用户名: 密码: 验证码:
黄海中华哲水蚤繁殖、种群补充与生活史研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中华哲水蚤是黄、东海浮游动物关键种,连接初级生产与较高营养级,在海洋生态系统中占据核心地位。在以往研究基础上,依据2006年3月至2007年8月黄海9个航次、胶州湾11个航次现场调查数据以及大量室内实验数据,本文研究了中华哲水蚤的繁殖、种群补充以及油脂积累的季节变化,期望初步阐明中华哲水蚤在黄海的种群动态及驱动因素、并构建其生活史概念模型。
     3、4月份,黄海与胶州湾中华哲水蚤的生殖腺普遍发育成熟、产卵率较高,中华哲水蚤种群进入繁殖、种群补充的活跃期,恰好可以利用此时较好的食物条件。5、6月份,中华哲水蚤在黄海近岸海区仍表现出较高的产卵率,而陆架海区的中华哲水蚤生殖腺成熟度、产卵率逐渐降低,种群逐渐表现出度夏特征—C5占优势、积累大量脂类。整个夏季,中华哲水蚤的繁殖率、种群补充率在整个黄海都较低,尤其在黄海冷水团区:中华哲水蚤生殖腺停滞于未成熟的GS1-GS2期,产卵率为零。10月,中华哲水蚤在冷水团边缘潮汐锋区的繁殖、种群补充活跃,或许可以解释秋、冬季近岸种群的恢复。11月之后,随着垂直混合的加强,黄海冷水团逐渐消失,此时陆架区的中华哲水蚤种群结束度夏过程,并以较低的繁殖率进行种群补充,直到次年3、4月份食物环境转好,中华哲水蚤种群出现新一轮繁殖、补充高峰。本文依据中华哲水蚤雌体密度、产卵率、孵化率等计算了中华哲水蚤的种群潜在补充率,我们发现,陆架区种群仅在3、4月份出现较强补充以及冬季的微弱补充,而近岸海区除夏季外,于各个季节均可进行比较活跃的种群补充,其中春季种群补充规模、强度最大;整体来看,春季是黄海中华哲水蚤种群补充的最重要时期。
     本文详细研究了中华哲水蚤的繁殖与各种环境、雌体自身因素之间的关系:1、统计结果表明,中华哲水蚤的产卵率与海区食物条件(浮游植物生物量、纤毛虫丰度)之间具有紧密联系,而与油囊体积无关;在饥饿培养条件下,中华哲水蚤只能维持3-6天的产卵,而添加食物2-7天内,即可逐渐恢复产卵;体内积累油脂在饥饿过程中有所消耗,不过仍然不能阻止产卵率的下降;这些结果表明中华哲水蚤繁殖的能量所需主要来自于近期摄食,而体内储存脂类可能主要用于代谢所需,是应对不利条件的一种能量缓冲。2、统计分析表明:产卵率与雌体前体长间具有一定的正相关性,这可能由于体长较长的雌体往往具有较高的怀卵量;产卵率与温度之间没有显著的统计关系,温度可能通过调节中华哲水蚤的代谢率、体长等间接影响到产卵率。3、值得一提的是,本文发现中华哲水蚤的产卵率与其生殖腺成熟度之间具有非常紧密的统计关系,这为通过保存样品估算产卵率以及长期历史样品、数据间的比较提供了可能。
     春季硅藻水华是黄海及其邻近海域的重要季节性特征。本文针对硅藻水华与中华哲水蚤繁殖的关系进行了多次现场研究,我们发现,硅藻水华因其发生海区、硅藻优势种类不同而对中华哲水蚤繁殖具有复杂多样的影响。2006年3月,胶州湾东部海区发生中肋骨条藻(Skeletonema costatum)水华,中华哲水蚤的产卵率显著增高,但其孵化率相对较低(50%左右);2007年2月,胶州湾东部发生环纹劳德藻(Landeria annulata)水华,中华哲水蚤卵的孵化率在各种处理下均接近100%;2006年4月,黄海东北部发生太平洋海链藻(Thalassiosira pacifica)水华,产卵率与孵化率均处于调查海区的中等水平;2007年4月,黄海中部海区发生中肋骨条藻水华,中华哲水蚤在此次调查海区平均产卵率高达27.8卵/雌体/天,远远高于以往同时期的调查结果,孵化率、幼体存活率也普遍较高;此次硅藻水华对于黄海陆架区中华哲水蚤的种群补充具有积极的促进作用。综上,硅藻水华对中华哲水蚤繁殖的影响表现出种类、海区特异性,其具体机理仍需进一步研究。
