用户名: 密码: 验证码:
基于遥感技术的干旱灌区水盐平衡及生态需水研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
内蒙古河套灌区是内蒙古沿黄河地区的最大用水户,占内蒙古黄河水量配额的85%左右,然而,随着黄河来水与水资源统一调度,使河套灌区的引黄水量受到限制,不仅灌区的农业生产受到严重影响,也阻碍了当地的国民经济发展,加强灌区地下水盐动态的观测和生态需水的研究,对指导当前的灌区管理和生态建设都具有十分重要的意义。
     本文在对降水、地表水和地下水分析的基础上,基于遥感技术(RS)对河套灌区生态系统进行分类,对河套灌区的蒸散量进行反演;在水盐平衡理论的支撑下,在充分掌握和分析河套灌区水盐相关资料的基础上,分析并定量计算灌区合理排水量。通过两者结合,对河套灌区各类生态耗水要素的适宜需水量进行计算,确定不同生态系统的生态需水量。
     本文得出以下结论:
     (1)通过遥感数据分析,确定了TM影像的最佳波段组合,经过几何校正采用非监督分类对影像进行分类,最终得到灌区土地分类及作物种植结构。利用高分辨率IKONOS影像对分类结果作了精度评估,精度分析证明多时相中分辨率TM影像用于灌区尺度土地利用分类有很高的精度。
     (2)运用MODIS高频度多时相数据提取作物种植结构,其能有效克服人为因素的影响,较为准确地提取灌区作物种植面积及其空间分布。
     (3)利用地表能量平衡原理的SEBAL模型与SEBS模型对蒸散发进行反演,反演结果与实测值误差在允许范围内,为河套灌区研究区域用水量提供新的方法。
     (4)基于灌区土地分类,结合由CIAT-CSI SRTM网站提供的DEM数据,通过采样分析,得到河套灌区盐碱地主要分布在灌区中游1030m地面高程线以上的灌溉渠道及排水沟道两侧。
     (5)通过对灌区盐分的分析,灌溉水与排水的盐量和组分含量存在显著差异。积累在灌区的有害阳离子量为31.85×104t/年,河套灌区每年灌溉水带入的盐分并没有在荒地中积聚,采用有害盐量引排比可以较为合理的评价灌区的排水效果,为内蒙古河套灌区合理评价灌区排水量提供新的方法。
     (6)利用水量平衡原理对灌区的生态需水量进行理论的计算,得到河套灌区维持现状生态所需水量为53.053亿m3。河套灌区总补给量大于灌区所需水量,但剩余水量为1.556亿m3,量较小,进一步节水的潜力不大。
Hetao irrigation district is the biggest water user, along the Yellow River in Inner Mongolia region, accounting for about 85% of the quota of the Yellow River water in Inner Mongolia. However, the Yellow River water and water resources as a unified scheduling, the Yellow River water of Hetao irrigation district is restricted, it not only affects agricultural production of irrigation disreict seriously, but also hinders local economic development, strengthening salt dynamic observation of groundwater for irrigation district and study of ecological water requirement have great significance for the guidance of current management and ecological construction for irrigation district.
     In this paper, based on the analysis of precipitation, surface water and groundwater, using the remote sensing technology (RS) on the ecosystem in Hetao Irrigation District classification, and inversion calculating evapotranspiration of Hetao Irrigation District; with the support of water and salt balance theory, and analysis of relevant water and salt data in Hetao Irrigation District, on the basis of quantitative analysis and a reasonable calculation of a displacement of irrigated areas. Through a combination of both, all kinds of irrigation water elements of the ecological water requirement are calculated, and at last the ecological water demand of the different ecosystems is determined.
     In this paper, the conclusions are as follows:
     (1) Through the analysis remote sensing data, the best band combination of the TM images is determined, after geometric correction and non-supervised classification of image classification, the land classification and crop planting structure of Irrigation District eventually zre determined. Using high-resolution IKONOS image to assessment the accuracy of results, the accuracy analysis prove that land-use classification of TM image has a high accuracy for the scale of irrigated district.
     (2) Using the high-frequency multi-temporal MODIS data to extract the crops structure can effectively overcome the impact of human factors, and it can extract crop acreage irrigated areas and its spatial distribution accuratly.
     (3) Using of the principle of surface energy balance model of SEBAL and SEBS model to derive and calculate evapotranspiration, inversion results with the measured value of error was allowed for the study area, it provides a new method of water consumption for Hetao Irrigation District.
