用户名: 密码: 验证码:
肝脏质膜蛋白质表达谱的构建及功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
真核细胞由生物膜分隔成行使不同功能的细胞器。尽管这些细胞器研究由来已久,但其蛋白质组成仍然不甚清楚。基于质谱的蛋白质组学技术的发展,使从整体上研究不同细胞器的蛋白质组成及功能成为可能。借助蛋白质组研究的手段,可以规模化的发掘存在于细胞器的蛋白质信息。通过蛋白质鉴定及数据发掘,我们期望更进一步的全面系统地揭示细胞器中所蕴含的生命信息。因此,亚细胞蛋白质组的研究一直是蛋白质组研究的重要分支,更是人类肝脏蛋白质组计划(Human Liver Proteome Project)的重要组成部分。
     首先,本研究以肝脏质膜为研究对象,利用蛋白质组技术,构建人肝脏质膜蛋白质表达谱。其次,由于细胞器之间存在着天然的联系,造成分离过程中不可避免的交叉污染,而质谱鉴定的高灵敏性,使得这些相对微量的污染蛋白质得以鉴定,从而造成了细胞器定位的误判。因此我们建立了一种机械学习的方法来校正蛋白质的亚细胞定位。其三,在质膜蛋白质表达谱及精确定位研究的基础上,我们利用新构建的肝脏质膜蛋白质数据集,对肝脏质膜的功能特性进行了分析。其四,规模化的蛋白质组研究在提供参考数据集的同时,也对数据的发掘提出了新的要求,而亚细胞蛋白质组提供了一个细胞器研究的平台,不同类型的大规模实验数据可以与其整合,来共同描绘细胞器的功能,我们通过整合蛋白质相互作用数据构建细胞器功能模块这一全新的方式,实现了对细胞器功能的系统挖掘。其五,众所周知,利用质谱数据对基因组进行注释,是蛋白质组研究的一个亮点和难点。我们尝试通过小鼠肝脏质谱数据搜索EST数据库对小鼠基因组进行注释,为下一步人肝脏蛋白质组数据进行人类基因组注释打下了良好的基础。具体研究思路及重要结果简述如下。
     首先,建立了肝脏细胞器联合分离的方法,并以此为基础,构建了人肝脏质膜蛋白质表达谱。我们以C57BL/6J小鼠肝脏为材料,建立了一套从同一组织匀浆液中,同时分离质膜、线粒体、粗面内质网、滑面内质网、细胞核、胞浆六个亚细胞组分的方法。通过电镜和免疫印迹等方法,对分离的细胞器进行了形态学观察和纯度评价,得到的细胞器结构完整,纯度较高。进而摸索建立了人肝脏细胞器的分离方法。进一步提取人肝脏质膜蛋白质,通过SDS-PAGE分离蛋白质、胶内酶切肽提取、nano-LC-ESI-MS/MS鉴定的技术策略,构建了目前国际上最大规模的人肝脏质膜蛋白质表达谱。在95%置信度、至少双肽段匹配(95P2)的数据标准下,共鉴定到1381个人肝脏质膜蛋白质;通过校正的质谱图数提取蛋白质的定量信息,并进一步对定量准确性进行了评估。
     其次,对肝脏亚细胞蛋白质表达谱的细胞器定位进行了探索。基于鉴定蛋白质在不同亚细胞组分中的定量信息,并结合各细胞器特征蛋白(金标准),通过KNN模块初步确定蛋白质的亚细胞定位。继而,利用贝叶斯模型进一步整合五种基于蛋白质序列信息的定位预测方法(pTAGET,Proteome Analyst,WoLFPSORT,TargetP,NUCLEO),建立了一个新的蛋白质定位方法,与已有亚细胞定位预测方法相比,其准确性显著提高。将此方法用于肝脏细胞器蛋白质组数据(含有6311个蛋白质)分析,确定了肝脏各细胞器的蛋白质数据集。通过与SWISS-PROT等数据库比较,发现了4966个肝脏蛋白质的新定位,包括两类,一是数据库未给出蛋白质的定位,我们首次发现了它的定位(4433个);另一类是数据库虽给出了它的定位,但我们发现了它的新定位(533个)。接着,我们选取四个蛋白质进行了荧光定位实验验证,结果全部与预测结果一致。
     其三,利用肝脏质膜蛋白质数据集,对肝脏质膜的功能特性进行了分析。通过贝叶斯模型的定位方法,共得到871个质膜蛋白质,其中84%为新的质膜定位蛋白质。在多定位中,质膜和内质网共定位蛋白质所占的比例最大(215个,24.68%),其中主要是参与分泌途径的蛋白质分子,体现了肝脏旺盛的分泌能力。本研究发现了许多参与重要生理过程的蛋白质,包括信号转导的受体、离子转运的通道蛋白和转运体等具有质膜定位,提示了质膜上存在着极为复杂的生物学过程。进一步分析质膜蛋白质表达谱中的新蛋白,我们发现了29个假想蛋白质,其中10个蛋白质同时具有C1-set和V-set结构域,结合定位和结构域信息推测它们可能属于免疫球蛋白超家族,参与免疫反应过程。
     其四,构建了各细胞器的蛋白质功能模块,以此为基础对细胞器蛋白质的新功能进行了挖掘。我们采用系统生物学的手段,将细胞器蛋白质表达谱中得到的蛋白质定量、定位信息与蛋白质相互作用网络结合,构建细胞器相互作用子网络,并通过MCODE聚类软件,将其拆分为蛋白质模块,利用Gene Ontology和文献搜索对模块功能进行注释,实现了对细胞器功能的系统注释。基于同一模块的蛋白质相互作用紧密、很可能属于同一复合体或参与同一生物学过程,因此具有类似的功能。我们赋予了肝脏中151个新蛋白或已知蛋白潜在的新功能,其中发现其中一个假想蛋白分析可能属于呼吸链复合体Ⅰ的新成员。我们的功能模块分析表明细胞器蛋白质组不仅数据集本身具有重要价值,而且与其它类型数据集整合可以对细胞器及其功能进行新的阐释。
     最后,利用小鼠肝脏细胞器表达谱的质谱数据对其基因组进行了注释和补充。以蛋白质组数据实现对基因组的注释是蛋白质组学的重要研究方向。我们采用小鼠肝脏细胞器的蛋白质组数据对此进行了初步的尝试。质谱结果通过EST数据库重新搜索,与IPI数据库比对,发现了486个新的肽段。进一步将其与小鼠基因组进行匹配,根据其在基因组上的位置以及与编码蛋白基因的关系进行分类,发现了96个新的蛋白编码区,152个单氨基酸突变和102个与基因组不匹配肽段和136个IPI蛋白库中未包含肽段。为质谱数据的深度发掘做了有益的探索。
     综上,我们提供了一个从同一肝脏组织匀浆液中同时分离多个细胞器的方法,得到的细胞器结果完整,纯度高。以此为基础,构建了1381个蛋白质构成的人肝脏质膜蛋白质表达谱。建立了一个结合质谱定量和序列信息的蛋白质定位预测方法,并用于构建细胞器蛋白质组数据集,发现了4966个新的蛋白质定位。进一步,对质膜蛋白质数据集进行了功能分析,发现了10个可能的免疫球蛋白超家族成员。通过整合蛋白质相互作用网络,构建了细胞器的功能模块图谱,并以此为基础,对151个新蛋白及已知蛋白质的新功能给予了系统分析。通过搜索EST数据库,发现了486个新的肽段,其中包括96个新的蛋白质编码区。
Eukaryotic cells include many dynamic membrane-bounded organelles that carry out distinct functions. Although these cell compartments have been studied for a long time, the diversity of proteins in different organelles remains unclear. With the development of mass spectrometry, sub-cellular proteome has become one of the most important fields of proteomics, which provide a powerful tool to give a survey of the proteins composition in different organelles. What’s more, organelle proteomics is also a crucial part of Human Liver Proteome Project.
