用户名: 密码: 验证码:
工艺因素对Al-4.5%Cu合金定向凝固组织及性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
国内外学者对定向凝固理论与技术进行了大量的研究,但相关研究主要集中于晶粒细化程度、初生相形状、尺度、分布以及性能的影响方面,仅借助于金相显微镜来定性地描述合金的凝固组织形态,并且采用的工艺参数单一,而各种工艺因素对定向凝固组织和性能的影响还没有比较系统的研究。
     本文研究了熔体过热处理工艺、温度梯度及抽拉速率对Al-4.5%Cu合金定向凝固组织、力学性能及晶体取向的影响;研究了在过热处理、温度梯度及抽拉速率一定的条件下,稀土元素(La、Ce、复合稀土)对Al-4.5%Cu合金定向凝固组织及热疲劳性能的影响;并对热疲劳试验的温度场及试样的热应力进行了模拟。在万能试验机上测出了不同定向凝固试样的应力—应变曲线;用扫描电镜分析了Al-4.5%Cu合金定向凝固试样组织及拉伸后的断口形貌;在自约束型热疲劳试验机上进行了不同稀土含量的定向凝固Al-4.5%Cu合金的热疲劳性能测试;探讨了工艺因素影响最终组织、力学性能及热疲劳性能的内在机制。
     熔体过热处理对Al-4.5%Cu合金定向凝固组织及力学性能有显著影响。随着熔体过热温度的提高和熔体过热时间的延长,一次枝晶间距减小,强度及塑性提高;而随着低温保持时间的延长,一次枝晶间距增加,强度及塑性降低;不同过热处理后Al-4.5%Cu合金定向凝固试样失效形式为韧性断裂;熔体过热处理改变了熔体的结构状态,液态会属结构的改变直接影响了最终的组织、性能及晶体取向。
     在过热处理和抽拉速率一定的条件下,随着温度梯度的增大,一次枝晶间距显著减小,试验结果与Hunt模型分析结果一致。在过热处理和温度梯度一定的条件下,当抽拉速率低于92μm/s时,定向凝固组织并不理想;随着抽拉速率的增加,Al-4.5%Cu合金定向凝固组织中枝晶排列整齐,一次枝晶间距显著减小;在较高的抽拉速率(V>123μm/s)下,一次枝晶间距试验结果与Hunt模型分析结果有很好的一致性;抽拉速率为200μm/s的试样与抽拉速率为621μm/s的试样相比,抗拉强度提高16.7%,延伸率提高85.9%。
     在过热处理、温度梯度及抽拉速率一定的条件下,加入0.3%La,0.3%Ce以及0.4%复合稀土的Al-4.5%Cu合金定向凝固试样组织致密,一次枝晶间距最小;少量稀土能促使合金生成发达的树枝晶,并且随着稀土加入量的增大,枝晶分布逐渐整齐,一次枝晶间距逐渐变小;加入0.3%La,0.1%Ce以及0.3%复合稀土的Al-4.5%Cu合金定向凝固试样热疲劳性能较好:热疲劳裂纹的扩展呈现先快后慢的阶段性扩展。
     有限元数值模拟表明,在一次循环结束后,试样内部有残余应力存在,预制缺口处出现应力集中;热应力开始以小三角形向试样内部扩展,之后快速以两条主线的方式扩展,最后热应力变化平缓;随着循环次数的增加,残余应力逐渐累积,当累积的残余应力达到一定值后,在应力集中的作用下,在预制缺口处会出现裂纹。
Directional solidification theory and technology have been studied and attentions have been concentratively paid to grain refinement,primary phase microstructure,size,distribution of dendrite and property.Metallurgical microscope has been applied to describe qualitatively the microstructure morphology of solidified alloys.Single process factor has been generally considered and integrated and systematic research of process factors' influences on microstructure and mechanical property was kept to be expected.
     Influences of melt superheat treatment process,temperature gradient and withdrawal rate on microstructure,mechanical property and crystallographic orientation of directionally solidified AI-4.5%Cu alloy were studied.Under certain superheat treatment process, temperature gradient and withdrawal rate,influence of rare earth(La,Ce,composite rare earth)on microstructure and thermal fatigue of directionally solidified Al-4.5%Cu alloy was investigated.Temperature field and thermal stress distributions were simulated according to thermal fatigue test parameters.With universal testing machine,stress-strain curves were obtained for different directionally solidified specimens.Directional solidification microstructure of Al-4.5%Cu alloy and fracture morphology after being streched were analyzed through scanning electron microscope(SEM).Thermal fatigue test of directionally solidified Al-4.5%Cu alloy with different contents of rare earth added in was undertaken on self-restrict thermal fatigue experimental machine.The potential mechanism of process factors' impact on final microstructure,mechanical property and thermal fatigue properties was discussed.
