用户名: 密码: 验证码:
矿石粉体作为自修复添加剂的摩擦学作用机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属磨损自修复技术是一项具有创新性的表面工程领域新技术。这项技术可以显著改善磨擦表面的接触力学特性和物理化学特性;选择性地补偿磨损表面,降低机械损耗;可对各种机器的金属磨损表面进行不拆卸的原位修复,使摩擦振动显著降低,从而降低能耗,并大幅度地延长装备的使用寿命。本文对自修复添加剂的热处理、制备、在润滑油中的分散性、自修复机理与影响因素以及混合粉体作为润滑油添加剂的抗磨减摩性能进行了系统的研究,得出主要结论如下:
     1.借助X射线衍射仪、差热—热重分析仪和红外光谱对经不同温度热处理的蛇纹石进行分析的结果表明:在800℃左右煅烧后,蛇纹石发生相变,生成了镁橄榄石及顽火辉石,其化学反应式为:Mg_3Si_2O_5(OH)_4→Mg_2SiO_4+MgSiO_3+2H_2O。使用行星式球磨机在不同条件下制备蛇纹石粉体,采用不同的表面改性剂对蛇纹石微细粉体在润滑油中的分散性进行研究。结果表明:制备出的蛇纹石粉体粒径小于10μm,同时使用油酸和钛酸脂偶联剂修饰的粉体可以长时间悬浮于润滑油中。
     2.采用扫描电镜(SEM)和能谱分析(EDXP)研究了在MM200试验机上45~#钢环表面上成膜过程及特性,结果表明自修复膜的形成过程是循序渐进的,在摩擦磨损时间很短时就开始出现了自修复膜层,成膜过程与磨损过程同时进行。随着摩擦磨损时间的增加,自修复膜在金属磨损表面形成的愈加均匀和完好。
     3.在不同试验条件下对金属摩擦副之间的成膜特性进行的研究发现:在相对较高载荷下(大于600N)成膜现象较为明显;蛇纹石微粒在润滑油中的加入量为2%质量百分比时对金属摩擦副的抗磨性较为理想;在润滑油中加入蛇纹石粉的同时加入碳粉会降低金属摩擦副的摩擦系数,但对自修复膜的形成没有促进作用;550℃热处理和900℃热处理后粉体作为润滑油添加剂可以在磨损的金属表面形成一层带有大量显微孔洞的保护膜;在含有自修复添加剂的润滑条件下,在摩擦磨损过程中,渗碳金属表面可以形成一层自修复膜层,抑制表面裂纹的萌生与扩展,从而避免脆性剥落。
     4.为改善添加剂粉体的减摩效果,研究了一种混合粉体作为润滑油添加剂的抗磨减摩特性,结果表明:这种蛇纹石和催化剂粉体的混合物粉体作为润滑油添加剂可以显著的降低摩擦副的摩擦系数,使摩擦系数达到0.006~0.007,同时可以降低摩擦副的磨损量。
     5.采用多种微观分析手段系统的研究了添加剂粉体对磨损后表面的自修复特性及不同摩擦磨损时间后表面自修复膜的成膜特性和膜层的结构和元素组成,从而归纳出自修复膜成膜的机理为:(1)当悬浮于润滑油中的蛇纹石粉体与对磨摩擦副微凸体相接触时,添加剂粉体微粒会被相对运动的摩擦副微凸体剪切、挤压和研磨,产生粒度减小的添加剂粉体。同时,摩擦副上的微凸体相互运动,发生粘着和剪切,产生具有活化表面的磨屑和基体表面;(2)产生的具有活性表面的粉体微粒和基体表面发生吸附作用,粉体微粒吸附在基体表面上,同时一部分具有活性表面的粉体微粒和同样具有活性表面的磨屑相互吸附,沉积在摩擦副的凹坑处或悬浮在润滑油中,还有一部分粒度较大的粉体微粒同样沉积在摩擦副的凹坑处;(3)在机械力学作用和摩擦化学作用下,吸附在表面和沉积在摩擦副凹坑处的微粒发生摩擦化学作用,在局部区域生成自修复膜层;(4)在持续的机械力学作用和摩擦化学作用下,添加剂粉体继续在摩擦副表面铺展,压延,直至形成覆盖摩擦副表面的自修复膜层,之后摩擦磨损和自修复膜成膜达到动态平衡。
Self-repair technology of wear metals is an innovative technology in the field of surface engineering.This technology can evidently improve the physic-chemical and mechanical properties of friction pairs and reduce the wear loss by selectely repairing the worn surface.It can repair the worn surface of various metals without machinery disassembly,and significantly reduce friction shock,then reduce energy consumption greatly and extend service life of the devices.In this paper,the heat treatment process, preparation,and its suspension property in lubricant of the serpentine are explored.The formation mechanism of the self-repairing protective coating,and the antiwear property of a mixed powders as lubricant additive have been systematically studied.The main conclusions are reached as follow:
     1.The heat treated serpentine at different temperature was examined by using Xray Diffraction apparatus,differential thermal(DTA) and thermogravimetric(TG) analyser and infrared spectrometric analyzer.The results indicated that the phase transformation of serpentine can take place at 800℃.Its chemical transformation equation can be shown as follow:
     Mg_3Si_2O_5(OH)_4→Mg_2SiO_4+MgSiO_3+2H_2O
     The serpentine powder was prepared by using a QM planetary ball milling machine at different conditions.The dispersive property of the serpentine powder in the lubricant was investigated by using different dispersants.The results indicated that the size of the prepared powder was less than 10μm.The serpentine powder can well suspended in the lubricant by using oil acid and titanate coupling agent as dispersants.