     Here, we combined sub-cellular fractionation with proteomic technique to explore the protein composition of liver plasma membrane. In addition, the separated organelles always contain cross-contaminant by other compartments and could be identified by high sensitive mass spectrometer easily, which may lead to miss-assessment of protein localization. To address this issue, we used a machine-learning stratry to assign protein subcellular localization. Based on this method, the datasets of liver plasma membrane proteins was confirmed, and the function of those proteins was analysis. More importantly, organelle proteomic maps provides a‘‘cell biological scaffold’’on which other functional genomics data can be layered. And the integration of many diverse data sets can help accquire a novel view of the organelles.
     Combined with protein-protein interaction data, protein models were assembled for annotation organelles and assigning function to uncharacterized proteins. Moreover, it is known to all that genome annotation by proteomic data is an important and difficult field. Here, combining mouse sub-cellular proteome and EST sequence database, we found new protein-code genes and novel gene models, which could be used as a preparation for the next step of human genome annotation. The detailed research ideas and main results outlined as follows.
     Firstly,we established a method to obtain multiple organelles from same liver homogenate. C57BL/6J mouse liver was chosen as a model to explore the optimum method for sub-cellular preparation. The method could obtain the multiple fractions including plasma membrane, mitochondria, nucleus, rough and smooth endoplasmic reticulum and cytosol from a single homogenate. We systematically evaluated the purity, efficiency and integrity by western blot and transmission electron microscope. Subsequently, highly purified plasma membranes from human liver were used to compile a protein expression profile with strategy that combined SDS-PAGE separation with liquid chromatography gas phase fractionation (GPF) tandem mass spectrometry analysis. Totally, 1381 human proteins were identified with 95% confidence and minimum two peptides match. And the quantitation of proteins was obtained by the number of mass spectra.
     Secondly, the sub-cellular localization of human liver protein was analyzed. We developed a machine-learning method named KNN (K Nearest Neighbor) which was based on the similarity of quantitative curve in different compartment comparing to organelle marker protein. In addition, Bayesian model was employed, which combined KNN with five sub-cellular localization prediction methods (pTAGET,Proteome Analyst,WoLFPSORT,TargetP and NUCLEO), to assign the sub-cellular localization of human liver proteins. Comparing with the well-known organelles marker proteins, we found 4966 new sub-cellular localizations, including two categories: one was that the proteins’localization was never found before, and the other was that new localization was given to the well-reported proteins. At last, four new protein localizations were selected and confirmed by experiments.
     Thirdly, the function of human liver plasma membrane was analyzed. Based on Bayes model, a total of 871 proteins were found, 84% of which were firstly given the localization to plasma membrane. Except the single localization, the plasma membrane and endoplasmic reticulum-targeted proteins had the largest proportion (215, 24.68%). Those protiens were mainly involved in the protein secretory pathway, which reflect the strong secretion function of the liver. In the function analysis, the biological characterization was described systematically in liver plasma membrane, in which many proteins involve in signal transduction, ion transport and protein modifing. Further more, we found 29 the hypothetical proteins, of which 10 proteins had both C1-set and V-set domains. By combining with sub-cellular localization and domain information, we predicted those proteins may belong to the immune globulin superfamily, which involved in the process of immune response.