     (4) Based on land classification of irrigation district, combined with the DEM data of CIAT-CSI SRTM website, through the sampling and analysis, the saline irrigation area Hetao irrigated areas are mainly distributed in the middle reaches of 1030m above the ground elevation of the irrigation channels and drains on both sides of road.
     (5) Through the analysis of salt of the irrigation district, we found that there was a significant difference between the salt content and composition of irrigation water and drainage. Accumulation of harmful cations in the irrigation distrct is about 0.3185 million ton per year. The salt, in the wasteland, does not accumulate in Irrigation District. The use of index for harmful salt can assessment the effect of irrigation water more reasonably. It provides a new method of reasonable assessment for the drainage water of Hetao irrigation district.
     (6) Using the principle of water and soil balance, to calculate the ecological water demand theoretically. The Hetao Irrigation District to maintain the status quo of ecological water requirements is about 5305.3 million m3. The total supply is larger than the water required for irrigation district, but the remaining water is 155.6 million m3, the volume is small, it has less potential for further water conservation.
引文
1 Shi haibin etal. Preliminary Study on Soil Water, Heat and Solute Transport in Cold and Arid Area and Salinization Control.《99-ICAE论文集》.中国农业大学出版社.1999.
    2杨树青,史海滨等.干旱区微咸水灌溉对地下水环境影响的研究[J].水利学报.2007,38(5): 565-574.
    3乔冬梅,史海滨等.盐渍化地区油料向日葵叶水势影响因素及变化规律研究[J].灌溉排水学报,2005,(4).
    4 Haibin Shi,Takeo Akae etal. Study on Sunflower Response to Soil Water and Salt Stress in the Hetao Area, China [C]. Proceedings of International Conference on Water-saving Agriculture and Sustainable use of Water and Land Resources. Edited by Shaozhong Kang, Bill Davies,etc. Shanxi Science and Technology Press. 2003.10:111~116.
    5 Shi Hai bin, Akae Takeo etal.. Simulation of Leaching Requirement for Hetao Irrigation D istrict Considering Salt Redistribution After Irrigation[J]. Transactions of the CSAE, 2002, 18(5): 67-72.
    6杨树青,杨金忠等.干旱区微咸水灌溉的水土环境效应预测研究[J].水利学报,2008,39(7): 854-862.
    7徐美,李纪人等.灌区遥感应用[J].水土保持研究.2006(05)
    8徐美,黄诗峰等.干旱半干旱地区灌溉农业中的遥感应用[J].干旱区研究.2006(04)
    9徐美,阮本清.灌区作物种植结构遥感监测及其应用[J].水利学报.2007(07)
    10朱洪芬,田永超.基于遥感的作物生长监测与调控系统研究[J].麦类作物学报.2008(04)
    11何玲.汪志农等.基于遥感信息预测土壤水分研究[J].水土保持研究,2006(2)
    12张成才.吴泽宁等.遥感计算土壤含水量方法的比较研究[J].水土保持研究.2004(2)
    13张穗,谭德宝.TM遥感影像监测裸露土壤含水率的方法研究[J].长江科学院院报.2008 (1)
    14黄泽林,覃志豪.利用MODIS数据监测大面积土壤水分与农作物旱情研究[J].安徽农业科技..2008.36(11)
    15常鲁群,卞正富.基于TM数据的土壤含水率反演研究[J].矿山测量.2006(2)
    16程宇,陈良富.基于MODIS数据对不同植被覆盖下土壤水分监测的可行性研究[J].遥感学报.2006 (5)
    17郭娇,石建省.黄河三角洲土壤水分遥感监测研究[J].土壤学报.2008(02)
    18张灿龙.遥感监测土壤含水量方法综述[J].农机化研究.2006(6)
    19刘志明.晏明等.吉林省西部土地盐碱化研究[J].遥感技术与应用2004(5)
    20肖乾广.用NOAA气象卫星AVHRR的定量资料计算冬小麦种植面积的两种方法[J].遥感学报.1989,(03): 33-38
    21张智韬,李援农.关中西部灌区冬小麦遥感估产初探[J].干旱地区农业研究.2005 (5)
    22程乾.基于MOD13产品水稻遥感估产模型研究[J].农业工程学报, 2006,(03)
    23浦吉存,董谢琼等.NOAA/AVHRR资料在曲靖市小春作物估产中的初步应用[A].新世纪气象科技创新与大气科学发展—中国气象学会2003年年会“农业气象与生态环境”分会论文集[C].2004
    24孙九林.中国农作物遥感动态监测与估产总论[M].北京:中国科学技术出版社,1996
    25阿布都瓦斯提·吾拉木,秦其明等.基于6S模型的可见光、近红外遥感数据的大气校正[J].北京大学学报(自然科学版).2004,(04)
