用户名: 密码: 验证码:
空间三自由度并联/混联机构构型、性能与若干应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
制各
     随着高等空间机构学和机器人技术的发展,以并联机构为理论依托的并联机器人作为机器人技术的一个重要分支,对其理论和应用的研究日趋活跃。尽管不少学者已经对并联机构的构型、运动学、动力学、工作空间及奇异性等方面做了不同程度的研究,但是大部分工作仍然集中于以传统的Gough-Stewart为代表的六自由度并联机构。由于大多数工业操作并不需要全自由度设备,比如机械加工领域五自由度已满足要求,电子元件装配的拾放操作只需四个自由度,因此工业界和学术界对少自由度的新构型并联机器人的研究需要显得日益迫切。而空间三自由度并联机构作为少自由度构型里最有发展前景的一类,对其构型的研究将有利于推动少自由度并联机器人的深入发展和广泛应用。由于机构的串联或并联从哲学观念出发是对立统一的,混联机器人将综合两者的优点,在某些特殊的应用场合发挥作用,同时丰富机构学研究的内涵。本文以此为背景,深入研究了若干种空间三自由度并联/混联机构的新构型,提出了几种重要的性能指标的建模及优化方法,并就具体的应用领域进行了有益的探索和挖掘。全文的主要研究工作概括如下:
     研究了空间少自由度并联/混联机构的设计优化理论与方法,对并联/混联构型下的三自由度机构进行了拓扑分析。阐述了性能优化过程中采用的遗传算法与径向基神经网络的融合算法,把Pareto多目标优化的理论引入到基于并联机器人构型的多性能优化中,给出了并联机器人在一定几何约束条件下的性能优化的Pareto前沿集合。
     基于一种新颖的Tripod并联机器人机床(具有二个移动自由度及一个转动自由度,采用了平行四边形机构来增加三条支链的刚度),提出了采用Jacobian矩阵的全局刚度表征方法,给出了全局刚度优化的原理与结果。提出把并联机器人多误差源抽象成单一的假想误差源,并基于一种进化神经网络对误差进行补偿。
     探讨了一种基于3SPS+RPR构型,利用杆件和关节本身柔顺性实现微动操作的柔性混联机构,并运用运动静力学模型建立了主要性能指标,对包括全局刚度、灵活性及操作能力在内的多项性能指标进行了多目标优化。尝试融合径向基神经网络和混联机构的逆向运动学模型求解其正向运动学模型数值解。
     通过对一体化三维加速度传感器以及仿土拨鼠救援机器人的研究,拓展并联/混联机构应用的新视角。基于全解耦并联弹性体结构的三维加速度传感器因采用笛卡尔直角坐标系结构,三个方向的加速度通过三条支链上的弹性应变分别测得,由于两两正交,在结构上实现了多维加速度的自动解耦。并对3RRPRR柔性并联机构的构型、各向同性等进行了分析,对传感器结构尺寸变化下弹性体的应力应变进行了有限元分析。并研制了相应的物理样机,重力法标定试验结果验证了原理的可行性和样机本身的性能。
     针对矿难危险环境下实施机器人救援的性能需求进行了分析,提出了一种仿土拨鼠机器人及其颈部冗余驱动机构。阐述了仿土拨鼠机器人体系结构与模型,对其颈部4UPS+PU冗余驱动的混联机构进行了设计与分析,探讨了仿土拨鼠机器人在矿难危险环境下应用的可行性,并基于Adams虚拟样机技术对4UPS+PU机构的运动学、动力学等进行了仿真研究。
With the development of the theory of anvanced spatial mechanism and the technology of robotics,parallel mechanisms based parallel robots have been one important branch of robotic technology.Forthermore,the research activities of the theories and applications of parallel mechanisms and parallel robots is becoming much hotter.However,although many scholars have done the intensive investigations on the dimension synthesis,kinematics,dynimics,workspace and singularity of parallel mechanisms,most of the existing work regarding arallel mechanisms was built upon the concept of traditional Gough-Stewart mechanism type.Since full degree-of-freedom devices are not necessary for most industrial operations,i.e.the machining operations only require a maximum of five axes,and the motion of pick-and-place for the assembly of electronic elements only require a maximum of four degree-of-freedom,new configurations with less than six axes(degrees of freedom) would be more appropriate for industry and academia.Tripod is one type of parallel mechanism with three degrees of freedom,and it can implement the basic three axes machining,by combining with the XY gantry,it can conduct four degree-of-freedom or five degree-of-freedom machining.Therefore,tripod mechanism is targeted as the main configuration for the development of parallel manipulators.Because of the opposition and unitarity of serial mechanisms and parallel mechanisms in philosophy,the hybrid mechanisms can be built through the combination of parallel and serial mechanisms and play an important role in some specific application background.The thesis will do the deep investigations on the spatial three degree-of-freedom parallel mechanisms in the following aspects:1. propose sevseal types of novel configurations,2.develop some important approaches of for the modeling and optimization of performance indices,3.explore on the specific application fileds of proposed parallel/hybrid mechanisms.The main work of the full thesis is generalized as follows:
     Study on the theories and approaches for design optimization of spatial less degree-of-freedom parallel/hybrid mechanisms.Give the degree-of-freedom computing criteria of the parallel robotic mechanisms for more reasonable kinematic structures using Chebychev-Grubler-Kutzbach criterion.Study on topology of the spatial three degree-of-freedom parallel/hybrid mechanisms.The globan stiffness and other indices and built based on the guidance of the redefined Jacobian matrix.The integrated algorithm of multi-population genetic algorithm,radial basis function network and Pareto method are introduced for the multi-objective optimizations of performance indices.The Pareto-optimal frontier sets under some geometrical constraining is given.
     Design a tripod parallel kinematics structure,of which the end-effecter(the moving platform) has three independent motions—two pure translations and one pure rotation.The output link of a planar parallelogram mechanism will remain in a fixed orientation with respect to its input link,and the parallelogram can ensure the desired output,in terms of translation and rotation.The use of the parallelogram structure can greatly increase the stiffness of the legs.Jacobian matrix based global stiffness modeling and optimization is developed.Study on the error calibration and compensation with the proposed cooperative evolutional network.In this error model, all the error sources are considered as a single one which affects the precision of gripper through the bias of joint variables.
     A 3S(?)S+RPR typed compliant hybird micromanipulator with flexure joints which encompasses three degrees of freedom and can produce motion on a microscopic level is proposed.The detailed design of motion systems for the machine structure is introduced.The multi-objective optimizations of global stiffness,dexterity and manipulability are conducted.The integration of inverse kinematics and radial basis function network is poporsed to sovel the forward kinematics problem of the proposed compliant hybird micromanipulator.