     Fourthly, the function modules of different organelle were constructed for predicting of protein function. The aim of organelle proteome research is not only to provide an organelle reference map, but also to form new knowledge. Here, we combined the human liver sub-cellular proteome with the protein interaction network to acquire the organelle specific protein network, which was clustered into function modules by MCODE. Based on those modules, the relations of organelle localization, protein quantitative and function were explored. Importantly, the members of protein module had similar function, which could be used as indicator for unknown member. Based on this principle, the new function of 151 proteins were predicted, one of which was a novel protein involving in mitochondria Respiratory chain complex I. We had demonstrated that the localization data presented here was not only valuable by itself but could be combined with other large-scale datasets to gain unanticipated insights.
     Finally, the mouse genome was annotated by mouse liver proteomic data. Genome annotation was an important field of proteomic study, by which novel gene and gene mode could be found. By searching mouse EST sequence database and blasting with mouse genome, 486 novel peptides were obtained including 96 novel protein-coding genes 152 novel amino acids mutations,102 novel peptides matching no genome sequence and 136 new peptides never existing in IPI database.
     In conclusion, we established a method that could separate multiple fractions from a single liver homogenate and identified 1381 human liver plasma membrane proteins. After that, a new sub-cellular localization strategy was used, and 4966 new localizations was found,four of which were confirmed by experiments. Then, the function of plasma membrane proteins was analysis, and 10 hypothetical plasma membrane proteins may belong to the immune globulin superfamily. Subsequently, the function modules of different organelle were constructed to predict 151 new proteins function. At last, 486 novel peptides, including 96 novel protein-coding genes, were found by searching the mouse EST database.
引文
1. Taylor SW, Fahy E, Zhang B, Glenn GM, Warnock DE, Wiley S, Murphy AN, Gaucher SP, Capaldi RA, Gibson BW, Ghosh SS. Characterization of the human heart mitochondrial proteome. Nat Biotechnol. 2003 21(3):281-6.
    2. Schirmer EC, Florens L, Guan T, Yates JR 3rd, Gerace L. Nuclear membrane proteins with potential disease links found by subtractive proteomics. Science. 2003 301(5638):1380-2.
    3. Cronshaw JM, Krutchinsky AN, Zhang W, Chait BT, Matunis MJ. Proteomic analysis of the mammalian nuclear pore complex. J Cell Biol. 2002 158(5):915-27.
    4. Andersen JS, Lam YW, Leung AK, Ong SE, Lyon CE, Lamond AI, Mann M. Nucleolar proteome dynamics. Nature. 2005 433(7021):77-83.
    5. Oh P, Li Y, Yu J, Durr E, Krasinska K M, Carver L A, Testa J E, Schnitzer J E. Subtractive proteomic mapping of the endothelial surface in lung and solid tumours for tissue-specific therapy. Nature, 2004, 429(6992):629~635
    6. Gilchrist A, Au CE, Hiding J, Bell AW, Fernandez-Rodriguez J, Lesimple S, Nagaya H, Roy L, Gosline SJ, Hallett M, Paiement J, Kearney RE, Nilsson T, Bergeron JJ. Quantitative proteomics analysis of the secretory pathway. Cell. 2006 127(6):1265-81.
    7. David J. Pagliarini, Steven A. Carr and Vamsi K. Mootha. A Mitochondrial Protein Compendium Elucidates Complex I Disease Biology. Cell. 2008 134(11):112-123.
    8. Skop AR, Liu H, Yates J 3rd, Meyer BJ, Heald R. Dissection of the mammalian midbody proteome reveals conserved cytokinesis mechanisms. Science. 2004 Jul 2; 305(5680):61-6.
    9. Stuart LM, Boulais J, Charriere GM, Hennessy EJ, Brunet S, Jutras I, Goyette G, Rondeau C, Letarte S, Huang H, Ye P, Morales F, Kocks C, Bader JS, Desjardins M, Ezekowitz RA. A systems biology analysis of the Drosophila phagosome. Nature. 2007 Jan 4; 445(7123):95-101.
    10. Andersen JS, Wilkinson CJ, Mayor T, Mortensen P, Nigg EA, Mann M. Proteomic characterization of the human centrosome by protein correlation profiling. Nature. 2003 426(6966): 570-574.
    11. Kislinger T, Cox B, Kannan A, Chung C, Hu P, Ignatchenko A, Scott MS, Gramolini AO, Morris Q, Hallett MT, Rossant J, Hughes TR, Frey B, Emili A. Global survey of organ and organelle protein expression in mouse: combined proteomic and transcriptomic profiling. Cell. 2006 125(1):173-86.
    12. Foster LJ, de Hoog CL, Zhang Y, Zhang Y, Xie X, Mootha VK, Mann M. A mammalian organelle map by protein correlation profiling. Cell. 2006 125(1): 187-199.
    13. Hinsby AM, Kiemer L, Karlberg EO, Lage K, Fausboll A, Juncker AS, Andersen JS, Mann M, Brunak S. A wiring of the human nucleolus. Mol Cell. 2006 22(2):285-95.
    14. Joyce AR, Palsson BO. The model organism as a system: integrating 'omics' data sets. Nat Rev Mol Cell Biol. 2006 7(3):198-210.