    26 Gleick, P. H. Water in crisis: paths to sustainable water use .Ecological Applications. 1996,83, 8(3) :571-579 .
    27汤奇成.绿洲的发展与水资源的合理利用[J].干旱区资源与环境.1995(03)
    28左其亭,周可法.关于水资源规划中水资源量与生态用水量的探讨[J].干旱区地理.2002(4)
    29倪晋仁,崔树彬等.论河流生态环境需水[J].水利学报,2002,2(9):0014-0019
    30倪晋仁,金玲等.黄河下游河流最小生态环境需水量初步研究[J].水利学报,2002,47(10):0001-0007
    31贾宝全,许英勤.干旱区生态用水的概念和分类─—以新疆为例[J].干旱区地理.1998(02)
    32左其亭.干旱半干旱地区植被生态用水计算[J].干旱区地理2002(3)
    33王礼先.生态环境用水的界定和计算方法[J].中国水利,2002,(10):28-30.
    34王浩,陈敏建等.西北地区水资源合理配置和承载能力研究[M].郑州:黄河水利出版社,2003
    35杨爱民.唐克旺.生态用水的基本理论与计算方法[J].农业工程学报.2004(12)
    36司建华,龚家栋,张勃.干旱地区生态需水量的初步估算—以张掖地区为例[J].干旱区资源与环境.2004,(01)
    37左其亭.论生态环境用水与生态环境需水的区别与计算问题[J].生态环境,2005,14(4):611-615.
    38赖明华.灌区生态需水及水资源优化配置模型研究[D].河海大学.2004
    39潘兴瑶,夏军.基于GIS的北方典型区水资源承载力研究[J].自然资源学报.2007,22(4):664~671.
    40阮本青,沈晋.区域水资源适度承载能力计算模型研究[J].土壤侵蚀与水土保持学报,1998,4(3):57~61
    41Jackson R D,Idso S B,Reginato R J ,et al. Canopy temperature as a crop water stress indication [J]. Water Resour Res,1981,17 (4): 1133-1138.
    42 Suguin B. and Itier B. Using midday surface temperature to estimate daily evaporation from satellite thermal IR data [M]; International Journal; 1983
    43 Price J C.Land surface temperature measurements from the split window channels of the NOAA7advanced very high resolution ra-diometer[J].J.Geophysical Research.1984,89(p5):7231-7237
    44 Carlson T N,Capehart W J,Gillies R R.A new look at the simplified method for remote sensing of daily evaportranspiration[J].Int.J.Remote Sensing,1995,54(2):161-167
    45 Meneti M, Choudhury B J. Parameterization of land surface evaporation and surface temperature range [J]. Proc. INHS Conf L and Surf Process, 1993,(212): 561-568.
    46郭晓寅,程国栋.遥感技术应用于地表面蒸散发的研究进展[J].地球科学进展.2004(01)
    47 Choudhury B J ,Monteith J L. A four-layer model for the heat budget of homogeneous and surfaces [J]. Q J R Meteorol Soc,1988,(114): 373- 398.
    48 Bastiaanssen W G M, Menenti M, etal. A remote sensing surface energy balance algorithm for land (SEBAL) 1. Formulation [J]. Journal of Hydrology, 1998(212-213) : 198-212.
    49 Kite G W, Droogers P. Comparing evapotranspiration estimates from satellites, hydrological models and field dat[J]. Journal of Hydronautics,2000
    50 Norman J M, Kustas W P, etal. A two-source approach for estimating soil and vegetation energy fluxes from observations of directional radiometric surface temperature [J]. Agricultural and Forest Meteorology, 1995(77) : 263-293.
    51 Brown K.W.,Rosenberg H.T.A resistance model to predict evapotranspiration and its application to a sugar beetfield[J].Agron.,J.1985,65:341-347..
    52 Thornthwaite,Holzman.The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes [J]. Hydrology and Earth System Sciences, 2002(6): 85-99.
    53 Bastiaanssen W G M. SEBAL-based sensible and latent heat fluxes in the irrigated Gediz Basin, Turkey [J]. Journal of Hydrology, 2000, 229(1-2): 87-100.