     Through the researches of the integrated three dimensional accelerators and the marmot-like rescuing robotics,the application viewpoints of parallel/hybrid mechanisms are extended.A novel design of a multidimensional acceleration sensor is proposed based on 3RR(?)RR decoupling parallel mechanism for kinetic information acquisition,specifically for measuring human motions.The translational elements of three perpendicular legs are served as elastic body which is manufactured by aluminium alloy,The finite-element analysis of resultant stress,strain and deformations is conducted based upon different input conditions to show the reliability of the proposed sensor structure.The physical prototype is developed.The calibration experiment based on gravity is performed to validate the correctness of related principle and performances of the prototype itself.
     Mine rescue robot is a kind of intelligent robots which can work in a complex and dangerous underground environment and be used for detection human beings in many aspects.The performance requirements of robot rescue in hazard place of mine accident are analyzed.The marmot-like rescuing robot and its 4UPS+PU redundant driven hybrid mechanism of neck is proposed.The feasibility of its application in the underground environment of coal mining accidents for assitant rescuing is discussed. The simulations of kinematics and dymanics for the proposed 4UPS+PU mechanism are conducted based on the dummy prototyoe technology.
引文
[1]D.Stewart,A platform with six degrees of freedom,Proceedings of the Institution of Mechanical Engineers,Vol.180,1965,pp.371-385.
    [2]S.M.Wang and K.F.Ehmann,Error model and accuracy analysis of a six-dof stewart platform,ASME Journal of Manufacturing Science and Engineering.Vol.124,2002,pp.286-295.
    [3]M.Wapler et al.,A stewart platform for precision surgery,Trans.of the Institute of Measurement and Control.Vol.25,2003,pp.329-334.
    [4]刘辛军.并联机器人机构尺寸与性能关系分析及其设计理论研究.燕山大学博士学位论文.1999
    [5]张秀峰.孙立宁.并联机器人技术分析及展望.高技术通讯.Vol.6,2004.pp.107-110
    [6]张曙.并联运动机床.北京,机械工业出版社,2003
    [7]C.Ferraresi,S.Pastorelli,and N.Zhmud,Static and dynamic behavior of a high stiffness stewart platform-based force/torque sensor,Journal of Robotic Systems.Vol.12,1995,pp.883-893.
    [8]C.C.Nguyen et al.,Adaptive control of a stewart platform-based manipulator,Journal of Robotic Systems.Vol.10,1993,pp.657-687.
    [9]R.Ranganath et al.,A force-torque sensor based on a stewart platform in a near-singular configuration,Mechanism and Machine Theory.Vol.39,2004,pp.971-998.
    [10]N.P.Powell,B.D.Whittingham,and N.N.Z.Gindy,Parallel link mechanism machine tools:acceptance testing and performance analysis,"Parallel Kinematic Machines-Theoretical Aspects and Industrial Requirements",editors:C.R.Boer,L.Molinari-Tosatti and K.S.Smith,Springer Publishers,1999,pp.327-344.
    [11]G.Pritschow,Research and development in the field of parallel kinematic systems in europe,"Parallel Kinematic Machines-Theoretical Aspects and Industrial Requirements",editors:C.R.Boer,L.Molinari-Tosatti and K.S.Smith,Springer Publishers,1999,pp.3-15.
    [12]G.Pritschow and K.H.Wurst,Systematic design of hexapods and other parallel link systems,CIRP Annals-Manufacturing Technology.Vol.46,1999,pp.1291-295.
    [13]M.Honegger,A.Codourey,E.Burdet.Adaptive control of the Hexaglide,a 6 DOF parallel manipulator.IEEE International Conference on Robotics and Automation,Albuquerque,USA,1997,pp.543-548
    [14]M.Sorli and S.Pastorelli,Six-axis reticulated structure force/torque sensor with adaptable performances,Mechatronics.Vol.5,1995,pp.585-601.
    [15]F.Tahmasebi and L.W.Tsai,Six-degree-of-freedom parallel "minimanipulator" with three inextensible limbs,United States Patent,Patent Number:5,279,176,1994.
    [16]http://www.parallemic.org/Reviews/Review007.html
    [17]I.Hostens,J,Anthonis,and H.Ramon,New design for a 6 dof vibration simulator with improved reliability and performance,Mechanical Systems and Signal Processing.Vol.9,2005,pp.105-122.
    [18]T.Akima,S.Tarao,and M.Uchiyama,Hybrid micro-gravity simulator consisting of a high-speed parallel robot,Proceedings of IEEE International Conference on Robotics and Automation,1999,pp.901-906.
    [19]J.Ares,A.Brazales,and J.M.Busturia,Tuning and validation of the motion platform washout filter parameters for a driving simulator,Driving simulation Conference,2001,pp.295-304.
    [20]J.Y.Huang and C.Y.Gau,A pc cluster high-fidelity mobile crane simulator,Tamkang Journal of Science and Engineering.Vol.5,2002,pp.7-20.
    [21]G.S.Chirikjian,Hyper-redundant manipulator dynamics:a continuum approximation,Advanced Robotics.Vol.9,1995,pp.217-243.
    [22]M.Hafez,M.D.Lichter,and S.Dubowsky,Optimized binary modular reconfigurable robotic devices,IEEE Trans,on Mechatronics.Vol.8,2003,pp.152-162.
    [23]G.J.Hamlin and A.C.Sanderson,Tetrobot:a modular approach to parallel robotics.IEEE Robotics and Automation Magazine.Vol.4,1997,pp.42-50.
    [24]R.B.Hertz and P.C.Hughes,Forward kinematics of a 3 DOF variable-geometry-truss manipulators.In J.Angeles P.Kovacs,G.Hommel,editor,Computational Kinematics,pp.241-250.Kluwer,1993
    [25]S.Jain and S.N.Kramer.Forward and inverse kinematics solution of the variable geometry truss robot based on N-celled tetrahedron-tetrahedron truss.ASME Journal of Mechanical Design.Vol.112,1990,pp.16-22
    [26]B.Padmanabhan and others.Closed-form inverse kinematic analysis of variable-geometry truss manipulator.ASME Journal of Mechanical Design.Vol.114,1992,pp.438-443
    [27]M.Shahinpoor.Kinematics of a parallel-serial(hybrid)manipulator.Journal of Robotic Systems.Vol.91,1992,pp.13-36.