     2.The film formation process of the additive on the surface of the metal friction pairs using self-repairing materials as oil additive was conducted by MM-200 friction and wear tester.The surface topography and components of protective film on the worn surface of 45~# steel rings were analyzed by SEM and EDAX.The experimental results indicated that wear and formation of the self-repairing film on the metal friction pairs are concurrence in the initial stage.As the time increases,the formation of the self-repairing film generated gradually.The self-repairing film fully covered on the worn surface of the metal in the end of the test.
     3.The formation of the self-repairing film were studied systemically at different experimental conditions.The results indicated that the self-repairing film formation process is faster obviously when the load is relatively higher(600N and higher than 600N).The optimal content of the serpentine particulates in the lubricant is 2 wt%.The addition of the graphite particulate in lubricant can effectively diminished the friction coefficient of the friction pairs,but it has no effect on the formation of the protecting film.The powder heat treated at 550℃and 900℃as lubricant additives can form a protective film on the metal surface with a large number of micro-holes.The smooth self-repairing film can be generated on the worn steel surface of carbonized steel pairs lubricated with additive oil during friction and wear,and the protective film can prohibit the crack or void nucleation and initiation in the deformed layers.Therefore,this avoids the occurrence of delamination wear.
     4.Composite powder using as lubricant additive was investigated in order to enhance the friction-reducing effect of the additive.The experimental results show that the composite additive can achieve an ultra-low friction coefficient of 0.007 for the 45~# steel friction pairs.The worn surface is smooth with only a small amount of scratches on the local area of the metal surface.The XPS result after 100h test shows the carbon was concentrated on the worn surface besides of Fe,O,Si and Mg.The existence of the carbon-rich surface layer is the main reason for the superlubricity characteristics.
     5.The additive powder directly takes part in the formation process of the self-repairing film and constitutes the main component of the film.The mechanism of self-repairing film
     (ⅰ)The serpentine powder can be ground into smaller size in the friction process by the surface asperities of the two contacting surfaces.There are a large number of surface dangling bonds on the powder surface after ground.At the same time,the friction produces fresh surfaces of the steel where the activity of friction pairs and the grindings is enhanced.
     (ⅱ) The serpentine powder with activated surface interacts with the fresh surface. The activated powder can adhere on the steel surface.The activated powder can adhere to each other,and deposit on the pits and scratches of the friction pairs surface.At thesame time,some bigger powder can also deposit on the pits and scratches of the friction pairs surface.
     (ⅲ) The fine powder adhered on the activatory surface and deposited on the pits and scratches can interact under high contacting stress,high transcient temperature. Then a self-repairing film formed in the local area on the friction pairs surface.
     (ⅳ) The powder continually spread on the friction pairs surface under the process of the mechano-chemistry,tribo-chemistry,triboheat and load until the self-repairing film covers fully on the friction pairs surface.Afterward,the wear and the self-repairing film formation process reaches dynamic balance.
引文
[1]Jost H P.Developing situation and tendency of the tribological research.Journal of Japanese Society of Tribologisls,1992.37:2-10.
    [2]Dowson.D.History of tribology.UK:Professional Engineering Publishing Limited,1998.
    [3]莫易敏,邹岚,赵源,等.磨损自补偿理论设想.中国机械工程,1998(2):40-42.
    [4]Hu Shubing,Li Zhizhang,Mei Zhi et al.High temperature sliding wear behaviors of ion plating TiN composite coating with ion nitriding as interlaver on hot work die steel.Trans.Nonferrous Met.Soc.China.2000,10(6):777-782.
    [5]Chenghui Gao,Dajian Chen,Baiyang Zhou.Nitriding of hard Fe electrodeposition and its effects on wear resistance.J.Mater.Sci.Technology,2001,17(2):271-274.
