade S O, Onianwa P C. Heavy metal contamination of soil and bioaccumulation in Guinea grass (Panicumacium)around Ikeja Industrial Estate,Lagos, Nigeria[J]. Environ Geology, 2002, 43:145-150
    [7] Wang Q, Kim D, Dionysiou D D, et a1. Sources and remediation for mercury contamination in aquatic systems- a literature review [J]. Environmental Pollution, 2004, 131: 323-326
    [8]夏家淇.土壤环境质量标准详解[M].北京:中国环境科学出版社,1996,pp:7-15
    [9]刘恩峰,沈吉,朱育新.湖泊科学,2004,16(2):113-119
    [10]袁旭音,陈骏,季峻峰,等.太湖沉积物和湖岸土壤的污染元素特征及环境变化效应[J].沉积学报, 2002,20 (3):427-434
    [11]张于平,瞿文川.太湖沉积物中重金属的测定及环境意义[J].岩土测试,2001, 20(1):34-36
    [12] Huang YP. 2001. Water environment and pollution control in Taihu Lake[M]. Science Press, China.
    [13] Jin XC. 2001. Control and management technique of the lake eutrophication[M]. Chemical Industry Press, Beijing, China
    [14]傅伟军.植物在人工湿地中的作用集物种选择[J].生态环境,2005,24(6):45-49
    [15] Wang WD, Wang DL, Yin CQ, Chen HY, Jiang L, Zheng J. 2001. A study on the groundwater quality of the Baiyangdian wetland ecosystem[J]. Acta Ecol Sin 6:919–925.
    [16] Peng PQ, Zhang WJ, Tong CL. 2005. Vertical distribution of soil organic carbon, nitrogen andmicrobial biomass C, N at soil profiles in wetlands of Dongting Lake floodplain[J]. J Soil Water Conserv 19:49–53.
    [17]李健,郑春江.环境背景值数据手册[M].中国环境科学出版社, 1989. pp:171-172
    [18]邵学新,黄标,孙维侠,等.长江三角洲典型地区工业企业的分布对土壤重金属污染的影响[J].土壤学报, 2006.43 (3):397-404
    [19]李波,林玉锁,张孝飞,等.沪宁高速公路两侧土壤和小麦重金属污染状况[J].农村生态环境. 2005. 21 (3):50-53
    [20]程晓东,郭明新.河流底泥重金属不同形态的生物有效性[J].农业环境保护. 2001, 20 (1):19-22
    [21] Tessier A, Campbell P G C. Partitioning of trace metals in sediment: relationships with bioavailability[J]. Hydrobiologia. 1987, 149: 43-52
    [22] Schnitzer M. Soil organic matter—The next 75 years[J].Soil Sci, 1991,151: 41-48
    [23] Kalbitz K, Wennrich R. Mobilization of heavy metals and arsenic in polluted wetland and its dependence on dissolved organic matter[J]. Sci Total Envir, 1998, 209:27-39
    [24] Tessier A, Morgan J J. Aquatic Chemistry: An introduction Emphasizing Chemical Equilibria in Natural Waters (2nd ed). New York: John Wiley, 1981. pp780
    [25]李勤奋,李志安,任海,等.湿地系统中植物和土壤在治理重金属污染中的作用[J].热带亚热带植物学报. 2004, 12(3): 273-279
    [26]吴又先,土壤氧化还原过程及其生态效应[J].土壤学进展. 1995, 23(4): 32-37
    [27]朱丽霞,章家恩.根系分泌物与根际微生物相互作用研究综述[J].生态环境. 2003,12(1): 102-105
    [28]黄艺,陈有键,陶澍.菌根植物根际环境对污染土壤中Cu,Zn,Pb,Cd形态的影响[J].应用生态学报,2000,Il:431-434
    [29] Baldantoni D, Alfani A, Di Tommasi P, Bartoli G, De Santo AV. 2004. Assessment of macro and microelement accumulation capability of two aquatic plants[J]. Environ Pollut 130: 149-156
    [30]韩照祥.植物修复污染水体和土壤的研究进展[J].水资源保护. 2007,23(1):9-13
    [31]江行玉,王长海,赵可夫.芦苇抗镉污染机理研究[J].生态学报,2003,23 (5):856-862
    [32]简敏菲,弓晓峰,游海,等.水生植物对铜、铅、锌等重金属元素的富集作用的评价研究[J].南昌大学学报:工科版.2004.26(1):85-88
    [33]简敏菲,弓晓峰,游海,等.鄱阳湖水土环境及其水生维管束植物重金属污染[J].长江流域资源与环境.2004,13 (6): 589-593
    [34]胡斌张丽娟.土壤Pb,Zn复合污染对作物吸收重金属的影响[J].河南农业科学.2007, 4: 68-71
    [35] Zhang Y X,Chai T Y.Research advances on the mechanisms of heavy metal tolerance in plants[J]. Acta Bota Sinia.1999,4l(5):453-457
    [36]朱呜鹤,丁永生,郑道昌,等.潮滩盐沼植物翅碱蓬对常见重金属的累积吸收及其机制[J].环境污染与防治. 2005, 27(2): 84-87
    [1]金相灿,刘树坤,章宗涉,等.中国湖泊环境[M].北京:海洋出版社, 1995
    [2]国家环境保护总局科技标准司编,中国湖泊富营养化及其防治研究[M].北京:中国环境科学出版社,2001
    [3] Daniels R B, Gillam J W. Sediment and chemical load reduced by grass and riparian filters[J], Soil Science Society of America Journal, 1996, 60: 246- 251
    [4] Niesw and G H, Buffer strips to protect water supply reservoirs: A model and recommendations [J]. Water Resources Bulletin, 1990, 26: 959- 966
    [5] Snyder N J, Saied Mostaghimi, Berry D F, et al,. Impact of riparian forest buffers on agricultural nonpoint source pollution[J], J Environ Qual.1998. 34(2): 385-395
    [6] Natural Resources Conservation Service. USDA. Buffer strips: Common Sense Conservation [R]. Washington, D. C. 1998.