    54 Monteith J.L.Enviromental Control of Plant Growth[M].New York:Academic Press.1963:95-112
    55 Monteith J L. Principles of environmental physics [M].Arnold, London, 1973.
    56 Brown KW, Rosenberg NJ. A resistance model to predict evapotranspiration and its application to a sugar beet field [M]; Agron. J; 1973
    57 Seguin B, Itier B. Using midday surface temperature to estimate daily evapotranspiration from satellite IR data [J]. Int JRemote Sens, 1983 (4): 371- 383.
    58 Reginato R J, et al; Evapotranspiration calculated from remote multi-spectral and ground station meteorological data [M];Rem. Sens. Environ; 1985
    59 Thorn A S,Oliver HR; On Penman’s equation for estimating regional evaporadon quart[J];J.Royal Meteor.Soc; 1977
    60 Idaho Department of Water Resources,University of Idaho,Department of Biological and Agricultural Engineering Application of the SEBAL Methodology for Estimating Consumptive Use of Water and Streamflow Depletion in the Bear River Basin of Idaho through Remote Sensing 2000
    61 Waters consulting, University of Idaho and water watch Inc SEBAL advanced training and users manual 2002
    62 Menenti, M. and Choudhury, B.J.,“Parameterization of land surface evaporation by means of location dependent potential evaporation and surface temperature range.”Proceedings of IAHS conference on Land Surface Processes, IAHS Publ., No. 212, pp.561-568, 1993.
    63 Van De Griend A A, Owe M; On the relationship between thermal emissivity and the normalized difference vegetation index for natural surfaces [M];Int J Remote Sens; 1993
    64 Bastiaanssen, W G, Menenti, M, Feddes, R A, et al. A remote sensing surface energy balance algorithm for land (SEBAL). 1. Formulation [J]. Journal of Hydrology, 1998,212-213 : 198-212.
    65 Bastiaanssen W G M, Pelgrum H, Wang J, Ma Y,Moreno J F , oerink G J, T van der Wal; A remote sensing surface energy balance algorithm for land (SEBAL): 2 Validation [M].Journal of Hydrology; 1998
    66谢贤群.遥感瞬时作物表面温度估算农田全日蒸发散总量[J].环境遥感.1991,6(4):253-259
    67田国良.用AVHRR数字图象和地面气象站资料估算麦田的蒸散和土壤水分[M].科学出版社.1989
    68马耀明,王介民.非均匀陆面上区域蒸发(散)研究概况[J].高原气象.1997, 16(4):446-452.
    69陈云浩,李晓兵等.中国西北地区蒸发散量计算的遥感研究[J].地理学报.2001.(3)
    70詹志明.区域遥感蒸散发模型方法研究[J].节水灌溉.2002(6)
    71张万昌,刘三超等.基于GIS技术的黑河流域地表通量及蒸散发遥感反演[A].第十四届全国遥感技术学术交流会论文选集[C].2003
    72潘志强,刘高焕.黄河三角洲蒸散的遥感研究[J].遥感技术与应用.2003(3)
    73黄妙芬,刘绍民.地表温度和地表辐射温度差值分析[J].地球科学进展.2005.10.20(10):1075-1081
    74刘志武.雷志栋等.遥感技术和SEBAL模型在干旱区腾发量估算中的应用[J].节水灌溉.2004(3)
    75詹志明,冯兆东等.陇西黄土高原陆面蒸散的遥感研究[J].地理与地理信息科学.2004.01
    76查书平.基于RS与GIS的长江三角洲蒸散量研究[D].南京气象学院.2004