    15. Bernal A, Ear U, Kyrpides N. The genomes on line database (GOLD) v.2: a monitor of genome projects worldwide. Nucleic Acids Res. 2001 Jan 1; 29(1):126-7.
    16. Edgar R, Domrachev M, Lash AE. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 2002 Jan 1; 30(1):207-10.
    17. Lopez F, Textoris J, Bergon A, Didier G, Remy E, Granjeaud S, Imbert J, Nguyen C, Puthier D. Transcriptome Browser: a powerful and flexible toolbox to explore productively the transcriptional landscape of the Gene Expression Omnibus database. PLoS ONE. 2008; 3(12):e4001.
    18. Prince JT, Carlson MW, Wang R, Lu P, Marcotte EM. The need for a public proteomics repository. Nat Biotechnol. 2004 Apr; 22(4):471-2.
    19. Huh WK, Falvo JV, Gerke LC, Carroll AS, Howson RW, Weissman JS, O'Shea EK. Global analysis ofprotein localization in budding yeast. Nature. 2003 Oct 16; 425(6959):686-91.
    20. Schmelzer K, Fahy E, Subramaniam S, Dennis EA. The lipid maps initiative in lipidomics. Methods Enzymol. 2007; 432:171-83.
    21. Bader GD, Betel D, Hogue CW. BIND: the Biomolecular Interaction Network Database. Nucleic Acids Res. 2003 Jan 1; 31(1):248-50.
    22. Lehne B, Schlitt T. Protein-protein interaction databases: keeping up with growing interactomes. Hum Genomics. 2009 Apr; 3(3):291-7.
    23. Dykxhoorn DM, Lieberman J. The silent revolution: RNA interference as basic biology, research tool, and therapeutic. Annu Rev Med. 2005; 56:401-23.
    24. Tong AH, Lesage G, Bader GD, Ding H, Xu H, Xin X, Young J, Berriz GF, Brost RL, Chang M, Chen Y, Cheng X, Chua G, Friesen H, Goldberg DS, Haynes J, Humphries C, He G, Hussein S, Ke L, Krogan N, Li Z, Levinson JN, Lu H, Ménard P, Munyana C, Parsons AB, Ryan O, Tonikian R, Roberts T, Sdicu AM, Shapiro J, Sheikh B, Suter B, Wong SL, Zhang LV, Zhu H, Burd CG, Munro S, Sander C, Rine J, Greenblatt J, Peter M, Bretscher A, Bell G, Roth FP, Brown GW, Andrews B, Bussey H, Boone C. Global mapping of the yeast genetic interaction network. Science. 2004 Feb 6; 303(5659):808-13.
    25. Covert MW, Knight EM, Reed JL, Herrgard MJ, Palsson BO. Integrating high-throughput and computational data elucidates bacterial networks. Nature. 2004 May 6; 429(6987):92-6.
    26. Haugen AC, Kelley R, Collins JB, Tucker CJ, Deng C, Afshari CA, Brown JM, Ideker T, Van Houten B. Integrating phenotypic and expression profiles to map arsenic-response networks. Genome Biol. 2004; 5(12):R95.
    27. Kim JK, Gabel HW, Kamath RS, Tewari M, Pasquinelli A, Rual JF, Kennedy S, Dybbs M, Bertin N, Kaplan JM, Vidal M, Ruvkun G. Functional genomic analysis of RNA interference in C. elegans. Science. 2005 May 20; 308(5725):1164-7.
    28. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003 Nov; 13(11):2498-504.
    29. Neubauer G, King A, Rappsilber J, Calvio C, Watson M, Ajuh P, Sleeman J, Lamond A, Mann M. Mass spectrometry and EST-database searching allows characterization of the multi-protein spliceosome complex. Nat Genet. 1998 Sep; 20(1):46-50.
    30. Küster B, Mortensen P, Andersen JS, Mann M. Mass spectrometry allows direct identification of proteins in large genomes. Proteomics. 2001 May; 1(5):641-50.
    31. Fermin D, Allen BB, Blackwell TW, Menon R, Adamski M, Xu Y, Ulintz P, Omenn GS, States DJ. Novel gene and gene model detection using a whole genome open reading frame analysis in proteomics. Genome Biol. 2006; 7(4):R35.
    32. States DJ, Omenn GS, Blackwell TW, Fermin D, Eng J, Speicher DW, Hanash SM. Challenges in deriving high-confidence protein identifications from data gathered by a HUPO plasma proteome collaborative study. Nat Biotechnol. 2006 Mar; 24(3):333-8.
    33. Baerenfaller K, Grossmann J, Grobei MA, Hull R, Hirsch-Hoffmann M, Yalovsky S, Zimmermann P, Grossniklaus U, Gruissem W, Baginsky S. Genome-scale proteomics reveals Arabidopsis thaliana gene models and proteome dynamics. Science. 2008 May 16; 320(5878):938-41.
    34. Zheng J, Gao X, Beretta L, He F. The Human Liver Proteome Project (HLPP) workshop during the 4th HUPO World Congress. Proteomics. 2006 6(6):1716-1718.
    1. Fleischer S. Kervina M. Subcellular fractionation of rat liver. Methods Enzymol. Methods Enzymol. 1974 31:6-41.
    2. Meistrich ML, Eng VW. Separation of nuclei of mouse testis cells by sedimentation velocity. Exp Cell Res. 1972 70(1):237-242.