     Melt superheat treatment has remarkable influences on microstrucure and mechanical properties of directionally solidified Al-4.5%Cu alloy.With increase of melt superheat temperature and prolonging of melt superheat time,primary dendritric spacing decreases,and the strength and elongation increase.With the prolonging of low-temperature holding period, primary dendritic spacing increases,and the strength and elongation decrease.The failure mode of directionally solidified Al-4.5%Cu alloy specimen being superheatedly treated is ductile fracture.The melt superheat treatment changes the melt microstructures.Change of liquid metal structure directly affects the final structure,properties and crystallographic orientation.
     Under certain superheat treatment process and withdrawal rate,with increase of temperature gradient,primary dendritic spacing decrease clearly.The results are uniform with that deduced by Hunt model.Under certain superheat treatment process and temperature gradient,when withdrawal rate is lower than 92μm/s,the directional solidification microstructure is not favorable.With increase of withdrawal rate,dendrite arrangement becomes more regular and primary dendritic spacing gets obviously narrowed.With higher withdrawal rate(more than 123μm/s),measured primary dendritic spacing is in good accordance with that deduced by Hunt model.Tensile strength and elongation of the specimen subjected to withdrawal rate of 200μm/s are higher than the counter parts of the specimen subjected to withdrawal rate of 62μm/s by 16.7%and 85.9%respectively.
     Under certain superheat treatment process,temperature gradient and withdrawal rate, with 0.3%La,0.3%Ce and 0.4%composite rare earth added in,the directionaUy solidified Al-4.5%Cu alloy has compact microstructure and minimum primary dendritic spacing.Little rare earth helps to the formation of developed dendrite crystal.Dendritic arrangement gets more regular and primary dendritic spacing gets smaller with more rare earth.Thermal fatigue property of the specimen is excellent with 0.3%La,0.1%Ce and 0.3%composite rare earth added in.Spread of thermal fatigue crack can be divided into different steps and is characterized by initial fast pace and following slower paces.
     Finite element analysis shows that residual stress exists after one cycle and stress concentration appears at the pre-made notch.Thermal stress extends towards the inside part of the specimen with triangular profde.And then the thermal stress extends sharply with two bifurcations.Finally,the thermal stress variation gets smoothly.With increase of cycle number, residue stress accumulates gradually and reaches certain value which drives the crack to occur at the pre-made notch.
引文
[1]傅恒志主编.铸钢和铸造高温合金及其熔炼[M].西安:西北工业大学出版社,1985
    [2]杨森,黄卫尔,林鑫,周尧和.定向凝固技术的研究进展[J].兵器材料科学与工程,2000,23(2):44-50
    [3]周振平,李荣德.定向凝固试验研究现状[J].特种铸造及有色合金,2003,(2):35-38
    [4]Rutter J W,Chalmers B.A prismatic substructure formed during solidification of metals[J].Can.J.Phys.,1953,31(1):15-39
    [5]Tiller W A,Jackson K A,Rutter J W,Chalmers B.The redistribution of solute atoms during the solidification of metals[J].Acta Metallurgica,1953,1:428-437
    [6]Mullins W W,Sekerka R F.Morphological stability of a particle growing by diffusion of heat flow[J].Journal of Applied Physics,1963,34:323-329
    [7]Mullins W W,Sekerka R F.Stability of a planar interface during solidification of a dilute binary alloy[J].Journal of Applied Physics,19643,35:444-451
    [8]Sekerka R F.A stability function for explicit evaluation of the Mullins-Sekerka interface criterion[J].Journal of Applied Physics,1965,36:264-268