    [6]H.Dong,T.Bell.State-of-the-art overview:ion beam surface modification of polymers towards improving tribological properties.Surface and Coatings Technology,1999,111(1):29-40.
    [7]Ji Hongbing,Xia Lifang,Ma Xinxin et al.Tribological behavior of different films on Ti-6Al-4V alloy prepared by plasma-based ion implantation.Trans.Nonferrous Met.Soc.China,2000,10(4):493-497.
    [8]Ding Jianning,Zhu Shouxing,Fan Zhen et al.Tribological characteristic of diamond-like carbon films investigated by lateral force microscope.Journal of Wuhan University of Technology.Master.Sci.Ed,2004,19:27-29.
    [9]Wang Jihui,Hua Chen,E.Wieers et al.Comparison of tribological properties of industrial low friction coatings.Trans.Nonferrous Met.Soc.China,2002,12(1):78-82.
    [10]A.Erdemir,C.Bindal,G.R.Fenske et al.Characterization of transfer layers forming on surfaces sliding against diamond-like carbon.Surface and Coatings Technology,1996,86-87:692-697.
    [11]Wei Zhang,Akihiro Tanaka,Koichiro Wazumi.Effect of environment on friction and wear properties of diamond-like carbon film.Thin Solid Films,2002,413:104-109.
    [12]Yuichi Aoki,Naoto Ohtake.Tribological properties of segment-structured diamond-like carbon films.Tribology International,2004,37:941-947.
    [13]B.C.Schramm,H.Scheerer,et al.Tribological properties and dry machining characteristics of PVD-coated carbide inserts.Surface and Coatings Technology,2004,188-189:623-629.
    [14]Zhao M,Crooks R M.Dendrimer-encapsulated Pt nanoparticles:synthesis,characterization,and applications to catalysis.Adv Mater,1999,11:217-220.
    [15]Hwang Changbing,Fu Yawshyan,Lu Yiling.Synthesis,characterization,and highly efficient catalytic reactivity of suspended palladium nanoparticles.J.Catal.,2000,195:336-341.
    [16]Marinakos Stella M,Shultz David Z,Fldheim Daniel L.Gold nanoparticles as templates for the synthesis of hollow nanometer-sized conductive polymer capsules.Adv.Mater.,1999,11:34-37.
    [17]Sun Yugang,Xia Younan.Shape-controlled synthesis of gold and silver nanoparticles.Science,2002,298:2176-2179.
    [18]Mandal M.,Kundu S.,Sau T.K.,et al.Synthesis and characterization of superparamagnetic Ni-Pt nanoalloy.Chem Mater,2003,15(19):3710-3715.
    [19]赵彦保,张治军,吴志中,等.液相分散法制备硬脂酸修饰铋纳米微粒.无机化学学报,2003,19(9):997-1000.
    [20]谢中亚,徐建生.高能球磨法制备纳米金属铜粒子工艺条什研究.润滑与密封 2006,3:126-128.
    [21]Wu Jianhui,Zhang Chunfu.Application of ultrasound to powder material preparing.Nonferrous Metals,2001,8(3):46-49.
    [22]Zhu Y J,Qian Y T,Zhang M W,et al.Preparation of nanocrystalline silver powders by γ-ray radiation combined with hydrothermal treatment.Materials Letters,1993,17:314.
    [23]Suslick K.S.,Hyeon T.,Fang M.,et al.Sonochemical synthesis of nanostructured catalysts.Mater.Sci.Eng.A,1995,204:186-192.
    [24]Kurkka V.P.M.S.,Aharon G.,Ruslan P.,et al.Preparation and magnetic properties of nanosized amorphous ternary Fe-Ni-Co alloy powders.J Mater Res,2000,15(2):332-337.
    [25]周亚松,范小虎.纳米TiO_2-SiO_2复合氧化物的制备与性质.高等学校化学学报,2003,24(7):1266-1270.
    [26]Jingfang Zhou,zhishen Wu,Zhijun Zhang,et al.Study on an antiwear and extreme pressure additive of surface coated LaF_3 nanoparticles in liquid paraffin.Wear,2001,249(5-6):333-337.
    [27]Qiu Sunqing,Dong Junxiu,Chen Guoxu.Tribological properties of CeF_3 nanoparticles as additives in lubricating oils.Wear,1999,230:35-38.
    [28]Qiu S Q,Zhou Z P,Dong J X,et al.Preparation of Ni nanoparticles and evaluation of their tribologicai performance as potential additives in oils.Transactions of the ASME.Journal of Tribology,2001,123(3):441-443..
    [29]Lawrence D,Sampath S.Preparation and characterization of silane-stabilized,highly uniform,nanobimetailic Pt-Pd particles in solid and liquid matrixes.Langmuir,2000,16(22):8510.