    77王娅娟.基于ASTER的穗帽变换与区域蒸散模型研究[D].中国农业大学.2005
    78莫兴国,薛玲等.华北平原1981~2001年作物蒸散量的时空分异特征[J].自然资源学报. 2005.02
    79牛晓蕾,周伟等.TRMM卫星和GMS5卫星反演淮河流域的地面温度[J].北京大学学报(自然科学版),2005,(03)
    80李红军.雷玉平等.SEBAL模型及其在区域蒸散研究中的应用[J].节水灌溉.2005(3)
    81张长春,王晓燕等.利用NOAA数据估算黄河三角洲区域蒸散量[J].资源科学.2005.01
    82张长春,王光谦等.联合TM和NOAA数据研究黄河三角洲地表蒸发(散)量[J].清华大学学报(自然科学版).2005.09:34-38
    83周云轩,王黎明等.吉林西部陆面遥感蒸散模型研究[J].吉林大学学报(地球科学版).2005,06: 134-139
    84辛晓洲.用定量遥感方法计算地表蒸散[D].中国科学院研究生院(遥感应用研究所).2003
    85庞治国.干旱遥感监测模型研究及墒情预报探索——以黑龙江省为例[D].中国水利水电科学研究院.2003
    86何延波,Zhongbo Su等.SEBS模型在黄淮海地区地表能量通量估算中的应用[J].高原气象.2006.12,25(6):1092-1100
    87吴炳方,邵建华.遥感估算蒸腾蒸发量的时空尺度推演方法及应用[J].水利学报.2006.03
    88乔平林,张继贤等.石羊河流域蒸散发遥感反演方法[J].旱区资源与环境,2007,(4)
    89陈玲.基于改进的SEBAL模型估算区域蒸散发[D].中国优秀硕士学位论文全文数据库. 2007,(04)
    90倪猛,陈波等.洛河流域蒸散发的遥感反演以及与各参数的相关性分析[J].地理与地理信息科学.2007,6
    91何玲,莫兴国等.基于MODIS遥感数据计算无定河流域日蒸散[J].农业工程学报.2007,05
    92鲍平勇.半干旱区域日蒸散发估算的遥感研究[D].河海大学.2007年
    93刘朝顺,高志强等.考虑地形影响的区域蒸散模型的改进[A].中国地理学会2007年学术年会论文摘要集[C].2007
    94吴海涛.海河流域下垫面蒸散发研究[D].河海大学.2007
    95曾丽红,宋开山等.基于SEBAL模型的扎龙湿地蒸散量反演[J].中国农业气象.2008,(04) :420-426
    96蔺文静,董华.基于SEBAL模型的区域蒸发蒸腾遥感估算[J].遥感信息.2008,(5)
    97曾丽红.宋开山等.应用Landsat数据和SEBAL模型反演区域蒸散发及其参数估算[J].遥感技术与应用.2008(03)
    98郭玉川,何英等.基于MODIS数据的区域蒸散发估算研究[J].节水灌溉.2008(01)
    99李保国,李韵珠等.水盐运动研究30年(1973-2003)[J].中国农业大学学报.2003(Z1)
    100石元春,李保国等.区域水盐运动监测预报[M].石家庄:河北科学技术出版社.1991.12.
    101石元春.盐碱地的综合治理《中国综合农业区划》[M].农业出版社.1981
    102赵丹,邵东国等.灌区水资源优化配置方法及应用[J].农业工程学报.2004(4): 69-73
    103岳卫峰,杨金忠等.内蒙河套灌区义长灌域水均衡分析[J].灌溉排水学报.2004(06)
    104胡安焱,高瑾等.干旱内陆灌区土壤水盐模型[J].水科学进展,2002,6(13)
    105董新光.姜卉芳等.内陆盆地的盐分布与平衡分析研究[J].水科学进展.2005(05)
    106刘丰,董新光等.新疆平原灌区综合排水措施与模式[J].干旱区研究.2006(04)
    107王水献,董新光等.新疆阿瓦提灌区土壤盐渍化现状及特征分析[J].干旱地区农业研究.2006(05)
    108王水献,董新光等.层次分析法在新疆平原灌区土壤盐渍化研究中的应用[J].干旱区资源与环境.2007(04)
    109王学全,高前兆等.内蒙古河套灌区水盐平衡与干排水脱盐分析[J].地理科学.2006(04)
    110雷志栋,苏立宁.青铜峡灌区水土资源平衡分析的探讨[J].水利学报.2002(6)
    111秦大庸.于福亮等.宁夏引黄灌区井渠双灌节水效果研究[J].农业工程学报.2004(02)
    112董新光,周金龙.干旱内陆区水盐监测与模型研究及其应用[M].科学出版社.2007.08
    113许迪,蔡林根等.引黄灌区节水决策技术应用研究[M].中国农业出版社.2004
    114吴海涛.海河流域下垫面蒸散发研究[D].河海大学.2007
    115何延波,王石立.遥感数据支持下不同地表覆盖的区域蒸散[J].应用生态学报.2007.02:58-66
    116赵丹,邵东国等.干旱灌区水盐动态模拟与实验研究[J].灌溉排水学报.2004,(02)
    117岳卫峰,杨金忠等.干旱地区灌区水盐运移及平衡分析[J].水利学报.2008,(05):623-626,632
    118 Whipple W Jr.Proposed approach to coordination of water resources development and environmental regulations [J]. Journal of the American Water Resources Association,1999,35(4)
    119 Seguin B , Itier B. Using midday surface temperature to estimate daily evapotranspiration from satellite IR data [J]. Int J Remote Sens,1983 (4): 371- 383.