    [9]Sekerka R F.Application of the time-dependent theory of interface stability to an isothermal phase transformation[J].Journal of Physics and Chemistry of Solids,1967,28:983-994
    [10]Sekerka R F.Morphological stability[J].Journal of Crystal Growth.1968,3/4:71-81
    [11]周尧和,胡壮麒,介万奇编著.凝固技术[M].北京:机械工业出版社,1998
    [12]Mclean M.Directionally solidified Materials for High Temperature Service[M].London:The Metals Society,1983
    [13]Versnyder F L,Barlow R B,Sink LW,Piearcey B J.Directional solidification in the precision casting of gas-turbine parts[J].Modern Casting.1967,52(6):68-75
    [14]Higginbotham G J S.From research to cost-effective directional solidification and single-crystal production-an integrated approach[J].Journal of Materials Science and Technology,1986,(2):442-460
    [15]A.F.Giamei and J.S.Erickson.Computer applications in directional solidification processing[C].Superalloys - Metallurgy and Manufacture,Proceedings of the 3rd Intn'l Symposium,Seven Springs,Pennsylvania.Edited by D.R.Muzyka,W.H.Couts,Jr.,G.E.Wasielewski,B.H.Kear,J.P.Stroup,R.L.Dreshfield,and H.Morrow Ⅲ,1976,p 405-424
    [16]LI Jianguo MAO Xiemin FU Hengzhi,Interface morphologies and microstructures during dendrite-to-cell transition at high growth rate[J].Acta Metallurgica Sinica,1991,(1):71-74
    [17]Lux B,Haour G,Molland F.Dynamic Undereooling of superalloys[J].Metall,1981,35:1235
    [18]傅恒志,沈军,郝启堂,李双明,李金山.镍基高温合金真空电磁约束成形与定向凝固[J].中国有色金属学报,2002,12(6):1081-1086
    [19]杨森,黄卫东,刘文今,苏云鹏,周尧和.激光超高温度梯度快速定向凝固研究[J].中国激光,2002,29(5):475479
    [20]顾根大,安阁英.电场作用下Sn-5%Bi合金的胞晶生长[J].机械工程学报,1991,27(5):37-41
    [21]徐雁允,安阁英.电场对Al-Cu共晶片间距的影响[J].铸造,1991(3):5-8
    [22]常国威,袁军平,王自东,吴春京,王新华,胡汉起.电流密度对定向凝固组织中柱状晶间距的影响[J].金属学报,2000,36(1):3-32
    [23]刘俊成.ACRT强迫对流对定向凝固过程传热传质的影响[J].自然科学进展,2003,13(12):1293-1300
    [24]孙国雄,潘冶,沈锦华.Al-Si合金共晶阶段强迫流动下的Si相形态[J].铸造,1993,(6):7-11
    [25]张瑞杰,徐嵬,介万奇.Zn-2.75%Cu合金定向凝固组织及对流的影响[J].铸造技术,2001,(2):52-54
    [26]陈钊,陈长乐,温晓莉,朱建华,高文帅.旋转磁场强度和频率对Pb-Sn合金凝固组织的影响[J].科学通报,2000,53(8):882-887
    [27]曹志强,张丽萍,任忠鸣,金俊泽.电磁搅拌对灰铸铁宏观偏析的影响[J].金属学报,1992,28(2):B 80-B 83
    [28]金俊泽,曹志强,郑贤淑,张尚儒.电磁搅拌作用下形成分离共晶的研究[J].金属学报,1995,31(8):B 374-B 378
    [29]潘冶,孙国雄.变速生长的MnSb/Sb共晶相间距选择[J].稀有金属材料与工程,1999,28(2):85-88
    [30]刘俊明,周尧和,商宝禄.Al-Si共晶强制性非稳态生长试验研究[J].金属学报,1989,25(6):103-108
    [31]刘俊明,周尧和,商宝禄.Al-Si共晶相间距对生长速度突变的响应[J].材料研究学报,1992,6(2):28-33
    [32]徐达鸣,曹福洋,李庆春.变速定向生长条件下Pb-Sn共晶组织变化[J].金属学报,1995,31(11):A494-A 500
    [33]徐达鸣,曹福洋,李庆春,王永前,张宝友.变速生长条件下Al-Cu合金的定向凝固枝晶组织[J].金属学报,1995,31(11):A501-A507
    [34]Chen Guang,Yu Jianwei,Fu Hengzhi.Influence of the melt heat history on the solid/liquid interface morphology evolution in unidirectional solidification[J].Journal of Materials Science Letters, 1999,18:1571-1573
    [35]陈光,俞建成,孙彦臣,傅恒志.熔体热历史对Al-Cu合金定向凝固界面稳定性的影响[J].材料研究学报,1999,13(5):497-500
    [36]Yingwen Cai,Guilin Zhang,Jinshan Li,Guang Chen,Hengzhi Fu.Effect of melt heat treatment on the solid/liquid interface morphology of directional solidification[J].Science and Technology of Advanced Materials.2001,2:169-172
    [37]陈光,俞建成,谢发勤,傅恒志.熔体过热历史对Ni基高温合金定向凝固界面形态的影响[J].金属学报,2001,37(5):488-492
    [38]耿兴国,陈光,傅恒志.熔体过热对定向凝固界面形态稳定性的影响[J].金属学报,2002,38(3):225-229
    [39]司乃潮,孙克庆,刘海霞.熔体过热处理对定向凝固界面形态及稳定性的影响[J].铸造,2005,54(5):429-432
    [40]Hunt J D.Solidification and casting of metals[M].London:The Metal Society,1979
    [41]Bower,T.F.;Brody,Harold D.;Flemings,Merton C.Measurements of solute redistribution in dendritic solidification[J].Transactions of the Metallurgical Society of AIME,1966,236(5):624-634.