    [30]Sun S.,Murray C.B.,Weller D.,et al.Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices.Science,2000,287:1989-1992.
    [31]Hu Z S,Dong J X,Chen G X.Preparation and tribological properties of nanoparticle lanthanum borate.Wear,2000,243(1-2):43-47.
    [32]Yanbao Zhao,Zhijun Zhang,Hongxin Dang.A novel solution route for preparing indium nanoparticles.J Phys Chem B,2003,107:7574-7576.
    [33]Hongjie Chen,Zhiwei Li,ZhishenWu,et al.A novel route to prepare and characterize Sn_2Bi nanoparticles.Journal of Alloys and Compounds,2005,394:282-285.
    [34]Gee S H,Hong Y K,Jeffers,et al.Synthesis of nano-sized spherical barium-strontium ferrite particles.Magnetics,s2005,41(11):4353-4355.
    [35]J Berthier,P Pham,P Masse,et al.Magnetic confinement of paramagnetic micro and nano-particles away from solid walls magnetics.Magnetics,2002,38(2):913-916.
    [36]Chang S.J.,Niu G.C.,Kuo S.M.,et al.Preparation of nano-sized particles from collagen Ⅱ by a high-voltage electrostatic field system.Nanobiotechnology,2006,153(1):1-6.
    [37]R Pampach,K Haberkc.Ceramic powders[M].Amsterdant:Elserier Scientific Pub.Company,1983.
    [38]G W Scherer,Drying gels general theory.J Noncryst,Solids,1986,87:199-225.
    [39]M S Kaliszewski,A H Heuer.Alcohol interaction with zirconia powders.J Am Ceram Soc,1990,73:1504-1509.
    [40]A Maskra,D M Smith.Agglomeration during the drying of fine silica powders.J Am Ceram Soc,1997,80:1715-1722.
    [41]A Maskra.Agglomeration during the drying of fine silica powders-Part Ⅱ:The role particle solubility.J Am Ceram Soc,1997,80(7):1715-1722.
    [42]陈云华,林安,甘复兴.纳米颗粒的化学改性方法研究现状.中国表面工程,2005,2:5-9.
    [43]Laigui Yu,Pingyu Zhang,Zuliang Du.Tribology behavior and structural change of the LB film of MoS_2 nanoparticles coated with dialkyldithio-phosphate.Surface and Coatings Technology,2000,130:110-115.
    [44]张清岑,肖奇,刘建平.超分散剂对超细SiO_2分散稳定性的影响.中南工业大学学报,2005,36(2):225-228.
    [45]陈莲英,章文贡.纳米润滑材料及表面改性研究进展.润滑与密封,2004,1:107-110.
    [46]P Somasundaran,S Krishnakumar.Adsorption of surfactants and polymers at the solid-liquid interface.Colloids and Surfaces A:Physicochemical and Engineering Aspects,1997,123/124:491-513.
    [47]张淑霞,李建保,张波,等.TiO_2颗粒表面无机包覆的研究进展.化学通报,2001(2):71-75.
    [48]T Choudhury,F R Jones.The interaction of silences with amorphous silicon oxide surfaces.International Journal of Adhesion and Adhesives,2006,26:79-87.
    [49]B Arkles.Tailoring Surfaces with Silane.Chem Tech,1997,7:766.
    [50]Rui Yang,Yujuan Liu,et al.Characterization of surface interaction of inorganic fillers with silane coupling agents.Journal of Analytical and App lied Pyrolysis,2003,70(2):413-425.
    [51]陈文刚,高玉周,张会臣,等.油酸修饰自修复添加剂在金属摩擦副表面成膜过程研究.功能材料,2008,39(1):111-114.
    [52]Wenyu Ye,Tiefeng Cheng,Qing Ye,et al.Preparation and tribological properties of tetrafluorobenzoic acid-modified TiO_2 nanoparticles as lubricant additives.Materials Science and Engineering A,2003,359:82-85.
    [53]徐守芳,李春忠,陈雪花.纳米碳酸钙颗粒表面接枝聚合甲基丙烯酸甲酯的结构及机制分析.华东理工大学学报:自然科学版,2005,31(5):602-605.
    [54]Mack J E,Mack P K.Lubricant additive.US Patent,No.4204968
    [55]Shrnnban E E.Ultrafine powder lubricant.US Patent.No.5523016
    [56]L Rapoprt,Y Feldman,et al.Inorganicfullerence-like material as additives to lubricants:structure-functionrelationship.Wear,1999,225-229:975-982.
    [57]Zhou J,Yang J,Zhang Z,et al.Study of the structure and tribological properties of surface-modified Cu nanoparticles.Mater.Res.Bull.,1999,34(9):1361-1367.