    3. Wilkin GP, Reijnierse GL, Johnson AL, Balazs R. Subcellular fractionation of rat cerebellum: separation of synaptosomal populations and heterogeneity of mitochondria. Brain Res. 1979 164:153-163
    4. van Os CH, de Jonge HR, de Jong MD, Ghijsen WE, Walters JA. Separation of basolateral plasma membranes from smooth endoplasmic reticulum of the rat enterocyte by zonal electrophoresis on density gradients. Biochim Biophys Acta. 1980 600(3):730-738.
    5. Croze EM, Morre DJ. Isolation of plasma membrane, Golgi apparatus, and endoplasmic reticulum fractions from single homogenates of mouse liver. J Cell Physiol. 1984 Apr; 119(1): 46-57.
    6. Pasquali C, Fialka I, Huber LA. Subcellular fractionation, electromigration analysis and mapping of organelles. J Chromatogr B Biomed Sci Appl. 1999 Feb 5; 722(1-2): 89-102.
    7. Hoffmann K, Blaudszun J, Brunken C, Hopker WW, Tauber R, Steinhart H. New application of a subcellular fractionation method to kidney and testis for the determination of conjugated linoleic acid in selected cell organelles of healthy and cancerous human tissues. Anal Bioanal Chem. 2005 Mar; 381(6): 1138-44.
    8. Fleischer S, Kervina M. Long-term preservation of liver for subcellular fractionation, Methods Enzymol. 1974; 31, 3-6.
    1. Guda C. pTARGET: a web server for predicting protein subcellular localization. Nucleic Acids Res. 2006 Jul 1; 34(Web Server issue):W210-3.
    2. Lu Z, Szafron D, Greiner R, Lu P, Wishart DS, Poulin B, Anvik J, Macdonell C, Eisner R. Predicting subcellular localization of proteins using machine-learned classifiers. Bioinformatics. 2004 Mar 1; 20(4):547-56.
    3. Horton P, Park KJ, Obayashi T, Fujita N, Harada H, Adams-Collier CJ, Nakai K. WoLF PSORT: protein localization predictor. Nucleic Acids Res. 2007 Jul 1; 35(Web Server issue):W585-7.
    4. Olof Emanuelsson, Henrik Nielsen, S?ren Brunak and Gunnar von Heijne. Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J. Mol. Biol., 300: 1005-1016, 2000.
    5. Hawkins J, Davis L, Bodén M.Predicting nuclear localization. J Proteome Res. 2007 Apr; 6(4):1402-9.
    6. Boeckmann B, Bairoch A, Apweiler R, Blatter MC, Estreicher A, Gasteiger E, Martin MJ, Michoud K, O'Donovan C, Phan I, Pilbout S, Schneider M. The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Res. 2003 Jan 1;31(1):365-70.
    7. H?glund A, D?nnes P, Blum T, Adolph HW, Kohlbacher O. MultiLoc: prediction of protein subcellular localization using N-terminal targeting sequences, sequence motifs and amino acid composition. Bioinformatics. 2006 May 15; 22(10):1158-65.
    8. M. Scott, G. Lu, M. Hallett, D. Y. Thomas, The Hera database and its use in the characterization of endoplasmic reticulum proteins. Bioinformatics. 2004 20(6): 937–944
    9. J. Lynn Fink, Rajith N. Aturaliya Melissa J. Davis, Fasheng Zhang, Kelly Hanson, Melvena S. Teasdale, Chikatoshi Kai, Jun Kawai, Piero Carninci, Yoshihide Hayashizaki, Rohan D. Teasdale. LOCATE: a mouse protein subcellular localization database. Nucleic Acids Research. 2006 34: 213–217
    10. Foster LJ, de Hoog CL, Zhang Y, Zhang Y, Xie X, Mootha VK, Mann M.A mammalian organelle map by protein correlation profiling. Cell. 2006 Apr 7; 125(1):187-99.
    11. Huang Y, Li YD. Prediction of protein sub-cellular locations using fuzzy k-NN method. Bioinformatics. 2004 20(1): 21–28.
    12. Nielsen, H., Engelbrecht, J., Brunak, S., and von Heijne, G. Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng. 1997 10: 1–6.
    13. Nesvizhskii AI, Aebersold R.Interpretation of shotgun proteomic data: the protein inference problem. Mol Cell Proteomics. 2005 Oct; 4(10):1419-40.
    14. Kislinger T, Cox B, Kannan A, Chung C, Hu P, Ignatchenko A, Scott MS, Gramolini AO, Morris Q, Hallett MT, Rossant J, Hughes TR, Frey B, Emili A. Global survey of organ and organelle protein expression in mouse: combined proteomic and transcriptomic profiling. Cell. 2006, 125(1):173-86.
    15.薛晓芳,吴松锋,朱云平,贺福初.用EM算法改进鸟枪法蛋白质鉴定中的无标记定量方法分析化学2007, 35(1):19-24
    16. Scott MS, Calafell SJ, Thomas DY, Hallett MT. Refining protein subcellular localization. PLoS Comput Biol. 2005 Nov; 1(6):e66.
    17. Chou KC, Shen HB. Cell-PLoc: a package of Web servers for predicting subcellular localization of proteins in various organisms. Nat Protoc. 2008; 3(2):153-62.
    18. Sharan R, Ulitsky I, Shamir R. Network-based prediction of protein function. Mol Syst Biol. 2007 3:88.
    19. Smith DK, Xue H. Sequence profiles of immunoglobulin and immunoglobulin-like domains. J Mol Biol. 1997 Dec 12; 274(4):530-45.