    [42]W.Kurz,D.J.Fisher.Dendrite growth at the limit of stability tip radius and spacing[J].Acta metal,1981,29:11-20
    [43]TRIVEDI R.Interdendritic spacing:Part Ⅱ.A comparison of theory and experiment[J].Metall Trans,1984,15A:977-982.
    [44]Hunt J D,Lu S Z.Numerical modeling of cellular/dendritic array growth:Spacing and structure prediction[J].Metall Mater Trans,1996,27A:611-623
    [45]S.Ganesan,C.L.Chan,and D.R.Poirier.Permeability for flow parallel to primary dendrite arms[J].Mater.Sci.Eng.,1992,A 151:97-105.
    [46]M.S.Bhat,D.R.Poirier and J.C.Heinrich,Permeability for cross flow through columnar-dendritic alloys[J].Metall.Mat.Trans,1995,26B:1049-1056.
    [47]McCartney,D.G,Hunt,J.D.Measurement of cell and primary dendrite arm spacing in directionally solidified aluminium alloys[J].Acta Metall,1981,29:1851-1863.
    [48]林鑫,黄卫东,潘清跃,丁国陆,薛玉芳,周尧和.Al-4.5Cu单品定向凝固一次枝晶间距研究[J].金属学报,1997,33(11):1140-1146
    [49]何国,李建国,毛协民,傅恒志.晶体取向对单晶高温合金一次枝晶间距的影响[J].金属学报,1995, 31(7):A309-A314
    [50]王震,李金国,赵乃仁,金涛,张静华.熔体处理温度对镍基单晶高温合金熔体结构和凝固组织的影响[J].金属学报,2002,38(9):920-924
    [51]边秀房,刘相法,马家骥.铸造合金遗传学[M].济南:山东科学技术出版社,1999
    [52]周振平,李荣德.合金熔体过热处理研究的国内发展状况[J].铸造,2003,52(2):79-83
    [53]关绍康,沈宁福,石广新.熔体预处理对过共晶Al-Si合金组织及性能的影响[J].郑州工业大学学报,1999,20(2):5-7
    [54]坚增运.净化和熔体温度处理对铝合金凝固过程、组织和性能的影响[D].西北工业大学,1995
    [55]魏朋义.合金凝固新技术及理论的研究-熔体处理组织改性及高梯度单晶制备[D].西安:西北:西北工业大学博士后研究工作报告,1995
    [56]司乃潮,孙克庆,吴强.熔体过热处理对Al-4.7%Cu合金定向凝固组织的影响[J]中国有色金属学报,2007,17(4):547-553
    [57]司乃潮,孙克庆.熔体过热处理对Al-4.7%Cu合金定向凝固力学性能及晶体取向的影响[J]铸造,2007,56(7):683-686
    [58]桂忠楼.镍基高温合金BTOP工艺的发展[J].航空制造工程,1995(4):12-14
    [59]关靖裕本.大型铸锻件译文集[M].北京:机械工业出版社,1984
    [60](美)苏达尚(sudarshan,T.S.)编,范玉殿等译.表面改性技术工程师指南[M].北京:清华大学出版社,1992
    [61]路国强.疲劳短裂纹扩展闭合行为以及腐蚀环境效应[D].西安交通大学,1991
    [62]D.A.Spera.Thermal Fatigue of Materials and Components[C].In:ASTM STP 612,Edited by D.A.Spera and D.F.Mowbray,American Society for Testing and Materials,Philadelphia,1976,pp 1-12.