    [58]Tarasov S,Kolubaev A,Belyacev S,et al.Study of friction reduction by nanocopper additives to motor oil.Wear,2002,252(1-2):63-69.
    [59]Zhao Yanbao,Zhang Zhijun,Dang Hongxin.Fabrication and tribological properties of Pb nanoparticles.Journal of Nanoparticle Research,2004,6:47-51.
    [60]Yanbao Zhao,Zhijun Zhang,Hongxin Dang.Preparation of tin nanoparticles by solution dispersion.Materials Science and Engineering A,2003,359:405-407
    [61]Hisakado T.Tsukizoe T.loshikawa H.Lubrication mechanism of solid lubricants in oils.Journal of Lubrication Technology,Transac,dons ASME.1983.105(2):245-253.
    [62]Partz W J.Some investigations on the influence of particle size on the lubricating effectives of Molybdenum disulfide.ASLE Transaction,1972.15(3):207-215.
    [63]Bakunin V N,Suslov A Y,Kuz' mina G N,et al.Surface-capped molybdenum sulphide nanoparticles-A novel type of lubricant additive.Lubri.Sci.,2004,16:207-214.
    [64]V N Bakumin,A Yu Suslov,G N Kuzmina,et al.Synthesis and application of inorganic nanoparticles as lubricant components review.Journal of Nanoparticle Research,2004,6:273-284.
    [65]Zhang Z J,Zhang J,Xue Q J.Synthesis and characterization of a molybdenum disulfide nanocluster.J.Phys.Chem.,1994,98(49):12973-12977.
    [66]Chhowalla M,Amaratunga G A J.Thin films of fullerene-Iike MoS_2 nanoparticles with ultra-low friction and wear,Nature,2000,407(6801):164-167.
    [67]Cizaire L,Vacher B,Mogne T Le.Mechanisms of ultra-low friction by hollow inorganic fullerene-like MoS_2 :nanoparticles.Sur.Coating Tech.,2002,160:282-287.
    [68]R B Rastogi,M Yadav.Suspension of molybdenum-sulphur complexes in paraffin oil as extreme pressure lubricants.Tribology International,2003,36:511-516.
    [69]Philip C H Mitchell.Oil-soluble Mo-S compounds as lubricant additive.Wear,1984,100:281-300.
    [70]Gareth Fish,Jisheng E.The effect of friction modifier additives on CVJ grease performance.NLGL Spokeman,2002,66(7):22-30.
    [71]J.Gansheimer,R.Holinski.Molybdenum disulfide in oils and greases under boundary conditions.ASME J.Lubr.Technol.,1973,95:242-248.
    [72]Rapoport L,Fleischer N,Tenne R.Fullerence-like WS_2 nanoparticles:Superior lubricants for harsh conditions.Adv Mater,2003,15:651-655.
    [73]L Rapoport,V Leshchinsky,L Lapsker,et al.Tribological properties of WS_2 nanoparticles under mixed lubrication.Wear,2003,255:785-793.
    [74]R Greenberg,G Halperin,I Etsion,et al.The effect of WS_2 nanoparticles on friction reduction in various lubrication regimes.Tribology Letters,2004,17(2):179-186.
    [75]Rapoport L.,Lvovsky M.,Lapasker I.,et al.Friction and wear of bronze power composites including fullerene-like WS_2 nanoparticles.Wear,2001,249:149-156.
    [76]Chen S,LiuW M.Oleic acid capped PbS nanoparticles:Synthesis,characterization and tribological properties.Materials Chemistry and Physics,2006,98(1):183-189.
    [77]Chen S,Liu W,Yu L.Preparation of DDP-coated PbS nanoparticles and investigation of the antiwear ability of the prepared nanoparticles as additive in liquid paraffin.Wear,1998,218(2):153-158.
    [78]Liu W,Chen S.An investigation of the tribological behaviour of surface-modified ZnS nanoparticles in liquid paraffin.Wear,2000,238(2):120-124.
    [79]Ye P,Jiang X,Shu Li,et al.Preparation of NiMoO_2S_2 nanoparticle and investigation of its tribological behavior as additive in lubricating oils.Wear,2002,253(5-6):572-575.
    [80]Zhang Z,Xue Q J,Zhang J.Synthesis,structure and lubricating properties of dialkyldithiophosphate-modified Mo-S compound nanoclusters.Wear,1997,209(1-2):8-12.
    [81]Hu Z S,Dong J X.Study on antiwear and reducing friction additive of nanometer titanium borate.Wear,1998,216(1):87-91.
    [82]Chen G X,Hu Z S,Nai R,et al.Preparation and tribology of ultrafine and amorphous strontium borate.J.Master.Design Appl.,2001,215(L3):133-140.