    [28]M.Subramanian and S.N.Kramer,The inverse kinematic solution of the tetrahedron based variable geometry truss manipulator.ASME Journal of Mechanical Design,Vol.114,1992,pp.433-437
    [29]V.A.Sujan and S.Dubowsky,Design of lightweight hyper-redundant deployable binary manipulator,ASME Journal of Mechanical Design.Vol.126,2004,pp.29-39.
    [30]M.Tanaka.Large-scaled framed structure as parallel mechanism with hyper-redundancy.Advanced Robotics.Vol.86,1994,pp.573-587
    [31]D.B.Warnaar and M.Chew,Kinematic synthesis of deployable-foldable truss structures using graph theory,Part 1:graph generation.ASME Journal of Mechanical Design.Vol.117,1995,pp.112-116
    [32]L.J.Xu,S.W.Fan,and H.Li,Analytical model method for dynamics of ncelled tetrahedron variable geometry truss manipulators,Mechanism and Machine Theory.Vol.36,2001,pp.1271-1279.
    [33]M.Wapier et al.,A stewart platform for precision surgery,Trans,of the Institute of Measurement and Control.Vol.25,2003,pp.329-334.
    [34]Shoham M.and others.Bone-mounted miniature robot for surgical procedures:concept and clinical applications.IEEE Trans,on Robotics and Automation,Vol.19,2003,pp.893-901,
    [35]G.Rosati,P.Gallina,and S.Masiero,Design,implementation and clinical test of a wire-based robot for neuro rehabilitation,IEEE Trans,on Neural Systems and Rehabilitation Engineering.Vol.15,2007,pp.560-569.
    [36]J.Peirs,D.Reynaerts,and H.V.Brussel,Design of miniature parallel manipulators for integration in a self-propelling endoscope.Sensors and Actuators,A.Vol.85,2000,pp.409-417.
    [37]V.Parenti-Castelli et al.,On the modeling of passive motion of the human knee joint by means of equivalent planar and spatial parallel mechanisms,Autonomous Robots.Vol.16,2004,pp.219-232.
    [38]T.Morizono,K.Kurahashi,and S.Kawamura,Analysis and control of a force display system driven by parallel wire mechanism.Robotica,Vol.16,1998,pp.551-563
    [39]T.Li and S.Payandeh,Design of spherical parallel mechanisms for application to laparoscopic surgery,Robotica.Vol.20,2002,pp.133-138.
    [40]M.Girone and others,A Stewart platform-based system for ankle telerehabilitation,Autonomous Robots,Vol.10,2001,pp.203-212
    [41]R.D.Gregorio and V.Parenti-Castelli,Kinematics of a six-dof fixation device for long-bone fracture reduction.Journal of Robotic Systems,Vol.18,2001,pp.715-722
    [42]G.Carbone and M.Ceccarelli,A serial-parallel robotic architecture for surgical tasks,Robotica,Vol.23,2005,pp.345-354.
    [43]L.E.Bruzzone and R.Molfino,Special-purpose parallel robot for active suspension of ambulance stretchers,International Journal of Robotics and Automation.Vol.18,2003,pp.121-129.
    [44]G.Brandt and others.CRIGOS:a compact robot for image-guided orthopedic surgery.IEEE Trans,on Robotics and Automation,Vol.3,1999,pp.252-260
    [45]S.Bai and M.Y.Teo,Kinematic calibration and pose measurement of a medical parallel manipulator by optical position sensors,Journal of Robotic Systems,Vol.20,2003,pp.201-209
    [46]B.J.Yi et al.,Design and experiment of a 3-dof parallel micromechanism utilizing flexure hinges,IEEE Trans,on Robotics and Automation,Vol.19,2003,pp.604-612.
    [47]Q.Xu and Y.Li,A novel design of a 3-prc compliant parallel micromanipulator for nanomanipulation,Robotica,Vol.24,2006,pp.521-528.
    [48]T.Tanikawa and T.Arai,Development of a micro-manipulation system having a two-fingered micro-hand.IEEE Trans,on Robotics and Automation,Vol.15,1999,pp.152-162
    [49]V.T Portman,B.Z.Sandler,and E.Zahavi,Rigid 6x6 parallel platform for precision 3d micromanipulation:theory and design application,IEEE Trans,on Robotics and Automation, Vol.16,2000,pp.629-643.
    [50]E.Pernette and others.Design of parallel robots in microrobotics.Robotica,Vol.15,1997,pp.417-420
    [51]L.C.Lin and M.U.Tsay,Modeling and control of micropositioning systems using Stewart platforms.Journal of Robotic Systems,Vol.17,2000,pp.17-52
    [52]Lee K-M.and Arjunan S.A three-degrees-of freedom micromotion in-parallel actuated manipulator.IEEE Trans,on Robotics and Automation,Vol.7,1991,pp.634-641
    [53]K.A.Jensen,C.P.Lusk,and L.L.Howell,An xyz micromanipulator with three translational degrees of freedom,Robotica,Vol.24,2006,pp.305-314.
    [54]M.L.Culpepper,M.V.Kartik,and C.DiBiasio,Design of integrated mechanisms and exact constraint fixtures for micron-level repeatability and accuracy,Journal of Precision Engineering,Vol.29,2005,pp.65-80.
    [55]M.L.Culpepper and G.Anderson,Design of a low-cost nano-manipulator which utilizes a monolithic,spatial compliant mechanism,Journal of Precision Engineering,Vol.28,2004,pp.469-482.
    [56]M.Sorli and S.Pastorelli,Six-axis reticulated structure force/torque sensor with adaptable performances.Mechatronics,Vol.5,1995,pp.585-601
    [57]M.Sorli and Zhmud.Investigation of force and moment measurement system for a robotic assembly hand.Sensors and Actuators A,Vol.37-38,1993,pp.651-657
    [58]A.Romiti and M.Sorli,Force and moment measurement on a robotic assembly hand.Sensors and Actuators A.Vol.32,1992,pp.531-538
    [59]R.Ranganath and others.A force-torque sensor based on a Stewart platform in a near-singular configuration.Mechanism and Machine Theory,Vol.39,2004,pp.971-998.
    [60]C.C.Nguyen and others.Analysis and experimentation of a Stewart platform-based force/torque sensor.International Journal of Robotics and Automation,Vol.7,1992,pp.133-141
    [61]C.Ferraresi,S.Pastorelli,M.Sorli,and N.Zhmud,Static and dynamic behavior of a high stiffness Stewart platform-based force/torque sensor.Jouranl of Robotic Systems,Vol.12,1995,pp.883-893.