    20. Harpaz Y, Chothia C.Many of the immunoglobulin superfamily domains in cell adhesionmolecules and surface receptors belong to a new structural set which is close to that containing variable domains. J Mol Biol. 1994 May 13; 238(4):528-39.
    21. Hu P, Janga SC, Babu M, Díaz-Mejía JJ, Butland G, Yang W, Pogoutse O, Guo X, Phanse S, Wong P, Chandran S, Christopoulos C, Nazarians-Armavil A, Nasseri NK, Musso G, Ali M, Nazemof N, Eroukova V, Golshani A, Paccanaro A, Greenblatt JF, Moreno-Hagelsieb G, Emili A.Global functional atlas of Escherichia coli encompassing previously uncharacterized proteins.PLoS Biol. 2009 Apr 28; 7(4):e96.
    22. Sickmann A, Reinders J, Wagner Y, et al. The proteome of Saccharomyces cerevisiae mitochondria. PNAS. 2003; 100 (23): 13207-13212.
    23. Holger Prokisch, Curt Scharfe, David G. Camp, et al. Integrative Analysis of the Mitochondrial Proteome in Yeast. PLoS Biology. 2004; 2 (6): 0795-0804.
    24. Brunner E, Ahrens CH, Mohanty S, Baetschmann H, Loevenich S, Potthast F, Deutsch EW, Panse C, de Lichtenberg U, Rinner O, Lee H, Pedrioli PG, Malmstrom J, Koehler K, Schrimpf S, Krijgsveld J, Kregenow F, Heck AJ, Hafen E, Schlapbach R, Aebersold R. A high-quality catalog of the Drosophila melanogaster proteome. Nat Biotechnol. 2007 May; 25(5):576-83.
    25. Baerenfaller K, Grossmann J, Grobei MA, Hull R, Hirsch-Hoffmann M, Yalovsky S, Zimmermann P, Grossniklaus U, Gruissem W, Baginsky S. Genome-scale proteomics reveals Arabidopsis thaliana gene models and proteome dynamics. Science. 2008 May 16; 320(5878):938-41.
    26. Mootha VK, Bunkenborg J, Olsen JV. Integrated analysis of protein composition, tissue diversity, and gene regulation in mouse mitochondria. Cell. 2003 Nov 26; 115(5): 629-640.
    27. Foster LJ, de Hoog CL, Zhang Y, Zhang Y, Xie X. Mootha VK, Mann M. A mammalian organelle map by protein correlation profiling. Cell. 2006 Apr 7; 125(1): 187-199.
    28. Kislinger T, Cox B, Kannan A, Chung C, Hu P, Ignatchenko A, Scott MS, Gramolini AO, Morris Q, Hallett MT, Rossant J, Hughes TR, Frey B, Emili A. Global survey of organ and organelle protein expression in mouse: combined proteomic and transcriptomic profiling. Cell. 2006 125(1):173-86.
    29. Taylor SW, Fahy E, Zhang B, et al. Characterization of the human heart mitochondrial proteome. Nature Biotechnol.21: 281-286.
    30. Omenn GS, States DJ, Adamski M, Blackwell TW, Menon R, Hermjakob H, Apweiler R, Haab BB, Simpson RJ, Eddes JS, Kapp EA, Moritz RL, Chan DW, Rai AJ, Admon A, Aebersold R, Eng J, Hancock WS, Hefta SA, Meyer H, Paik YK, Yoo JS, Ping P, Pounds J, Adkins J, Qian X, Wang R, Wasinger V, Wu CY, Zhao X, Zeng R, Archakov A, Tsugita A, Beer I, Pandey A, Pisano M, Andrews P, Tammen H, Speicher DW, Hanash SM. Overview of the HUPO Plasma Proteome Project: results from the pilot phase with 35 collaborating laboratories and multiple analytical groups, generating a core dataset of 3020 proteins and a publicly-available database. Proteomics. 2005 Aug; 5(13):3226-45.
    31. Yi EC, Marelli M, Lee H, Purvine SO, Aebersold R, Aitchison JD, Goodlett. DR. Approaching complete peroxisome characterization by gas-phase fractionation. Electrophoresis. 2002 Sep; 23(18):3205-16.
    32. Liu H, Sadygov RG, Yates JR 3rd. A model for random sampling and estimation of relative protein abundance in shotgun proteomics. Anal Chem. 2004 6(14):4193-201.
    33. Schmidt A, Gehlenborg N, Bodenmiller B, Mueller LN, Campbell D, Mueller M, Aebersold R, Domon B.An Integrated, Directed Mass Spectrometric Approach for In-depth Characterization of Complex Peptide Mixtures. Mol Cell Proteomics. 2008 Nov; 7(11):2138-50.
    34. Kuster B, Schirle M, Mallick P, Aebersold R. Scoring proteomes with proteotypic peptide probes. Nat Rev Mol Cell Biol. 2005 Jul; 6(7):577-83. Review.
    35. Mallick P, Schirle M, Chen SS, Flory MR, Lee H, Martin D, Ranish J, Raught B, Schmitt R, Werner T, Kuster B, Aebersold R. Computational prediction of proteotypic peptides for quantitative proteomics. NatBiotechnol. 2007 Jan; 25(1):125-31.
    36. Huh WK, Falvo JV, Gerke LC, Carroll AS, Howson RW, Weissman JS, O'Shea EK. Global analysis of protein localization in budding yeast. Nature. 2003 Oct 16; 425(6959):686-91.