    [7] Johnson A W, Ryba D M. Literature review of recommended buffer widths to maintain various functions of stream riparian areas[R]. Water and land resources division, king county department of nutural resources Seattle, W A
    [8] Tate K W, Atwill E R, Bartolome J W, et al., Significant Escherichia coli attenuation by vegetative buffers on annual grasslands[J]. J Environ Qual. 2006, 35 (3): 795-805
    [9] Ziegler AD, Negishi J, Sidle RC, et al. Reduction of stream sediment concentration by a Riparian buffer: Filtering of road runoff in disturbed headwater basins of Montane mainland Southeast Asia[J]. J Environ Qual. 2006, 35 (1): 151-162
    [10] Schmitt, TJ, Dosskey, MG, Hoagland, KD. Filter strip performance and processes for different vegetation, widths, and contaminants[J].J Envir Qual.1999, 28 (5): 1479-1489
    [11]国家环保总局《水和废水监测分析方法》编委会.水和废水监测分析方法[M].第四版.北京:中国环境出版社.2002.
    [12]黄瑞华,吴耀国,杨炳超,等.氨氮在垂向河床渗滤系统中的环境行为[J].地球科学与环境学报.2006, 28(1):92-95
    [13] Schwer C B, Clausen J C. 1989. Vegetative filter strips of dairy milkhouse wastewater. J Environ Qual. 18:446-451
    [14] Dillaha T A, Reneau R B, Mostaghimi S. Vegetative filter strips for agricultural nonpoint source pollution control[J]. Transactions of the American Society of Agricultural Engineers. 1989, 32: 513-519
    [15] Schmitt T J, Dosskey M G, Hoagland K D. Filter strip performance and processes for different vegetation, widths, and contaminants [J]. J Environ Qual .1999, 28 (5): 1479-1489
    [16] Hefting M M, Bobbink R, H de Caluwe. Nitrous oxide emission and denitrification in chronically nitrate loaded riparian buffer zones [J]. J Environ Qual. 2003, 32: 1194-1203
    [17] Muuscutt A D, Harris S W, Davies D B. Buffer zones to improve water quality: A review of their potential use in UK agriculture [J]. Agriculture, Ecosystems, and Environment 1993, 45:59-77
    [18] Parkyn S. Review of riparian buffer zone effectiveness[R]. Ministry of Agriculture and Forestry Technical Paper No.2004/05, Wellington, New Zealand
    [19]Schoonover J E, Williard K W J. Ground water nitrate reduction in giant cane and forest riparian buffer zone[J]. Journal of American Water Resources Association. 2003, 39: 347-354
    [20] Hickey MBC, Doran B, A Review of the efficiency of buffer strips for the maintenance and enhancement of riparian buffer zones [J]. Water Quality Research journal of Canada, 2004, 39:311-317
    [21] Sheppard S C, Sheppard M I, Long J, et al. Runoff phosphorus retention in vegetated field margins on flat landscapes[J]. Canadian Journal of soil science. 2006, 86 (5): 871-884
    [22]张笑一,关小满,彭润芝.地沟式污水生态处理系统中土壤及填料吸磷机理的研究[J].农业环境科学学报. 2004, 6: 1232-1237
    [23] Dorioz JM, Wang D, Poulenard J, et al. The effect of grass buffer strips on phosphorus dynamics - A critical review and synthesis as a basis for application in agricultural landscapes in France[J]. Agriculture Ecosystems & Environment. 2006, 117 (1): 4-21
    [1]黄漪平.太湖水环境污染及控制[M].北京:科学出版社,2001
    [2]秦伯强,胡维平,陈伟民,等.太湖水环境演化过程与机理[M].北京:科学出版社. 2004
    [3]太湖水文水资源监测局.太湖水文资料汇编[C].无锡:太湖水文水资源监测局, 2005
    [4]太湖流域水资源保护局.太湖底泥与污染情况调查报告[R].无锡:太湖流域水资源保护局, 2003.