    [62]S.M.Wang and K.F.Ehmann,Error model and accuracy analysis of a six-dof Stewart platform,ASME Journal of Manufacturing Science and Engineering,Vol.124,2002,pp.286-295.
    [63]J.P.Lauffer,T.D.Hinnerichs,C.P.Kuo,B.Wada,D.Ewaldz,B.Winfough,and N.Shankar,Milling machine for the 21st century-goals,approach,characterization and modeling,Proceedings of SPIE-The International Society for Optical Engineering Smart Structures San Diego,Vol.2721,1996,pp.326-340.
    [64]X.Yu et al.,Measuring data based non-linear error modeling for parallel machine-tool,IEEE Int.Conf.on Robotics and Automation,2001,pp.3535-3540.
    [65]P.Bailey,The merits of hexapods for robotics applications,Conference on next steps for industrial Robotics,1994,pp.11-16,
    [66]J.Hollingum,Features:Hexapods to take over? Industrial Robot,Vol.24,1997,pp.428-431.
    [67]G.Pritschow and K.H.Wurst,Systematic design of hexapods and other parallel link systems,CIRP Annual.Vol.46,1999,pp.291-295.
    [68]R.B.Aronson,Hexapods:Hot or ho hum?,Manufacturing Engineering,1997,pp.60-67.
    [69]G.Matar,Hexapod:Application-led technology,Prototyping Technology International,1997,pp.70-72.
    [70]J.J.Cervantes-S(?)nchez,J.G.Rend(?)n-S(?)nchez,A simplified approach for obtaining the workspace of a class of 2-dof planar parallel manipulators,Mechanism and Machine Theory,Vol.34,1999,pp.1057-1073
    [71]M.Arsenanlt and C.M.Gosselin,Kinematic and Static Analysis of a Planar Modular 2-DoF Tensegrity Mechanism,Proccedings of the 2006 IEEE International Conference on Robotics and Automation,Orlando,Florida-May 2006,pp.4193-4198
    [72]张耀欣,从爽,平面二自由度冗余驱动并联机构的最优运动控制及其仿真,系统仿真学报,Vol.17,2005,pp.2450-2454
    [73]王冰,高峰,彭斌彬,运红丽,张勇,一种二自由度并联平面机构的尺度综合,机械设计与研究,Vol.21,No.2,2005
    [74]D.Zhang,Kinetostatis Analysis and Optimization of Parallel and Hybrid Architectures for Machine Tools,Laval University,April 2000.
    [75]赵新华,沈兆奎,陈广来,赵连玉,平面三自由度并联机器人奇异位形研究,天津理工学院学报,Vol.19,2003,pp.22-24
    [76]张广立,付莹,杨汝清,一种新型平面三自由度冗余度并联机器人的运动学分析,机械设计与研究,Vol.18,2002,pp.19-21
    [77]陈红亮,罗玉峰.杨廷力,对称三自由度并联机器人拓扑结构型综合与分类,农业机械学报,Vol.39,2008,pp.138-141
    [78]J.Gallardo-Alvarado,J.M.Rico-Martnez,G.Alici,Kinematics and singularity analyses of a 4-dof parallel manipulator using screw theory,Mechanism and Machine Theory,Vol.41,2006,pp.1048-1061
    [79]Y.Lu,B.Hu,Analyzing kinematics and solving active/constrained forces of a 3SPU+UPR parallel manipulator,Mechanism and Machine Theory,Vol.42,2007,pp.1298-1313
    [80]O.Company,F.Pierrot,J.C.Fanroux,A Method for Modeling Analytical Stiffness of a Lower Mobility Parallel Manipulator,Proceedings of the 2005 IEEE International Conferencc on Robotics and Automation Barcelona,Spain,pp.3232-3237
    [81]X.W.Kong and C.M.Gosselin,Type Synthesis of 3T1R 4-DOF Parallel Manipulators Based on Screw Theory,IEEE Transactions on Robotics and Automation,Vol.20,2004,pp.181-190
    [82]R.Alizade,C.Bayram,Structural synthesis of parallel manipulators,Mechanism and Machine Theory,Vol.39,2004,pp.857-870
    [83]赵辉,五自由度五轴并联机床关键技术研究,北京航空航天大学博士学位论文,2004
    [84]卢熹,机械结构优化方法及应用研究,东南大学博士学位论文,2004
    [85]齐名军,求解多目标优化问题的粒子群算法改进及应用,大庆石油学院硕士学位论文,2007
    [86]T.M Li and S.Payandeh,Design of spherical parallel mechanisms for application to laparoscopic surgery,Robotica,Vol.20,2002,pp.133-138
    [87]毕树生,宗光华,张体娟,并联微操作机构的研究与应用,高技术通讯,2001.2,pp.107-111
    [88]吕崇耀,熊有伦,Stewart并行机构位姿误差分析,华中理工大学学报,1999年27卷8期
    [89]刘才山,陈滨,多柔体系统碰撞动力学研究综述,,力学进展,2000年30卷1期
    [90]T.A.Dwarakanath,B.Dasgupta,T.S.Mruthyunjaya,Design and development of a Stewart platform based force-torque sensor Mechatronics,Vol.11,2001,pp.793-809
    [91]张晓辉,并联结构力传感器力矩各向同性研究,机械设计与研究,Vol.20,No.2,2004
    [92]赵延治,赵铁石,温锐,王洪光,基于结构变形的大型并联六维力传感器精度研究,机械设计,Vol.24,No.9,2007
    [93]杨建新,余跃庆,基于6维力/力矩传感器的并联机器人惯性参数辨识方法,机械科学与技术,Vol.25,No.7,2006
    [94]D.Zhang and C.M.Gosselin,Parallel kinematic machine design with kinetostatic model,Robotica,Vol.4,2002,pp.429-438
    [95]J.A.Carretero,R.P.Podhorodeski,M.N.Nahon,and C.M.Gosselin,Kinematic analysis and optimization of a new three degree-of-freedom spatial parallel manipulator.ASME Journal of Mechanical Design,Vol.122,2000,pp.17-24
    [96]G.R.Dunlop,T.P Jones,Position analysis of a two DOF parallel mechanism-Canterbury tracker.Mechanism and Machine Theory,Vol.34,1999,pp.599-614
    [97]D.Zhang and L.Wang,PKM capabilities and applications exploration in a collaborative virtual environment,Robotics and Computer-Integrated Manufacturing,Vol.22,2006,pp.384-395,
    [98]D.Zhang and C.M.Gosselin.Kinetostatic modeling of parallel mechanisms with a passive constraining leg and revolute actuators,Mechanism and Machine Theory,Vol.37,2002,pp.599-617
    [99]Z.M.Bi,S.Y.T.Lang,D.Zhang,P.E.Orban,M.Verner,An integrated design toolbox for tripod-based parallel kinematic machines,Transactions of the ASME,Journal of Mechanical Design,Vol.129,2007,pp.799-807
    [100]D.Zhang,L.Wang.Conceptual development of an enhanced tripod mechanism for machine tool,Robotics and Computer-Integrated Manufacturing,Vol.21,2002,pp.318-327
    [101]L.Rey and R.Clavel,The delta parallel robot,Parallel Kinematic Machines-Theoretical Aspects and Industrial Requirements,editors:C.R.Boer,L.Molinari-Tosatti and K.S.Smith,Springer Publishers,1999,pp.401-418.