    [83]Dong J X,Hu Z S.A study of the anti-wear and friction-reducing properties of the lubricant additive,Nanometer Zinc borate.Tribol.Int.,1998,31(5):219-223.
    [84]Hu Z S,Lai R,Lou F,et al.Preparation and tribological properties of nanometer magnesium borate as lubricating oil additive.Wear,2002,252(5-6):370-374.
    [85]Hu Z S,Shi Y G,Wang L G,et al.Study on antiwear and reducing friction additive of nanometer aluminum borate.Lubrication Engineering,2001,57(3):23-27.
    [86]Z.S.Hu,J.X.Dong,G.X.Chen,Preparation and tribological properties of nanometer SnO and ferrous borate as lubricant additives,in:98' Asia International Tribology Symposium,Peking,China,1998.
    [87]J.X.Dong,G.Chen,S.Qiu,Wear and friction behaviour of CaCO_3 nanoparticles used as additives in lubricating oils,Lubr.Sci.,2000,12:205-212.
    [88]Xue Q.J.,Liu W.M.,Zhang Z.J.Friction and wear properties of a surface-modified TiO_2 nanoparticle as an additive in liquid paraffin.Wear,1997,213(1-2):29-32.
    [89]Hu Z S,Dong J X.Study on antiwear and reducing friction additive of nanometer titanium oxide.Wear,1998,216(1):92-96.
    [90]Melendre C A,Narayansamy A,Maromi V A.Raman spectroscopy of Nano-phase TiO_2.Journal of Materials Research,1989.4(5):1246-1250.
    [91]Yongjian Gao,Guoxu Chen,Yao Li,et al.Study on tribological properties of oleic acid-modified TiO_2 nanoparticle in water.Wear,2002,252:454-458.
    [92]Li X H,Cao Z,Zhang Z J,et al.Surface-modification in situ of nano-SiO_2 and its structure and tribological properties.Applied Surface Science,2006,252(22):7856-7861.
    [93]Hu Z S,Dong J X,Chen G X.Study on antiwear and reducing friction additive of nanometer ferric oxide.Tribol.Int.,1998,31(7):355-360.
    [94]Wang J,Rose K C,Lieber C M.Load-independent friction:MoO_3 nanocrystal lubricants.J.Phys.Chem.B,1999,103(40):8405-8409.
    [95]A.H.Battez,J.E.Fernandez Rico,A.N.Arias,J.L.Viesca Rodriguez,R.C.Rodriguez,J.M.D.Fernandez,The triboiogical behaviour of ZnO nanoparticles as an additive to PAO6.Wear,2006,261:256-263.
    [96]Libo Wang,Bo Wang,Xiaobo Wang,Weimin Liu.Tribological investigation of CaF2nanocrystals as grease additives.Tribology International 40(2007) 1179-1185.
    [97]Chen G X,Hu Z S,Dong J X,et al.Study on antiwear and reducing friction additive of nanometer cobalt hydroxide.Lubrication Engineering,2001,4:36-39.
    [98]Zhang Z.F.,Yu L.G.,Liu W.M.,et al.The effect of LaF_3 nanocluster modified with succinimide on the lubricating performance of liquid paraffin for steel-on-steel system.Tribol Int,2001,34(2):83-88.
    [99]Lian Y F,Yu L G,Xue Q J.The antiwear and extreme pressure action mechanism of CeF_3 in grease.Lubrication Science,1996,8(4):379-388.
    [100]Zhang Z F,Liu W M,Xue Q J.Study on lubricating mechanisms of La(OH)_3 nanocluster modified by compound containing nitrogen in liquid paraffin.Wear,1998,218(2):139-144.
    [101]Zefu Zhang,Weimin Liu,Qunji Xue.The tribological behaviors of succinimide-modified lanthanum hydroxide nanoparticles blended with zinc dialkyldithiophosphate as additives in liquid paraffin.Wear,2001,248(1-2):48-54.
    [102]Lei Sun,Jingfang Zhou,Zhijun Zhang,et al.Synthesis and tribological behavior of surface modified(NH_4)_3PMo_(12)O_(40) nanoparticles.Wear,2004,256(1-2):176-181.
    [103]F.G.Reick.Energy saving lubricants containing colloidal PTFE.Lubr.Eng.,1982,38:635-646.
    [104]赵彦保,周静芳,张治军.聚合物纳米微球的合成及摩擦学行为.应用化学,1999,16(4):33-36.
    [105]G S Brady,H R Clauser.Materials Handbook[M].12thed.McGraw-Hill,1986.
    [106]Yao J B,Dong J X.A Tribocatslysis reaction in boundary-An antiwear synergism between borates and copper oleate.Lubrication Engineering,1995,51(3):231-233.