     本文研究了黄海中华哲水蚤C5期油脂积累的区域、季节变化,并探讨了油脂积累对中华哲水蚤的生理、生活史的可能作用。黄海近岸区的C5期油囊体积常年较小,而陆架区则表现出明显的季节差异。在陆架区,C5期是中华哲水蚤度夏种群的主要组成部分,其油囊体积与度夏过程有密切联系:最大油囊体积(可占前体部体积的30%以上)出现于度夏准备期(5、6月),随着度夏过程的进行,油囊体积因代谢而不断消耗,至12月时,油囊体积降低到与近岸种群无异。次年4月以后,油脂积累可能随食物条件转好而再次开始积累。我们认为黄海中华哲水蚤所积累油脂除了可以为休眠提供能量以克服较长时期食物缺乏之外,还可能是休眠的诱导因素,对其生活史具有重要意义。
     黄海近岸海区与陆架海区在水团特征、中华哲水蚤种群丰度与结构、繁殖特征、种群补充、油脂储存策略等方面具有显著差异,因此,本文分别讨论了这两个区域中华哲水蚤的生活史。黄海陆架海区中华哲水蚤在全年共有4-5个世代:11月末,中华哲水蚤结束度夏过程,种群中占优势的C5期个体开始蜕皮为成体、逐渐成熟、繁殖,由此产下的子代可称之为G0,此世代在食物条件较差的冬季发育成熟后可以产下G1;G1于3月初发育成熟,恰逢春季较好的食物条件,于是在3月初-5月中旬很可能发育G2、G3两个世代;假若陆架区食物环境适宜,5月中旬后很可能产生新的世代—G4;G3与G4两个世代的混合种群共同进入度夏过程,期间,一小部分C5蜕皮为成体,大部分C5保持滞育状态;至12月冷水团消退后,G3、G4世代C5蜕皮、成熟,开始新的生活周期。中华哲水蚤生殖腺成熟度、油囊体积的季节变化与上述概念模型具有较好的对应关系,另外,这两个参数简单易用、对环境变化敏感,可以尝试应用于气候变化与桡足类关系等长期研究中。
     以往的研究更多的关注于黄海陆架区的中华哲水蚤种群,对近岸种群的关注较少,本文初步探讨了近岸种群的种群补充、世代情况。相对于陆架区,黄海近岸区中华哲水蚤的生活史更为复杂,区域差异较大。近岸海区中华哲水蚤产卵率、种群周转率较高;同时,近岸海区是多种鱼类的产卵场、索饵场,该区域的各营养级间的能量流动对黄海海洋生态系统的结构功能至关重要。因此,在将来的研究中,近岸海区中华哲水蚤种群的生态学、生活史应该受到同样的重视。
As the key zooplankton species of the Yellow Sea and East China Sea,Calanus sinicus links the primary production to the higher trophic levels, occupying the central position of the marine ecosystem. Base on the 9 cruises in the Yellow Sea and 11 cruises in the Jiaozhou Bay during March 2006 to August 2007 and several experiments in laboratory, we studied the seasonal variations of the reproduction, population recruitment and oil storage in C. sinicus, hoping to illustrate the population dynamics, clarify the driving factors and construct the conceptual model of its life history.