    [102]胡鹏浩,宋昆鹏,一种平面3RRR并联机器人结构参数识别,制造业自动化,第27卷,第10期,2005年
    [103]C.M.Gosselin,M.Guillot,The synthesis of manipulators with prescribed workspace, Journal of Mechanical Design,Transactions of the A SME,Vol.113,1991,pp.451-455.
    [104]C.M.Gosselin and D.Zhang,Stiffness analysis of parallel mechanisms using a lumped model,International Journal of Robotics and Automation,Vol.17,2002,pp.17-27
    [105]黄真,孔令富,方跃法,并联机器人机构学理论及控制,北京机械工业出版社 1997
    [106]黄真,李秦川,少自由度并联机器人机构的型综合原理,Vol.33,2003,pp.813-819
    [107]J.P.Merlet,Parallel Robots:Open Problems.The 9th International Symposium of Robotics Research,Snowbird,UT,October 9-12,1999
    [108]赵亮,一种五自由度混联机器人动力学研究,东北大学硕士学位论文,2001年1月
    [1]T.S.Zhao,Y.S.Zhao and Z.Huang,Study on adeptability of a sea crab and its bionics mechanism model.Mechanism and Machine Theory,Vol.34,1999,pp.1271-1280
    [2]赵铁石,空间少自由度并联机器人机构分析与综合的理论研究,燕山大学博士学位论文,2000年3月
    [3]D.Zhang.Kinetostatic analysis and optimization of parallel and hybrid architectures for machine tools.Ph.D.thesis,Laval University,Quebec,2000.
    [4]P.R.Bergamaschi,A.C.Nogueira,S.F.Saramago.Design and optimization of 3R manipulators using the workspace features.Applied Mathematics and Computation,Vol.172,2006,pp.439-463
    [5]B.K.Rout,R.K.Mittal.Parametric design optimization of 2-DOF R-R planar manipulator:A design of experiment approach.Robotics and Computer Integrated Manufacturing,Vol.24,2008,pp.239-248
    [6]张立杰,两自由度并联机器人的性能分析及尺寸优化,燕山大学博士学位论文,2006年3月
    [7]A.Yu,I.A.Bonev,R Zsombor-Murray.Geometric approach to the accuracy analysis of a class of 3-DOF planar parallel robots.Mechanism and Machine Theory,Vol.43,2008,pp.364-375
    [8]J.S.Zhao,S.L.Zhang,J.X.Dong,Z.J.Feng,K.Zhou.Optimizing the kinematic chains for a spatial parallel manipulator via searching the desired dexterous workspace.Robotics and Computer-Integrated Manufacturing,Vol.23,2007,pp.38-46
    [9]M.Stock,K.Miller.Optimal Kinematic Design of Spatial Parallel Manipulators:Application to Linear Delta Robot.Journal of Mechanical Design.Transactions of the ASME.Vol.125,2003,pp.292-301
    [10]S.Kucuk and Z.Bingul.Robot Workspace Optimization Based on a Novel Local and Global Performance Indices.IEEE ISIE 2005,June 20-23,2005,Dubrovnik,Croatia,pp.1593-1598
    [11]M.Ceccarelli,C.Lanni.A multi-objective optimum design of general 3R manipulators for prescribed workspace limits.Mechanism and Machine Theory,Vol.39,2004,pp.119-132
    [12]D.Zhang,L.Wang,S.Lang,Parallel Kinematic Machines:Design,Analysis and Simulation in an Integrated Virtual Environment,Transactions of the ASME,Journal of Mechanical Design,Vol.127,2005,pp.580-588
    [13]包邻梅,搬运机器人混联机构静态受力与变形分析,西安理工大学硕士学位论文,2003
    [14]王世军,混联机床中并联机构的动力学特性分析方法的研究,西安理工大学博士学位论文,2004
    [15]H.S.Shih,U.P.Wen.A Neural Network Approach to Multiobjective and Multilevel Programming Problems,Computers and Mathematics with Applications,Vol.48,2004,pp.95-10
    [16]K.Atashkari,N.Nariman-Zadeh,M.Golcu,A.Khalkhali,A.Jamali.Modelling and multi-objective optimization of a variable valve-timing spark-ignition engine using polynomial neural networks and evolutionary algorithms.Energy Conversion and Management,Vol.48,2007,pp.1029-1041
    [17]N.G.Pedrajas,C.H.Martmez,J.M.Perez.Multi-objective cooperative coevolution of artificial neural networks.Neural Networks,Vol.15,2002,pp.1259-1278
    [18]S.Gupta,R.Tiwari,S.B.Nair.Multi-objective design optimisation of rolling bearings using genetic algorithms.Mechanism and Machine Theory,Vol.42,2007,pp.1418-1443
    [19]J.H.Zhang,A.G Xie,F.M Shen.Multi-Objective Optimization and Analysis Model of Sintering Process Based on BP Neural Network.International Journal of Iron and Steel Research,Vol.14,2007,pp.1-5
    [20]J.Takahara,K.Takayama,T.Nagai.Multi-objective simultaneous optimization technique based on an artificial neural network in sustained release formulations.Journal of Controlled Release,Vol.49,1997,pp.11-20
    [21]郑金华.多目标进化算法及其应用.科学出版社.北京.2007.
    [22]张永,邢宗义,向峥嵘,胡维礼.基于Pareto协同进化算法的TS模糊模型设计.控制与决策,2006年第21卷第12期
    [23]M.Potter and K.De Jong,Cooperative coevolution:An architecture for evolving coadapted subcomponents.Evolutionary Computation,Vol.8,2000,pp.1-29
    [24]M.A.Potter,The design and analysis of a computational model of cooperative coevolution,Ph.D.dissertation,George Mason University,Dept.Comput.Sci.,1997.