    [107]Ju Yincheng,Xie Shiwen.Test Studies on Lubricity of Two-Cycle Oil by Appling Nano-Cu Additive.Lubrication Engineering,2002(4):51-56.
    [108]Liu Q,Xu Y,Shi P J,et ai.Analysis of self-repair films on friction surface lubricated with nano-Cu additive.Journal of Central South University of Technology,2005,12(Suppl 2):186-198.
    [109]Wang Xiaoli,Xu Binshi,Xu Yi,et al.Preparation of nano-copper as lubrication oil additive.J.CENT.SOUTHUNIV.TECHNOL,2005,12(Supple.2):203-206.
    [110]Yu Helong,Xu Binshi,Xu Yi,et al.,Design of wear-out-failure in-situ repair parts by environment-friendly nanocopper additive.J.CENT.SOUTHUNIV.TECHNOU,2005,12(Supple.2):215-220.
    [111]Zhiwei Li,Xiaojun Tao,Yamin Cheng,et al.A facile way for preparing tin nanoparticles from bulk tin via ultrasound dispersion.Ultrasonics Sonochemistry,2007,14:89-92.
    [112]党鸿辛,赵彦保,张治军.铋纳米微粒添加剂的摩擦学性能研究.摩擦学学报,2004,24(2):185-187.
    [113]Zhang Feng,Song Baoyu,et al.Research on anti-contact fatigue performance of grease containing nano SbS_4 particles.Journal of Harbin Institute of Technology,2005,12(5):477-480.
    [114]张锋,宋宝玉,曲建俊.含纳米金刚石粉润滑脂对钢球接触疲劳的影响.哈尔滨工业大学学报,2005,37(10):1321-1323.
    [115]Zhao Yanbao,Liu Jin,Cao Liuqin,et al.Synthesis and characterization of Pb-Bi bimetal nanoparticles by solution dispersion.Materials Chemistry and Physics,2006,99:71-74.
    [116]顾卓明,顾彩香,陈志刚.含纳米碳酸钙、稀土粒子润滑油的摩擦学性能.润滑与密封,2005.6:9-11.
    [117]Wu Y Y,Tsui W C,Liu T C.Experimental analysis of tribological properties of lubricating oils with nanoparticle additives.Wear,2007,262:819-825.
    [118]Cusano C,Sliney H E.Dynamics of solid dispersions in oil during the lubrication of point contacts-1.Graphite ASLE Trans.,1982,25(2):183-189.
    [119]Gupta B K,Bhuahan B,Fullerene particles as an additive to liquid lubricants and greases for low friction and wear.Lubrication Engineering,1994,50(7):524-528.
    [120]吕君英,龚凡,郭亚平.纳米粒子改善润滑油摩擦磨损性能机理的评述.应用科技,2004,31(11):51-53.
    [121]P.Tartqj,A.Cerpa,M.T.Garcia-Gonzalez,et al.Surface Instability of Serpentine in Aqueous Suspensions.Journal of Colloid and Interface Science,2000,231:176-181.
    [122]Alain Baronmet,Bertrand Devouard.Topology and crystal growth of natural chrysotile and polygonal serpentine.Journal of Crystal Growth,1996,166:952-960.
    [123]N.Gence,H.Ozdag.Surface properties of magnesite and surfactant adsorption mechanism.Int.J.Miner.Process.1995,43:37-47.
    [124]Ulmer P,Trommsdorff V.Serpentine stability to mantle depths and subduction -related magmatism.Science,1995,268:858-861.
    [125]Liu Lingun.Phase transformations in serpentine at high pressures and temperatures and implications for subducting lithosphere.Phys.Earth Planet.Inter,1986,42:255-262.
    [126]董伟达.工程机械减摩自修复材料技术.机械工程师,2003,3:3-6.
    [127]赵立涛,陈国需,高永建,等.摩擦磨损自修复原理及纳米自修复添加剂研究进展.润滑与密封,2007,8:152-155.
    [128]陈占利.自修复添加剂对滑动磨擦副抗胶合性能的影响.润滑与密封,2006,11:151-153.
    [129]张正业,杨鹤,李生华,等.金属磨损自修复剂在DF型铁路机车柴油机上的应用研究.润滑与密封,2004,7:75-77.
    [130]齐效文,杨育林,薛飞.接触应力和相对滑动速度对金属表面自修复膜生成的影响及机制.润滑与密封,2007,7:20-26.
    [131]齐效文,杨育林,范兵利.羟基硅酸镁粉体添加剂含量对金属表面自修复膜生成的影响及机制.润滑与密封,2007,6:46-49.
    [132]曹娟,张振忠,赵芳霞.超细蛇纹石粉体改善润滑油摩擦磨损性能的研究.润滑与密封,2007.12:53-55.