    120 Kalma J D,Jupp D L B. Estimating evaporation from pasture using infrared thermometry: evaluation of a one-layer resistance model [J]. Agric Forest Meteorol,1990(51): 223- 246.
    121 Medina J L ,Camacho E,Reca J ,etal. Determination and analysis of regional evapotranspiration in southern Spain based on remote sensing and GIS [J]. Phys Chem Earth,1998,23 (4): 427- 432.
    122 MoranM S,Kustas W P,Vidal A,et al. Use of ground-based remotely sensed data for surface energy balance evaluation of a semi-arid rangeland [J]. Water Resour Res,1994 (30): 1339- 1349.
    123 Moran M S,Clarke T R,Inoue Y,etal. Estimating crop water deficit using the relation between surface air temperature and spectral vegetation index [J]. Remote Sens Environ,1994,(49): 246-263.
    124 Ray S S,Dadhwal V K. Estimation of crop evapotranspiration of irrigation command area using remote sensing and GIS [J]. A gricultural Water Management,2001 (49): 239- 249.
    125 Zhongbo Su,Abreham Yacob,Jun Wen,et al. Assessing relative soil moisture with remote sensing data: theory,experimental validation,and application to droughtmonitoring over the North China Plain [J]. Physics and Chemistry of the Earth,2003 (28): 89- 101.
    126 Jackson R D,Hatfield J L,Reginato R J ,et al.Estimates of daily evapotranspiration from one time of day measurements [J]. Agric Water Manage,1983 (7):351- 362.
    127 Jackson R D,Kustas W P,Choudhury B J. A re-examination of the crop water stress index [J]. Irrig Sci,1988,(9): 309-317.
    128 Jackson R D,Reginato R J ,Idso S B. Wheat canopy temperature: a practical too l for evaluating water requirements [J]. Water Resour Res,1977,(13): 651-656.
    129 Chehbouni A,Watts C,Kerr Y H,et al. Methods to aggregate turbulent fluxes over heterogeneous surfaces: application to SALSA data set in Mexico [J]. Agric For Meteorol,2000 (105): 133- 144. 47 Wallace J S. Evaporation and radiation interception by neighbouring plants [J]. QJR Meteorol Soc,1997 (123) :1885- 1905.
    130 Dibella C M,Rebella C M,Paruelo J M.Evapotranspiration estimates using NOAA AVHRR imagery in the Pampa region of Argentina[J].Int.J.Remote Sensing,2000,21(4):791-797.
    131 KustasW P,Norman J M. Evaluat ion of soil andvegetation heat flux predictions using a simple two-source model with radiometric temperatures for partial canopy cover [J]. A gricultural and Forest M eteorology,1999 (94): 13- 29.
    132 KustasW P,Mo ran M S,Jack son R D,et al.Instantaneous and daily values of the surface energy balance over agriculture fields using remote sensing and a reference field in an arid environment [J]. Remote SensEnviron,1990 (32): 125- 141.
    133 SugitaM,B rutsaert W. Daily evaporation over a regional from lower boundary layer profiles [J]. WaterResour Res,1991 (27): 747- 752.
    134 Richard G,Allen A M ,Masahiro T. Evapotranspiration from Landsat (SEBAL) for Water Rights Managementand Compliance with Multi-State Water Compacts [J].IEEE,2001: 830- 833.
    135 LakshmiV,Susskind J. Utilization of satellite data inland surface hydrology: sensitivity and assimilation [J].Hydrol. Process. 2001 (15): 877- 892.
    136 Townshend J G R,Justice C O. Selecting the spatial resolition of satellite sensors required for gobal montoring of land transformation [J]. International Journal of Remote Sensing,1988,9 (2): 187- 236.
    137 KustasW P,Norman J M ,Anderson M C,et al.Estimating subpixel surface temperatures and energy fluxes from the vegetation index-radiometric temperature relationship [J]. Remo te Sensing of Environment,2003(85) : 429- 440.