    [25]崔逊学,基于多目标优化的进化算法研究,中国科学技术大学博士学位论文,2001年10月
    [26]郑金华,多目标进化算法及其应用,科学出版社,北京,2007年2月
    [27]S.Gupta,R.Tiwari,S.B.Nair.Multi-objective design optimization of rolling bearings using genetic algorithms.Mech Mach Theory,Vol.42,2007,pp.1418-43.
    [28]P.Ngatchou,Z.Anahita,M.A.El-Sharkawi,Pareto Multi Objective Optimization.Proceedings of the 13th International Conference on Intelligent Systems Application to Power Systems,2005,pp.84-91
    [29]任钢,基于进化算法的多处理机任务调度器研究,中国科学院计算技术研究所硕士学位论文,2001年6月
    [30]张广政,基于径向基函数神经网络的蛋白质微构象预测分析研究,中国科学技术大学博士学位论文,2005年10月
    [1]D.Zhang and C.M.Gosselin,Parallel kinematic machine design with kinetostatic model,Robotica,Vol.4,2002,pp.429-438
    [2]J.A.Carretero,R.P.Podhorodeski,M.N.Nahon,and C.M.Gosselin.Kinematic analysis and optimization of a new three degree-of-freedom spatial parallel manipulator.ASME Journal of Mechanical Design,Vol.122,2000,pp.17-24
    [3]G.R.Dunlop,and T.P Jones.Position analysis of a two DOF parallel mechanism-Canterbury tracker.Mechanism and Machine Theory,Vol.34,1999,pp.599-614
    [4]D.Zhang,L.Wang,PKM capabilities and applications exploration in a collaborative virtual environment,Robotics and Computer-Integrated Manufacturing,Vol.22,2006,pp.384-395
    [5]J.A.Soons.On the geometric and thermal errors of a Hexapod machine tools,Parallel kinematic machines:Theoretical aspects and industrial requirements,Advanced Manufacturing Series,Springer-Verlag London Limited,pp.151-170,1999.
    [6]D.Zhang and C.M.Gosselin.Kinetostatic modeling of parallel mechanisms with a passive constraining leg and revolute actuators,Mechanism and Machine Theory,Vol.37,2002,pp.599-617,
    [7]Z.M.Bi,S.Y.T.Lang,D.Zhang,P.E.Orban,M.Verner,An integrated design toolbox for tripod-based parallel kinematic machines,Transactions of the ASME,Journal of Mechanical Design,Vol.129,2007,pp.799-807
    [8]D.Zhang,L.Wang.Conceptual development of an enhanced tripod mechanism for machine tool,Robotics and Computer-Integrated Manufacturing,Vol.21,2002,pp.318-327
    [9]S.Staicu,D.Zhang and R.D.Rugescu,Dynamic modelling of a 3-DOF parallel manipulator using iterative matrix relations,Robotica,Vol.24,2006,pp.125-130
    [10]X.J.Liu,J.S.Wang,G.Pritschow.A new family of spatial 3-DoF fully-parallel manipulators with high rotational capability.Mechanism and Machine Theory,Vol.40,2005,pp.475-494
    [11]D.Zhang,L.Wang,E.Esmailzadeh,PKM capabilities and applications exploration in a collaborative virtual environment,Robotics and Computer-Integrated Manufacturing,Vol.22,2006,pp.384-395
    [12]P.R.Bergamaschi,A.C.Nogueira,S.F.P.Saramago.Design and optimization of 3R manipulators using the workspace features.Applied Mathematics and Computation,Vol.172,2006,pp.439-463
    [13]S.Kucuk and Z.Bingul.Robot workspace optimization based on a novel local and global performance indices.IEEE ISIE 2005,June 20-23,2005,Dubrovnik,Croatia,pp.1593-1598
    [14]A.Yu,I.A.Bonev,P.Z.Murray.Geometric approach to the accuracy analysis of a class of 3DOF planar parallel robots.Mechanism and Machine Theory,Vol.43,2008,pp.364-375
    [15]J.S.Zhao,S.L.Zhang,J.X.Dong,Z.J.Feng,K.Zhou.Optimizing the kinematic chains for a spatial parallel manipulator via searching the desired dexterous workspace.Robotics and Computer-Integrated Manufacturing,Vol.23,2007,pp.38-46
    [16]M.Stock and K.Miller.Optimal kinematic design of spatial parallel manipulators:Application to linear delta robot.Journal of Mechanical Design.Transactions of the ASME.Vol.125,2003,pp.292-301
    [17]B.K.Rout,R.K.Mittal.Parametric design optimization of 2-DOF R-R planar manipulator:A design of experiment approach.Robotics and Computer Integrated Manufacturing,Vol.24,2008,pp.239-248
    [18]M.Ceccarelli,C.Lanni.A multi-objective optimum design of general 3R manipulators for prescribed workspace limits.Mechanism and Machine Theory,Vol.39,2004,pp.119-132
    [19]J.H.Holland,Adaptation in natural and artificial systems,The University of Michigan Press,Ann Arbor,MI,1975
    [20]X.L.Hu,Design and analysis of a three degrees of freedom parallel kinematic machine,Master thesis,University of Ontario Institute of Technology,Ontario,2008
    [21]D.Zhang.Kinetostatic analysis and optimization of parallel and hybrid architectures for machine tools.Ph.D.thesis,Laval University,Quebec,2000.
    [22]C.M.Gosselin,M.Guillot,The synthesis of manipulators with prescribed workspace,Journal of Mechanical Design.Transactions of the ASME,Vol.113,1991,pp.451-455
    [23]周明,孙树栋.遗传算法原理及应用.国防工业出版社 1999
    [24]M.Potter and K.De Jong,Cooperative coevolution:An architecture for evolving coadapted subcomponents.Evolutionary Computation,Vol.8,2000,pp.1-29
    [25]孙晓燕,高振,巩敦卫.基于合作式协同进化算法的神经网络优化.中国矿业大学学报.Vol.35.No.1.2006.pp.114-119
    [1]Y.M.Moon,Bio-mimetic design of finger mechanism with contact aided compliant mechanism,Mechanism and Machine Theory,Vol.42,2007,pp.600-611
    [2]W.Dong,L.N.Sun and Z.J.Du,Design of a precision compliant parallel positioner driven by dual piezoelectric actuators,Sensors and Actuators A,Vol.135,2007,pp.250-256
    [3]Y.M.Li and Q.S.Xu,A novel design and analysis of a 2-DOF compliant parallel micromanipulator for nanomanipulation,IEEE Transaction on Automation Science and Engineering,Vol.3,2006,pp.248-253
    [4]S.Venanzi,P.Giesen and V.Parenti-Castelli,A novel technique for position analysis of planar compliant mechanisms,Mechanism and Machine Theory,Vol.40,2005,pp.1224-1239
    [5]K.J.Lu,Synthesis of Shape Morphing Compliant Mechanisms,The University of Michigan,2004.