    37. Kislinger T, Cox B, Kannan A, Chung C, Hu P, Ignatchenko A, Scott MS, Gramolini AO, Morris Q, Hallett MT, Rossant J, Hughes TR, Frey B, Emili A. Global survey of organ and organelle protein expression in mouse: combined proteomic and transcriptomic profiling. Cell. 2006 125(1):173-86.
    38. Agaton C, Galli J, H?idén Guthenberg I, Janzon L, Hansson M, Asplund A, Brundell E, Lindberg S, Ruthberg I, Wester K, Wurtz D, H??g C, Lundeberg J, St?hl S, Pontén F, Uhlén M. Affinity proteomics for systematic protein profiling of chromosome 21 gene products in human tissues. Mol Cell Proteomics. 2003 Jun; 2(6):405-14.
    39. Schirmer EC, Florens L, Guan T, Yates JR 3rd, Gerace L. Nuclear membrane proteins with potential disease links found by subtractive proteomics. Science. 2003 Sep 5; 301(5638): 1380-1382.
    40. Andersen JS, Wilkinson CJ, Mayor T, Mortensen P, Nigg EA, Mann M. Proteomic characterization of the human centrosome by protein correlation profiling. Nature. 2003 426(6966): 570-57
    1. Snel B, Lehmann G, Bork P, Huynen MA.STRING: a web-server to retrieve and display the repeatedly occurring neighbourhood of a gene. Nucleic Acids Res. 2000 Sep 15; 28(18):3442-4.
    2. Bader GD, Hogue CW.An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics. 2003 Jan 13; 4:2.
    3. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003 Nov; 13(11):2498-504.
    4. Maere S, Heymans K, Kuiper M. BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics. 2005 Aug 15; 21(16):3448-9.
    5. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet. 2000 May; 25(1):25-9.
    6. Ogata H, Goto S, Sato K, Fujibuchi W, Bono H, Kanehisa M. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 1999 Jan 1; 27(1):29-34.
    7. Brandt U. Energy converting NADH: quinone oxidoreductase (complex I). Annu Rev Biochem. 2006; 75:69-92.
    8. Pagliarini DJ, Calvo SE, Chang B, Sheth SA, Vafai SB, Ong SE, Walford GA, Sugiana C, Boneh A, Chen WK, Hill DE, Vidal M, Evans JG, Thorburn DR, Carr SA, Mootha VK. A mitochondrial protein compendium elucidates complex I disease biology. Cell. 2008 Jul 11; 134(1):112-23.
    9. Yahalom A, Kim TH, Roy B, Singer R, von Arnim AG, Chamovitz DA.Arabidopsis eIF3e is regulated by the COP9 signalosome and has an impact on development and protein translation. Plant J. 2008 Jan; 53(2):300-11.
    10. Bernal A, Ear U, Kyrpides N. The genomes on line database (GOLD) v.2: a monitor of genome projects worldwide. Nucleic Acids Res. 2001 Jan 1; 29(1):126-7.
    11. Edgar R, Domrachev M, Lash AE. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 2002 Jan 1; 30(1):207-10.
    12. Lopez F, Textoris J, Bergon A, Didier G, Remy E, Granjeaud S, Imbert J, Nguyen C, Puthier D. Transcriptome Browser: a powerful and flexible toolbox to explore productively the transcriptional landscape of the Gene Expression Omnibus database. PLoS ONE. 2008; 3(12):e4001.
    13. Griffin, J. L. & Bollard, M. E. Metabonomics: its potential as a tool in toxicology for safety assessment and data integration. Curr. Drug Metab. 2004; 5, 389–398.
    14. Bader GD, Betel D, Hogue CW. BIND: the Biomolecular Interaction Network Database. Nucleic Acids Res. 2003 Jan 1; 31(1):248-50.
    15. Lehne B, Schlitt T. Protein-protein interaction databases: keeping up with growing interactomes. Hum Genomics. 2009 Apr; 3(3):291-7.
    16. Dykxhoorn DM, Lieberman J. The silent revolution: RNA interference as basic biology, research tool, and therapeutic. Annu Rev Med. 2005; 56:401-23.
    17. Foster LJ, de Hoog CL, Zhang Y, Zhang Y, Xie X, Mootha VK, Mann M. A mammalian organelle map by protein correlation profiling. Cell. 2006 125(1): 187-199.
    18. Hinsby AM, Kiemer L, Karlberg EO, Lage K, Fausboll A, Juncker AS, Andersen JS, Mann M, Brunak S. A wiring of the human nucleolus. Mol Cell. 2006 22(2):285-95.
    19. Andersen JS, Lam YW, Leung AK, Ong SE, Lyon CE, Lamond AI, Mann M. Nucleolar proteomedynamics. Nature. 2005 Jan 6; 433(7021):77-83.
    20. Tong AH, Lesage G, Bader GD, Ding H, Xu H, Xin X, Young J, Berriz GF, Brost RL, Chang M, Chen Y, Cheng X, Chua G, Friesen H, Goldberg DS, Haynes J, Humphries C, He G, Hussein S, Ke L, Krogan N, Li Z, Levinson JN, Lu H, Ménard P, Munyana C, Parsons AB, Ryan O, Tonikian R, Roberts T, Sdicu AM, Shapiro J, Sheikh B, Suter B, Wong SL, Zhang LV, Zhu H, Burd CG, Munro S, Sander C, Rine J, Greenblatt J, Peter M, Bretscher A, Bell G, Roth FP, Brown GW, Andrews B, Bussey H, Boone C. Global mapping of the yeast genetic interaction network. Science. 2004 Feb 6; 303(5659):808-13.