    138 Huete A R. Separation of soil-plantspectral mixtures by factor analysis [J]. Remote Sens Environ,1986 (19) : 237- 251.
    139齐述华,李子忠等.棉花作物系数的遥感获取—以新疆石河子棉花垦区为例[J].中国农业大学学报.2007,(3)
    140李守波,赵传燕.基于能量平衡的关川河流域蒸散发的遥感反演[J].遥感技术与应用.2006,(6)
    141张黎,王石立等.遥感信息应用于水分胁迫条件下的华北冬小麦生长模拟研究[J].作物学报.2007,(3)
    142覃志豪,李文娟等.利用LandsatTM6反演地表温度所需地表辐射率参数的估计方法[J].海洋科学进展.2004.10(22):129-137
    143陈添宇,陈乾等.用卫星资料反演中国西北地区东部蒸散量的遥感模型[J].水科学进展.2006,(6)
    144郭家选,李玉中等.华北平原冬小麦农田蒸散量[J].应用生态学报.2006,(12).
    145邱国玉,吴晓等.三温模型——基于表面温度测算蒸散和评价环境质量的方法Ⅳ.植被蒸腾扩散系数[J].植物生态学报.2006,(5)
    146武夏宁,胡铁松等.区域蒸散发估算测定方法综述[J].农业工程学报.2006,22(10):257-262
    147孙昌禹,董博飞等.区域蒸散量估算技术研究进展[J].河北农业科学,2006,(3)
    148陈镜明.现用遥感蒸散模式中的一个重要缺点及改进.科学通报.1988,(6):454-457
    149祝善友,张桂欣等.地表温度热红外遥感反演的研究现状及其发展趋势[J].遥感技术与应用.2006.10(5):420-425
    150郭建茂,陆维松等.宁夏南部地表辐射和热量平衡的遥感研究[J].应用气象学报.2007.10,18(5):702-708
    151许国鹏,李仁东等.基于MODIS数据的湖北省地表温度反演研究[J].华中师范大学学报(自然科学版).2007.3,41(1):143-147
    152李净.基于Landsat-5 TM估算地表温度[J].遥感技术与应用.2006.8,21(4):322-327
    153李健.长白山地区地表温度反演研究[D].吉林大学硕士学位论文.2005
    154黄妙芬,邢旭峰.运用热惯量估算大气下行长波辐射的遥感方法—以Landsat5TM为例[J] .资源科学.2006.5,28(3):38-43
    155 W. G. M. Bastiaanssen; E. J. M. Noordman; H. Pelgrum; G. Davids. SEBAL Model with Remotely Sensed Data to Improve Water-Resources Management under Actual Field Conditions Journal of Irrigation and Drainage Engineering,February 1,2005,Vol. 131,No. 1
    156 Masahiro Tasumi; Richard G. Allen; Ricardo Trezza; and James L. Wright. Satellite-Based Energy Balance to Assess Within-Population Variance of Crop Coefficient Curves Journal of Irrigation and Drainage Engineering,February 1,2005,Vol. 131,No. 1
    157 S.J. Zwart,W.G.M. Bastiaanssen,J.Garatuza-Payan,C.J.Watts. SEBAL for Detecting Spatial Variation of Water Productivity for Wheat in the Yaqui Valley,Mexico. EarthObservation for Vegetation Monitoring and Water Management.2006,154-162
    158 Allen,R.G.,L.S. Pereira,D. Raes,and M. Smith. Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements. UN FAO,Irrig. Drain. Pap. 56. Rome,Italy. 1998,300p.
    159 Allen,R.G.,M. Tasumi and R. Trezza. Satellite-based energy balance for mapping ET with internalized calibration (METRIC). J. Irrig. Drain. Engrg.,ASCE (submtd). 2005
    160 ASCE EWRI. The ASCE Standardized reference evapotranspiration equation. ASCE-EWRI Task Comm. Report,available at http://www.kimberly.uidaho.edu/water/asceewri/.2005,180 p.