     In March-April, C. sinicus showed relatively high gonad maturity and fecundity, and active population recruitment over the Yellow Sea, matching the favorable food and temperature conditions. While the fecundities were still high in the nearshore areas, the population on the continental shelf of the Yellow Sea showed lower fecundity and some features in preparation for the over-summering in the Yellow Sea Cold Water Mass (YSCWM), such as the dominance of C5s and accumulation of lipids in the oil sac. During summer, both the reproduction and population recruitment were not successful in the Yellow Sea, especially in the YSCWM where the gonad development was arrested in the immature stages GS1-GS2 and no spawning was recorded. In October, the reproduction and recruitment in the tidal front areas were active, which might explain the recovery of the nearshore population in autumn-winter. After November, with the increasing of the vertical mixing, the YSCWM gradually disappeared. C. sinicus started to reproduce and recruit at very low rates until the next March-April when the active reproduction begins. Based on the fecundity, hatching success and female abundance, we calculated the potential population recruitment rate of C. sinicus. On the continental shelf, recruitment was restricted in March-April when active recruitment occurred and in winter when the recruitment was very low. In the nearshore areas, however, the population recruitment could occur in every season except for summer. In general, the spring recruitment was most important for C. sinicus population in the Yellow Sea.
     We studied the relationships between reproduction of C. sinicus and the possible influencing factors. The fecundity was closely related to the food conditions represented by the phytoplankton biomass and the ciliate abundance but not to the oil sac volume. Under starvation, the reproduction of C. sinicus could only sustain for 3-5 days, while it would recover spawning after a few days of food addition. The oil storage was consumed during starvation but could not prevent the decrease of egg production. Based on these results, we conclude that the energy for reproduction was mainly from the recent diet, but not from the inner lipid storage which might be a kind of energy buffer coping for the unfavorable conditions.
     Fecundity was positively related to the prosome length of females, which was possibly mediated by the relationship between prosome length and clutch size. There was no significant relationship between the fecundity and temperature, however, temperature could affect the egg production indirectly by influencing the metabolic rates and prosome length.
     It was worthy to note that there was close and significant relationship between the egg production rate of C. sinicus and its gonad maturity. This relationship might enable us to estimate the fecundity by examining the preserved samples and compare the difference in long term studies such as the climate change effect on copepods.
     Spring diatom bloom was a major seasonal feature in the Yellow Sea and the adjacent areas. Based on the results of several cruises, we found that the effects of diatom bloom on the reproduction of C. sinicus were complex. In March 2006, the diatom bloom consisted by Skeletonema costatum occurred in the eastern Jiaozhou Bay. During this bloom, the fecundity of C. sinicus was high but its hatching success was only ~50%. The diatom (Landeria annulata) bloom occurred in the same area of the Jiaozhou Bay in February 2007, during which time the hatching success was near 100%. In April 2006, the fecundity and hatching success were only moderate during a diatom bloom consisted by Thalassiosira pacifica. In April 2007, a diatom (Skeletonema costatum) bloom occurred in the central areas of the Yellow Sea. The average fecundity of C. sinicus was as high as 27.8 eggs/fem/day, which was much higher than the previous studies. Generally, the hatching success and nuapliar survival was also high. We conclude that this diatom bloom may stimulate the population recruitment for the population on the continental shelf of the Yellow Sea.
     We studied the regional and seasonal variations of the lipid accumulation in C. sinicus C5. The oil sac volume was generally small in the nearshore areas in the Yellow Sea. However, the seasonal variation of oil sac volume in the population on the continental shelf showed close match with over-summering. The maximum oil sac appeared in May-June when the population prepared for over-summering. Then the oil sac volume gradually decreased possibly consumed by the metabolic needs during the dormancy. In December, the oil storage decreased to the same level as the nearshore population. The oil accumulation restarts in next April when food conditions get better. Besides the energy source for the dormant population, the lipid storage might also provide a cue for the dormancy, which has critical importance during the life history of C. sinicus.
     Since there were distinct water masses, population abundance and structure, reproductive characteristics, population recruitment and the oil storage strategies in the nearshore areas and the continental shelf in the Yellow Sea, we discussed the life history in the two areas separately. The conceptual life history model of C. sinicus on the continental shelf was as follows. There were possibly 4-5 generations per year. In late December, the dominant C5 began molting and maturing. The offspring of this over-summering generation composed G0, which developed during the winter in food-poor environment and might produce G1 which could mature in March, when the food conditions began to turn better. During March-mid May, there were likely 2 new generations, G2 and G3. When the food environment favors, there would be a new generation G4 after mid-May. G3 and G4 were supposed to enter dormancy after June. It was likely that a small part of the C5s from the G3 and G4 would molt to be adults, while a great portion of the C5s remain under diapause until the termination of over-summering in December, when the C5s of G3 and G4 molted to adults and started the new generation. The gonad maturity and lipid storage could match this conceptual model very well and the 2 parameters showed sensitivity to the environment, so we conclude that the 2 parameters could be applied for the studies concerning the effect of climate change on population and life history.