    21. Covert MW, Knight EM, Reed JL, Herrgard MJ, Palsson BO. Integrating high-throughput and computational data elucidates bacterial networks. Nature. 2004 May 6; 429(6987):92-6.
    22. Haugen AC, Kelley R, Collins JB, Tucker CJ, Deng C, Afshari CA, Brown JM, Ideker T, Van Houten B. Integrating phenotypic and expression profiles to map arsenic-response networks. Genome Biol. 2004; 5(12):R95.
    23. Perocchi F, Jensen LJ, Gagneur J, Ahting U, von Mering C, Bork P, Prokisch H, Steinmetz LM. Assessing systems properties of yeast mitochondria through an interaction map of the organelle. PLoS Genet. 2006 Oct 20; 2(10):e170.
    24. Kim JK, Gabel HW, Kamath RS, Tewari M, Pasquinelli A, Rual JF, Kennedy S, Dybbs M, Bertin N, Kaplan JM, Vidal M, Ruvkun G. Functional genomic analysis of RNA interference in C. elegans. Science. 2005 May 20; 308(5725):1164-7.
    25. Joyce AR, Palsson B?. The model organism as a system: integrating 'omics' data sets. Nat Rev Mol Cell Biol. 2006 Mar; 7(3):198-210.
    1. Baerenfaller K, Grossmann J, Grobei MA, Hull R, Hirsch-Hoffmann M, Yalovsky S, Zimmermann P, Grossniklaus U, Gruissem W, Baginsky S. Genome-scale proteomics reveals Arabidopsis thaliana gene models and proteome dynamics. Science. 2008 May 16; 320(5878):938-41.
    2. Edwards NJ. Novel peptide identification from tandem mass spectra using ESTs and sequence database compression. Mol Syst Biol. 2007; 3:102.
    3. Robertson Craig and Ronald C. Beavis. TANDEM: matching proteins with mass spectra. Bioinformatics, 2004, 20, 1466-7.
    4. Spudich G, Fernández-Suárez XM, Birney E. Genome browsing with Ensembl: a practical overview. Brief Funct Genomic Proteomic. 2007 Sep; 6(3):202-19.
    5. Neubauer G, King A, Rappsilber J, Calvio C, Watson M, Ajuh P, Sleeman J, Lamond A, Mann M. Mass spectrometry and EST-database searching allows characterization of the multi-protein spliceosome complex. Nat Genet. 1998 Sep; 20(1):46-50.
    6. Schrimpf SP, Weiss M, Reiter L, Ahrens CH, Jovanovic M, Malmstr?m J, Brunner E, Mohanty S, Lercher MJ, Hunziker PE, Aebersold R, von Mering C, Hengartner MO. Comparative functional analysis of the Caenorhabditis elegans and Drosophila melanogaster proteomes. PLoS Biol. 2009 Mar 3; 7(3):e48.
    7. Castellana NE, Payne SH, Shen Z, Stanke M, Bafna V, Briggs SP. Discovery and revision of Arabidopsis genes by proteogenomics. Proc Natl Acad Sci U S A. 2008 Dec 30; 105(52):21034-8.
    8. Kalume DE, Peri S, Reddy R, Zhong J, Okulate M, Kumar N, Pandey A. Genome annotation of Anopheles gambiae using mass spectrometry-derived data. BMC Genomics. 2005 Sep 19; 6:128.
    9. Wright JC, Sugden D, Francis-McIntyre S, Riba-Garcia I, Gaskell SJ, Grigoriev IV, Baker SE, Beynon RJ, Hubbard SJ. Exploiting proteomic data for genome annotation and gene model validation in Aspergillus niger. BMC Genomics. 2009 Feb 4; 10:61.
    10. Chen W, Laidig KE, Park Y, Park K, Yates JR 3rd, Lamont RJ, Hackett M. Searching the Porphyromonas gingivalis genome with peptide fragmentation mass spectra. Analyst. 2001 Jan;126(1):52-7
    11. Arthur JW, Wilkins MR. Using proteomics to mine genome sequences. J Proteome Res. 2004 May-Jun; 3(3):393-402.
    12. High accuracy mass spectrometry analysis as a tool to verify and improve gene annotation using Mycobacterium tuberculosis as an example.de Souza GA, M?len H, S?fteland T, Saelensminde G, Prasad S, Jonassen I, Wiker HG.BMC Genomics. 2008 Jul 2; 9:316.
    13. Küster B, Mortensen P, Andersen JS, Mann M. Mass spectrometry allows direct identification of proteins in large genomes. Proteomics. 2001 May; 1(5):641-50.
    14. Fermin D, Allen BB, Blackwell TW, Menon R, Adamski M, Xu Y, Ulintz P, Omenn GS, States DJ. Novel gene and gene model detection using a whole genome open reading frame analysis in proteomics. Genome Biol. 2006; 7(4):R35.
    15. States DJ, Omenn GS, Blackwell TW, Fermin D, Eng J, Speicher DW, Hanash SM. Challenges in deriving high-confidence protein identifications from data gathered by a HUPO plasma proteome collaborative study. Nat Biotechnol. 2006 Mar; 24(3):333-8.
    16. Tanner S, Shen Z, Ng J, Florea L, GuigóR, Briggs SP, Bafna V. Improving gene annotation using peptide mass spectrometry. Genome Res. 2007 Feb; 17(2):231-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700