    161 Claudia Heret, Antje Tittebrand, Franz H. Berger. Latent heat fluxes simulated with a non-hydrostatic weather forecast model using actual surface properties from measurements and remote sensing[J]. Boundary-Layer Meteorol, 2006, 121: 175 194
    162刘志红,刘文兆等.基于3S技术的区域蒸散研究进展[J].中国水土保持科学.2006.6,4 (3):117-122
    163孙敏章,刘作新等.基于陆面能量平衡方程的遥感模型[J].灌溉排水学报.2005.6,24 (3):74-76
    164王开存,周秀骥等.利用卫星遥感资料反演感热和潜热通量的研究综述[J].地球科学进展.2005.1, 20(1):42-48
    165陈添宇,陈乾等.卫星遥感结合地面观测估算中国西北区东部地表能量通量干旱地区农业研究.2006.5, 24(3):7-15
    166李守波,赵传燕.基于能量平衡的关川河流域蒸散发的遥感反演遥[J].感技术与应用.2006.12, 21(6):521-526
    167张晓涛,康绍忠等.估算区域蒸发蒸腾量的遥感模型对比分析[J].农业工程学报.2006.7,22(7):7-14
    168曲直.一种基于ERDAS IMAGINE的80坐标系栅格数据投影变换方法[J].测绘与空间地理信息.2005.4,28(2):34-37
    169高懋芳,覃志豪.用MODIS数据反演地表温度的基本参数估计方法[J].干旱区研究.2007.1,24(1):113-119
    170 Fuchs M, Tanner C B. Infrared thermometry of vegetation [J]. Agron J,1966,(58): 597-601.
    171 Kustas W P, Norman J M. Use of remote sensing for evapotranspiration monitoring over land surface [J]. Hydrol Sci J, 1996, 41 (4): 495-561.
    172 Dolman A J. A multiple-source land surface energybalance model for use in general circulation models [J].Agri For Meteorol, 1993 (65): 21- 45.
    173 Sellers P J, Hall F G. FIFE in 1992: results, scientific gains, and future research directions [J]. J Geophys Res, 1992 (97): 19,091- 19,109.
    174 Boegh E, Soegaard H,Thomsen A. Evaluating evapotranspiration rates and surface conditions using Landsat TM to estimate atmospheric resistance and surface resistance [J]. Remote Sens Environ, 2002,(79): 329-343.
    175 Fuqin Li,Lyons T J. Remote estimation of regional evapotranspiration [J]. Environmental Modeling & Software,2002,(17): 61-75.
    176申广荣,田国良.用作物水分胁迫系数进行干旱监测[J].干旱地区农业研究.1998,16(1): 124-128.
    177田国良.黄河上游典型区域遥感动态研究[M].北京:科学出版社,1990: 161-176.
    178韩惠.基于遥感技术的祖厉河流域土地利用/土地覆盖变化与蒸散发研究[D].吉林大学.2006.09
    179王黎明.吉林省西部区域遥感蒸散模型研究及其应用[D].吉林大学.2005
    180马龙.科尔沁沙地地表环境演变及其与水文气象因子间的响应关系研究[D].内蒙古农业大学.2007
    181郭玉川.基于遥感的区域蒸散发在干旱区水资源利用中的应用[D].新疆农业大学.2007
    182赵英时.遥感应用分析原理与方法[M].北京:科学出版社.2003: 431-448.
    183裴欢.基于MODIS数据的北疆积雪信息提取及其应用研究[D].新疆大学.2006
    184汪林,甘泓等.西北地区盐渍土及其开发利用中存在问题的对策[J].水利学报2001(06)
    185张蔚榛,张瑜芳.对灌区水盐平衡和控制土壤盐渍化的一些认识[J].中国农村水利水电.2003(08)
    186任仓钰.西北地区盐渍土形成特点及开发利用[J].水土保持通报.2002, 22(04)
    187史海滨.内蒙古河套灌区水盐运移状况分析研究—中日合作项目最新研究成果[A].中国水利学会2006年学术年会
    188许新宜,杨志峰.试论生态环境需水量[J].中国水利.2003(01)
    189魏彦昌.海河流域生态用水研究[D].西北农林科技大学
    190张鑫,蔡焕杰.区域生态环境需水量与水资源合理配置[M].杨凌-西北农林科技大学出版社.2008
    191许新宜,杨志峰.试论生态环境需水量[J].水利科技与经济.2003(5)
    192翟进,史海滨等.浑善达克沙地退化草场主要植被现状生态用水研究[J].干旱区资源与环境.2007,(5)
    193李亮.内蒙古河套灌区耕荒地间土壤水盐运移规律研究[D].内蒙古农业大学.2008
    194王文彬.干旱半干旱草原区植被恢复生态用水研究[D].中国农业科学研究院.2008
    195马乐宽.李天宏.关于生态环境需水概念与定义的探讨[J].中国人口·资源与环境.2008(5)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700