    [63](美)斯旺森(S.R.Swanson)编,黄子健译.疲劳试验(Handbook of fatigue testing)[M].上海:上海科学技术出版社,1982
    [64]马勇.概率疲劳设计S-N曲线的极大值模型及应用[D].西南交通大学,2003
    [65]张志平.裂纹扩展的简明机理和断裂力学中的切线模量理论[D].哈尔滨工程大学,2003
    [66]赵建生编.断裂力学及断裂物理[M].武汉:华中科技大学出版社,2003
    [67]#12
    [68]王泓.材料疲劳裂纹扩展和断裂定量规律的研究[D].西北工业大学,2002.
    [69]冯西桥.脆性材料的细观损伤理论和损伤结构的安定分析[D].清华大学,1995
    [70]张永刚,韩雅芳,陈国良.金属间化合物结构材料[M].北京:国防工业出版社,2001.
    [71]F.J.Carignan,A.I.West,Hard-on-hard(ceramic) long-life seals and riders for cryogenic coolers,Final Report,US Air Force Report AFWAL-TR-81-4060,August,1981.
    [72]贺志荣,周敬恩,王芳.先进材料及其应用研究进展[J].陕西工学院学报,2001,17(4):7-12
    [73]王建国,王连庆,唐俊武.金属材料热机械疲劳试验与研究[C].全国第六届热疲劳学术会议论文集.
    [74]郭浩.材料疲劳可靠性分析智能仿真方法的研究[D].东北大学,1999.
    [75]胡海云,鲁长宏,张争艳,邢修三.金属热疲劳的非平衡统计理论研究[J].北京理工大学学报,2001,21(2):146-150.
    [76]孟宪红,张行.确定疲劳裂纹扩展速率的积分法[J].机械强度,2001,23(2):213-215.
    [77](美)GR.布查南(George R.Buchanan)著,董文军谢伟松译.有限元分析[M].北京:科学出版社,2002
    [78]周超.复杂铸件凝固过程面向对象的有限元数值模拟[D].福州大学.2003
    [79]徐春龙.柴油机缸盖热疲劳试验及寿命预估[D].北京理工大学,2001
    [80]江红.微观组织对热锻模具钢热疲劳性能的影响[D].吉林大学,2001
    [81]李国庆,赵平.过共晶铝硅合金中锰含量对合金性能的影响[J].四川工业学院学报.2001,(2):33-34,42.
    [82]丛红梅,邹仲芹.Al、Ti元素对高锰铝青铜组织和性能的影响[J].山东冶金.2004,26(2):57-58,61.
    [83]郝瑞霞,彭省临.锰的氧化实验及动力学分析[J].中南工业大学学报.1998'29(4):311-315.
    [84]魏晓伟,曾明.稀土对铸造铝铜合金流动性和热裂倾向性的影响[J].铸造技术.1999,(3):46-48.
    [85]R.M.Ramage,K.V.Jata,G.J.Shiflet,E.A.Strake.The effect of phase continuity on the fatigue and crack closure behavior of a dual phase steel[J].Metallurgical Transactions A,1987,(18A):1287-1291
    [86]S.B.Chakrabortty.A model relating low cycle fatigue properties and microstructure to crack propagation rates[J].Fatigue and Fracture of Engineering Materials & Structures,2007,2(3):331-344.
    [87]S.Majumdar and J.D.Morrow,Correlation between fatigue crack propagation and low cycle fatigue properties[C].In:Fracture toughness and slow-stable cracking,ASTM STP 559,American Society for Testing and Materials,1974,pp.159-182.
    [88]夏鹏成,陈蕴博,葛学元,王淼辉.热作模具钢热疲劳性能的研究现状与发展趋势[J].金属热处理,2008,33(12):1-6
    [89]雷廷权,傅家骐编.金属热处理工艺方法500种[M].北京:机械工业出版社,1998
    [90]宋迎东,高德平.定向凝固合金涡轮叶片的低周疲劳寿命研究[J].机械工程材料,2002,(7):1-3,27
    [91]张卫方,高威,赵爱国,陶春虎,田继丰,姚戈.定向凝固合金叶片的再结晶与疲劳失效[J].航空学报, 2003,24(4):377-381.