    [6]D.Zhang,Kinetostatis Analysis and Optimization of Parallel and Hybrid Architectures for Machine Tools,Laval University,April 2000.
    [7]Q.Xu and Y.Li,A novel design of a 3-PRC compliant parallel micromanipulator for nanomanipulation,Robotica,24,2006,pp.527-528
    [8]杨玉维,赵新华,3RRRT并联机器人工作空间与灵巧度的分析,机械设计,Vol.22,2005,pp.11-13
    [9]K.Nattavut,C.Nachol,V.Vara.Multi-objective cooperative coevolutionary genetic algorithm,Genetic Algorithms in Engineering Systems,Innovations and Applications,2001,pp.69-74
    [10]M.A.Potter,The design and analysis of a computational model of cooperative coevolution,Ph.D.dissertation,George Mason University,Dept.Comput.Sci.,1997.
    [11]Z.M.Bi,S.Y.T.Lang.Joint workspace of parallel kinematic machines,Robotics and Computer-Integrated Manufacturing,Available online at www.sciencedirect.com
    [12]D.Zhang,Z.M.B i,Y.J.Ge.Design and kinetostatic analysis of a new parallel manipulator
    [13]M.Arsenault,C.M.Gosselin.Kinematic,static and dynamic analysis of a planar 2-DOF tensegrity mechanism,Mechanism and Machine Theory,Vol.41,2006,pp.1072-1089
    [14]X.J.Liu,J.S.Wang,G.Pritschow.Kinematics,singularity and workspace of planar 5R symmetrical parallel mechanisms,Mechanism and Machine Theory,Vol.41,2006,pp.145-169
    [15]R.Koker,T.Cakarb,H.Ekiz,A study of neural network based inverse kinematics solution for a three-joint robot,Robotics and Autonomous Systems,Vol.41,2004,pp.227-234
    [1]J.M.Wang,D.J.Fleet,A.Hertzmann,Gaussian process dynamical models for human motion,IEEE Trans on Pattern Analysis and Machine Intelligence,Vol.30,2008,pp 283-298,
    [2]A.Page,V.Mata,J.V.Hoyos,R.Porcar,Experimental determination of instantaneous screw axis in human motions:error analysis,Mechanism and Machine Theory,Vol.42,2007,pp.429-441
    [3]P.Woojin,D.B.Chaffin,B.J.Martin,Toward memory-based human motion simulation:development and validation of a motion modification algorithm,IEEE Trans on Systems,Man and Cybernetics,Part A,Vol.34,2004,pp.376-386
    [4]S.Shen,M.Tong,H.Deng,Y.Liu,X.Wu,K.Wakabayashi,H.Koike,Model based human motion tracking using probability evolutionary algorithm,Pattern Recognition Letters,Vol.29,2008,pp.1877-1886
    [5]D.Gonzalez,G.Dietrich,Three-dimensional kinematics analysis of javelin throw:from real situation to biomechanical model,Science and Sports,Vol.18,2003,pp 216-218
    [6]M.Hubbarda,K.B.Cheng,Optimal discus trajectories,Journal of Biomechanics,Vol.40,2007,pp 3650-3659
    [7]F.Mizera,G.Horvath,Influence of environmental factors on shot put and hammer throw range,Journal of Biomechanics,Vol.35,2002,pp.785-796
    [8]M.Hubbard,N.J.de Mestre,J.Scott,Dependence of release variables in the shot put,Journal of Biomechanics,Vol.34,2001,pp.449-456
    [9]Z.Li,Humanoid intelligent control,National Defence Industry Press,Beijing,China,2003
    [10]P.Bonato,P.Boissy,U.D.Croce,S.H.Roy,Changes in the Surface EMG Signal and the Biomechanics of Motion During a Repetitive Lifting Task,IEEE Trans on Neural System and Rehabilitation Eng,Vol.10,2002,pp 38-47
    [11]S.A.Saleh,M.A.Rahman,Real-time testing of a WPT-based protection algorithm for three-phase power transformers,IEEE Trans on Industry Applications,Vol.41,2005,pp 1125-1132
    [12]J.Barros,R.I.Diego,Application of the wavelet-packet transform to the estimation of harmonic groups in current and voltage waveforms,IEEE Trans on Power Deliver,Vol.21,2006,pp.533-535
    [13]D.K.Lee,J.H.Park.A study on experiment of human behavior for evacuation simulation,Ocean Engineering.Vol.31,2004,pp.931-941
    [14]V.Parameswaran,Doctor Dissertation:View-Invariance in visual human motion analysis,University of Maryland.2004
    [15]http://www.analog.com
    [16]I.Hostens,J.Anthonis,H.Ramon,New design for a 6dof vibration simulator with improved reliability and performance,Mechanical Systems and Signal Processing,Vol.19,2005,pp.105-122
    [17]J.A.Carretero,R.P.Podhorodeski,M.N.Nahon,and C.M.Gosselin,Kinematic analysis and optimization of a new three degree-of-freedom spatial parallel manipulator,ASME Journal of Mechanical Design,Vol.122,2000,pp.17-24
    [18]G.R.Dunlop,and T.P Jones,Position analysis of a two DOF parallel mechanism-Canterbury tracker,Mechanism and Machine Theory,Vol.34,1999,pp.599-614
    [19]K.M.Lee,and S.Arjunan,A three-degrees-of-freedom micromotion in-parallel actuated manipulator,IEEE Transactions on Robotics and Automations,Vol.7,1991,pp.634-641
    [20]K.A.Jensen,C.P.Lusk,and L.L.Howell.An XYZ micromanipulator with three translational degrees of freedom,Robotica,Vol.24,2006,pp.305-314
    [21]Q.Xuand Y.Li,A novel design of a 3-PRC compliant parallel micromanipulator for nanomanipulation,Robotica,Vol.24,2006,pp.527-528
    [22]R.Ranganath and others.A force-torque sensor based on a Stewart platform in a near-singular configuration.Mechanism and Machine Theory,Vol.39,2004,pp.971-998
    [23]C.Ferraresi,S.Pastorelli,M.Sorli,and N.Zhmud,Static and dynamic behavior of a high stiffness Stewart platform-based force/torque sensor.Journal of Robotic Systems,Vol.12,1995,pp.883-893
    [24]M.Sorli and N.Zhmud,Investigation of force and moment measurement system for a robotic assembly hand.Sensors and Actuators A,Vol.37-38,1993,pp.651-657
    [25]D.Fedewa,M.G.Mehrabi,S.Kota,N.Orlandea,and V.Gopalakrishran,Parallel structures and their applications in reconfigurable machining systems,Proceedings of the 2000 Parallel Kinemati Machines-International Conference,2000,Ann-Arbor,Michigran,pp.87-97,2000.