    [5]罗清吉,石浚哲.五里湖淤泥现状及生态清淤[J].环境监测管理与技术. 2003, 15(1): 27-29
    [6]伍献文.五里湖1951年湖泊学调查[J].水生生物学集刊. 1962, 1(1):63-113
    [7] William Y B Chang.中国太湖1950年以来主要环境的变化和迅速富营养化的开始.古生物学报. 1996, 35(2):155-172
    [8]刘健康.东湖生态学研究[M].北京:科学出版社. 1990
    [9]熊正琴,邢光熹,沈光裕,等.太湖地区湖、河和井水中氮污染状况的研究[J].农村生态环境, 2002, 18 (2) : 29 - 33.
    [10]秦伯强,胡维平,陈伟民.太湖水环境演化过程与机理[M].北京:科学出版社, 2004
    [11]秦伯强,高光,胡维平,等.浅水湖泊生态系统恢复的理论与实践思考[J].湖泊科学, 2005, 17 (1) : 9-16
    [12]古滨河.美国Apopka湖的富营养化及其生态恢复[J ] .湖泊科学, 2005 , 17 (1) : 1-8
    [13] Costanza R, d‘Arge R, de Groot R, et al. The value of the world’s ecosystem services and natural capital [J]. Nature, 1997, 387(6230): 253 - 260
    [14]王金凤.刘永,郭怀成,等.城市水系生态景观设计研究[J].城市环境与城市生态. 2005, 18(6):4-6
    [15]傅伟军,唐亚.植物在人工湿地中的作用及物种选择[J].四川环境. 2005, 24(6):45-50
    [16]李文朝.浅型富营养湖泊的生态恢复—五里湖水生植被重建实验[J] .湖泊科学,1996 ,8 (S) :2-9
    [17]成小英,王国祥,濮培民,等.冬季富营养化湖泊中水生植物的恢复及净化作用[J ] .湖泊科学, 2002 , 14 (2) : 139-144
    [18] Hosper S H. Stable states, buffers and switches: an ecosystem approach to the restoration and management of shallow lakes in Netherlands[J]. Wat Sci tech. 1998, 37(3):151-164
    [19] Wetzel R G. Limnology: Lake and River Ecosystems [M]. 3rd edition. San Diego, San Francisco, New York: Academic Press. 2001
    [20] Duncan J R, Hanahan R A, Pleasant M E, et al. Restoration techniques for urban streams[J]. International Water Resources Engineering Conference-Proceedings, 1998(1): 381-386.
    [21]黄群芳,董雅文,陈伟民.基于景观生态学的天目湖湿地公园规划[J].农村生态环境. 2005, 21(1) :12– 16
    [22]王国才,何春光.关于吉林省湿地生态功能区划分方法的探讨[J].吉林水利, 2004 (8): 1 -4
    [23]郑华,欧阳志云,赵同谦,等.人类活动对生态系统服务功能的影响[J].自然资源学报, 2003, 18 (1) : 118-122
    [24]谭炳卿,孔令金.河流保护与管理综述[J] .水资源保护, 2002 (3) :53-57
    [25] Véronique Ma?trea, Anne-Claude Cosandeyb, Aurèle Parriauxa A Methodology to Estimate the Denitrifying Capacity of a Riparian Wetland[J].J. Environ. Qual. 2005, 34:707-716
    [26] Pinay, G., L. Roques, and A. Fabre. 1993. Spatial and temporal patterns of denitrification in a riparian forest[J]. J. Appl. Ecol. 30:581–591
    [27] Hanson, G.C., P.M. Groffman, and A.J. Gold. 1994. Denitrification in riparian wetlands receiving high and low groundwater nitrate inputs[J]. J. Environ. Qual. 23:917–922
    [28] Cosandey, A.C., C. Guenat, M. Bouzelboudjen, V. Ma?tre, and R. Bovier. 2003a. The modelling of soil-process functional units based on three-dimensional soil horizon cartography, with an example of denitrification in a riparian zone[J]. Geoderma 112: 111–129.
    [29] Cosandey, A C, V. Ma?tre, and C. Guenat. 2003b. Temporal denitrification patterns in different horizons of two riparian soils[J]. Eur. J. Soil Sci. 54:25–37
    [30] Jeppesen E, Sondergaard M.Jesen J P, et al. Lake responses to reduced nutrient loading: an analysis of contemporary long-term data from 35 case studies[J]. Freshwater Biology. 2005,50:1747-1771
    [31]翟水晶,钱谊,侯建兵.洪泽湖湿地生态服务功能分区及其效益分析[J].农村生态环境. 2005, 21 (3):71-73
    [32] Lee C K, Han S Y. Estimating the use and preservation values of national park’s tourism resources using a contingent valuation method[J]. Tourism Management, 2002, 23: 531-540.
    [33]徐祖信,顾珏蓉.苏州河整治对沿线房地产开发的推动作用分析[J] .上海环境科学,2003 ,22 (S) :21-23.
    [34]王国中.突出环境价值创新投资理念加快太湖治理[W].国家环保总局九寨天堂国际环境论坛. http://www.zhb.gov.cn/ztbd/jzhjlt/, 2005.8

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700