    [133]He Yang,Zhengye Zhang,Shenghua Li,et al.Generation and characterization of a protective layer on steel tribosurfaces in presence of Mg_6Si_4O_(10)(OH)_8[C].Presented at the 59th STLE Annual Meeting Toronto,Ontario,Canada,PREPRINT NO.AM(NP)-04-28 May 17-20,2004.
    [134]Jin Yuansheng,Li Shenghua,Zhang Zhengye,et al.In situ mechanochemical reconditioning of worn ferrous surfaces.Tribology International,2004,37:561-567.
    [135]杨鹤,张正业,李生华,等.金属磨损自修复层的X光电子能谱研究.光谱学与光潜分析,2005,25(6):945-948.
    [136]杨鹤,金元生,山下一彦.Mg_6Si_4O_(10)(OH)_8修复剂应用于滑动轴承的模拟试验研究.润滑与密封,2006,7:144-146.
    [137]杨鹤,李生华,金元生.修复剂羟基硅酸镁存在时钢摩擦副的摩擦磨损特性研究.摩擦学学报,2005,4:308-311.
    [138]郭廷宝,徐滨士,马士宁,等.羟基硅酸盐润滑油添加剂对45~#钢/球墨铸铁摩擦副摩擦磨损性能的影响.摩擦学学报,2004,24(6):512-516.
    [139]郭廷宝,徐滨士,许一,等.羟基硅酸盐矿物微粉添加剂对内燃机自修复效果的研究.中国表面工程,2004,6:19-22.
    [140]顾艳红,田斌,岳文,等.金属陶瓷润滑油添加剂对钢-钢磨擦复磨损行为的影响及其铁谱验证.中国表面工程,2005,1:16-20.
    [141]田斌,岳文,郊鲜,等.陶瓷润滑油添加剂对渗氮和镀铬缸套作用效果的研究.润滑与密封,2006,6:74-78.
    [142]田斌,王成彪,岳文,等.陶瓷润滑油涂加剂对镀铬缸套磨损自修复特性的影响.摩擦学学报,2006,26(6):574-579.
    [143]田斌,王成彪,顾艳红,等.陶瓷润滑油添加剂对钢/钢摩擦副摩擦学性能的影响.材料热处理学报,2006,27(3):132-137.
    [144]岳文,王成彪,田斌,等.陶瓷润滑油添加剂对钢-钢接触疲劳及磨损性能的影响.材料热处理学报,2006,27(6):118-124.
    [145]岳文,王成彪,田斌,等.矿物质润滑油添加剂对钢/铝锡合金摩擦副摩擦学性能的影响.润滑与密封,2007,11:98-102.
    [146]刘家浚,郭凤炜.一种摩擦表面自修复技术的应用效果.中国表面工程,2004,3:42-46.
    [147]刘永强,张栋,李锋.有机硅酸盐对45钢和灰铸铁HT150摩擦性能的影响.机械工程学报,2006,42(4):236-238.
    [148]苏登成,郑少华,邢延涛,等.Al_2O_3/SiO_2/MgO复合纳米添加剂的抗磨减摩性能.纳米材料与应用,2006,3(3):12-15.
    [149]谢学兵,陈国需,孙霞,等.MgO/SiO_2复合纳米添加剂的自修复性能试验研究.润滑与密封,2007,8:49-51.
    [150]卓洪,王文健,刘启跃.不同纳米添加剂下GCr15/45钢自修复性能研究.润滑与密封,2007.8:46-49.
    [151]国秋菊,郑少华,陶文宏.纳米SiO_2和MgO在润滑油中的抗磨减摩性.润滑与密封,2006.5:44-47.
    [152]Yang Yu,Jialin Gu,Feiyu Kang,et al.Surface restoration induced by lubricant additive of natural minerals.Applied Surface Science,2007,253:7549-7553.
    1153]来红州,王时麒,俞宁.辽宁岫岩叶蛇纹石热处理产物的矿物学特征.矿物学报,2003,23(2):124-129.
    [154]李凤生.超细粉体技术.北京:国防工业出版社,2000年.
    [155]张心亚,沈慧芳,黄洪,等.纳米粒子材料的表面改性及其应用研究进展.材料工程,2005,10:58-63.
    [156]孙传尧,印万忠.硅酸盐矿物浮选原理.北京:科学出版社,2002年.
    [157]戴达煌,周克崧,袁镇海等.现代材料表面技术科学.北京:冶金工业出版社,2004年.
    [158]温诗铸,黄平.摩擦学原理.北京:清华大学出版社(第二版),2003年.
    [159]Bharat Bhushan,葛世荣.摩擦学导论.北京:机械工业出版社,2006年.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700