    [26]C.C.Nguyen,Z.L.Zhou,and M.Bryfogis,A Robotically assisted munition loading system,Journal of Robotic Systems,Vol.12,1995,pp.871-881
    [27]G.L.Yang,I.M.Chen,W.H.Chen,et al.Kinematic design of a six-DOF parallel-kinematics machine with decoupled-motion architecture,IEEE Transactions on Robotics and Automation,Vol.20,2004,pp.876-884,
    [28]Y.M Li,Q.S.Xu,Stiffness analysis for a 3-PUU parallel kinematic machine,Mechanism and Machine Theory,Vol.43,2008,pp.186-200
    [29]S.L.Chen,T.H.Chang,Y.C.Lin,Applications of equivalent components concept on the singularity analysis of TRR-XY hybrid parallel kinematic machine tools,International Journal of Advanced Manufacturing Technology,Vol.30,2006,pp.778-788
    [30]S.Refaat,J.M.Herve,S.Nahavandi,Two-mode overconstrained three-DOFs rotational translational linear motor based parallel-kinematics mechanism for machine tool applications,Robotica,Vol.25,2007,pp.461-466
    [31]D.Zhang,F.Xi,C.Mechefske and Y.T.L.Sherman,Analysis of Parallel Kinematic Machines with Kinetostatic Modelling Method,Robotics and Computer-Integrated Manufacturing,Vol.20,2004,pp.151-165
    [32]D.R.Kerr,Analysis,Autom.Des.Vol.111,1989,pp.25-28.
    [33]T.A,Dwarakanath,Design and development of a Stewart platform based force-torque sensor,Mechatronics,2001,pp.793-809
    [34]Z.L Jin,F.Gao,X.H.Zhang,Design and analysis of a novel isotropic six-component force/torque sensor,Sensors and Actuators A,Vol.109,2003,pp.17-20
    [35]L.L.Howell,Compliant Mechanisms.New York:Wiley,2001.
    [36]Z.Gao,B.Song,Y.J Ge and others.Design and application of a multidimensional acceleration sensor for coaching of shot-put athletes.Sensors and Actuators A,Vol.149,2009,pp.213-220
    [37]M.Uchiyama,E.Bayo,E.Palma-Villalon,A systematic design procedure to minimize a performance index for robot force sensors,J.Dyn.Syst.Measur.Contr.113(1991) 388-394.
    [38]吕翔宇,燕山大学硕士学位论文,并联结构六维加速度传感器研究,2007年1月
    [39]钱朋安,六轴加速度传感器静动态特性若干问题研究,中国科技大学博士学位论文,2005
    [40]IEEE Recommended Practice for Precision Centrifuge Testing of Linear Accelerometers.IEEE Std 836-2001.Published by IEEE,Park Avenue,New York,N Y 10016-5997,USA
    [41]钱朋安,吴仲城,戈瑜等一体化三轴线加速度计静态标定方法的研究.传感技术学报,2005,3,18(1):86-89
    [42]黄西珍,陈伟,王鹏辉,高频小位移加速度传感器标定方法研究,河北工业大学学报,第36卷第3期,2007,pp.75-77
    [1]董晓坡,王绪本救援机器人的发展及其在灾害救援中的应用,防灾减灾工程学报,Vol.27,2007,pp.112-117
    [2]D.W.Hine,J.Lewko,and J.Blanco,Alignment to Workplace Safety Principles:An Application to Mining,Jounal of Safety Research.Vol.3,1999,pp.173-185
    [3]C.Smallman.The reality of "Revitalizing Health and Safety",Jounal of Safety Research,Vol.32,2001,pp.391-439
    [4]张彦斐,宫金良,李为民,高峰.一种6自由度冗余驱动并联机器人运动学分析及仿真.机械工程学报.第41卷第8期2005年8月
    [5]张彦斐,宫金良,高峰.冗余驱动消除并联机构位形奇异原理.中国机械工程第17卷第5期2006年3月
    [6]张立杰,刘颖,一种平面冗余驱动并联机器人的优化设计.机械设计与研究.第23卷第4期2007年8月
    [7]李剑锋,费仁元,范金红,刘德忠.驱动器布位及冗余驱动对Tricept并联机构性能的影响. 机械工程学报 第44卷第1期 2008年1月
    [8]杨钢,傅晓云,李宝仁.两自由度冗余驱动并联机器人的研究.系统仿真学报.第18卷第2期2006年2月
    [9]韩先国,陈五一,郭卫东.采用冗余驱动提高并联机床精度的研究.航空学报.第23卷第5期2002年9月
    [10]B.J.Yi,S.R.Oh,I.H.Suh,Five bar finger mechanism involving redundant actuators:analysis and its applications.IEEE Trans.on Robotics and Automation,Vol.15,1999,pp.1001-1010
    [11]D.Chakarov,Study of the antagonistic stiffness of parallel manipulators with actuation redundancy.Mech.Mach.Theory,Vol.39,2004,pp.583-601
    [12]R P.Frimani.Forceunconstrained poses for redundantly actuated planar parallel manipulator.Mech.Mach.Theory,Vol.39,2004,pp.459-476
    [13]http://baike.baidu.com/view/142950.htm
    [14]李增刚.Adams入门详解与实例.国防工业出版社.北京.2007年
    [15]郭辉.基于ADAMS的3-RPS型并联机器人虚拟样机技术的研究.东北大学硕士学位论文.2004
    [16]郝秀清,胡福生,郭宗和,陈建涛.基于ADAMS的3-PTT并联机构运动学和动力学仿真.机械设计.2006年9月第23卷第9期.pp:9-11
    [17]郑仁成,5-UPS/PRPU并联机床的冗余驱动研究,燕山大学硕士学位论文,2006年3月

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700