    [92](美)休尔施(S.Suresh)著,王中光等译.材料的疲劳[M].北京:国防工业出版社,1999
    [93]宋志坤,刘伟,何庆复.金属材料热疲劳寿命的定量研究方法[J].机械工程材料,1999,23(5):4-5,17.
    [94]H.Samrout e R.Elabdi.Fatigue behavior of 28CrMoV5 steel under Thermomechanical loading[J].International Journal of Fatigue,1998,20(8):555-563.
    [95]蒋良.热处理工艺对3Cr2W8V钢热疲劳性能的影响[D].南京理工大学,2007.
    [96]孙远韬.Paris公式在结构裂纹诊断中的应用研究[D].武汉理工大学,2005.
    [97]张文华.材质和热处理对模具热疲劳性能的影响[J].耐磨材料,1999,2:26-28.
    [98]陈荣章,王罗宝,李建华.铸造高温合金发展的回顾与展望[J].航空材料学报,2000,20(1):55-61.
    [99]徐灏编著.疲劳强度设计[M].北京:机械工业出版社,1981
    [100]张文孝,郭成壁.铝合金的热疲劳特性及断裂力学计算分析[J].固体力学学报,2002,23(3):361-365.
    [101]刘瑞党,何水清,马玲俊.变幅加载条件下的疲劳寿命预测[J].兵工学报,1994,(4):43-47.
    [102]詹国栋,张以增,周洋.陶瓷与陶瓷基复合材料的疲劳研究进展[J].力学进展,1994,24(8):399-408.
    [103]X.L.Zheng and B.T.L(u|¨),Fatigue crack propagation in metals at low temperatures[C].In:Carpinteri Andrea,Editor,Handbook of fatigue crack propagation in metallic structures,Elsevier Science B.V.(1994),pp.1385-1412.
    [104]Zheng Xiulin.On a unified model for predicting notch strength and fracture toughness of metals.Engineering fracture mechanics,1989,33(5):685-695.
    [105]C.E.Richards and T.C.Lindley.The influence of stress intensity and microstructure on fatigue crack propagation in ferritic materials[J].Engineering Fracture Mechanics,1972,4:951-978.
    [106]C.J.Beevers,R.J.Cooke,J.F.Knott,and R.O.Ritchie.Some considerations of the influence of sub-critical cleavage growth during fatigue-crack propagation in steels[J].Metal Science,1975,9(3):119-126.
    [107]杨庆祥,王爱荣,廖波,姚枚.60CrMnMo钢热疲劳裂纹生成与长大及稀土的作用[J].中国稀土学报,1996,14(2):182-185.
    [108]冯胜,程燕平,赵亚丽,程靳.非线性疲劳损伤累积理论研究[J].哈尔滨工业大学学报,2003,35(12):1507-1509.
    [109]蔡英文,俞露,许振明,李建国,傅恒志.定向凝固界面速率对机械牵引速率的响应[J].人工晶体学报,1998,27(2):141-145.
    [110]耿兴国,陈光,傅恒志.过热合金熔体的几种物性滞后效应[J].材料科学与工程,2002,20(4):549-551
    [111]李如生著.非平衡态热力学和耗散结构[M].北京:清华大学出版社,1986
    [112]陈光,傅恒志等编.非平衡凝固新型金属材料[M].北京:科学出版社,2004
    [113]冯端等著.金属物理学[M].北京:科学出版社,1999
    [114]Trivedi R K.Theory of dendritic growth during the directional solidification of binary alloys[J],Journal of Crystal Growth,1980,49:219-232.
    [115]Aziz M J.Model for solute redistribution during rapid solidification[J].Journal of Applied Physics,1982,53:1158-1168.
    [116]季玮.稀土对高锰铝青铜铸态组织和性能的影响[J].中国稀土学报,1995,13(1):54-59
    [117]郑志强,陈克燕.稀土铝合金结晶过程的研究[J].材料与冶金学报,2004,3(3):202-205
    [118]庄虹,刘勇健.稀土对铜及铜合金性能[J].有色金属,1995,47(2):90-94
    [119]洪澜,隋智通.稀土在铜及铜合金中的作用[J],稀土,1991,(4):38-41.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700