     We also discussed the population recruitment patterns, possible generations and life histories of the nearshore population which had not been fully studied. Compared with the population on the continental shelf, the nearshore population had generally higher fecundities and turnover rate. Besides, the nearshore areas provided several spawning and feeding grounds, it was meaningful to fully understand the ecology and life history of the nearshore C. sinicus population in the future.
引文
Arnaud J, Brunet M, Mazza J (1982) Etude de l’ovogene`se chez Centropages typicus (Copepoda, Calanoida). Reproduction Nutrition De′velopment 22, 537–555.
    Azam F, Fenchel T, Field JG et al. (1983) The ecological role of water-column microbes in the sea. Mar Ecol Prog Ser 10:257-263
    Barnett TP, Pierce DW, Schnur R (2001) Detection of Anthropogenic Climate Change in the World's Oceans. Science 292: 270-274
    Bathmann U, Bundy MH, Clarke ME et al. (2001) Future marine zooplankton research–a perspective. Mar Ecol Prog Ser 222:297–308
    Bi Y, Zhao BR (1993) The numerical vertical structure simulation on the continental shelf front at southwest of the Yellow Sea. Mar Sci 6:61–63 (in Chinese).
    Bourdier GG, Amblard CA (1989) Lipids in Acanthodiaptomus denticornis during starvation and fed on three different algae. J Plankton Res 11:1201-1212
    Boyd PW, Doney SC (2003) The impact of climate change and feedback processes on the ocean carbon cycle. In Ocean Biogeochemistry (Fasham, M.J.R., ed.), pp. 157–193, Springer-Verlag
    Bunker AJ, Hirst AG (2004) Fecundity of marine planktonic copepods: global rates and patterns in relation to chlorophyll a, temperature and body weight. Mar Ecol Prog Ser 279:161–181
    Campbell RW, Head EJH (2000) Egg production rates of Calanus finmarchicus in the western North Atlantic: effects of gonad maturity, female size, chlorophyll concentration, and temperature. Can J Fish Aquat Sci 57:518–529
    Carotenuto Y, Ianora A, Buttino I et al. (2002) Is postembryonic development in the copeod Temora stylifera negatively affected by diatom diets? J Exp Mar Biol Ecol. 276: 49-66
    Castellani C, Altunba? Y (2006) Factors controlling the temporal dynamics of egg production in the copepod Temora longicornis. Mar Ecol Prog Ser 308:143–153
    Ceballos S,álvarez-Marqués F (2006) Seasonal dynamics of reproductive parameters of the calanoid copepods Calanus helgolandicus and Calanoides carinatus in theCantabrian Sea (SW Bay of Biscay). Prog Oceanogr 70:1–26
    Ceballos S, Cabal JA,álvarez-Marqués F (2004) Reproductive strategy of Calanoides carinatus and Calanus helgolandicus during a summer upwelling event off NW Spain. Mar Biol 145:739–750.
    Ceballos S, Ianora A (2003) Different diatoms induce contrasting effects on the reproductive success of the copepod Temora stylifera. J Exp Mar Bio Ecol. 294:188-202
    Dahms HU (1995) Dormancy in the Copepoda-an overview. Hydrobiologia 306:199-211
    David D (2008)Introduction to History of Copepodology (http://www.copepoda.uconn.edu/history2.htm)
    Duce R A, Roche JLa, Altieri K, (2008) Impacts of Atmospheric Anthropogenic Nitrogen on the Open Ocean. Science 320: 893-897
    Dürbaum J, Künnemann TD. (2000) Biology of Copepods: An Introduction. (http://www.uni-oldenburg.de/zoomorphology/Biologyintro.html)
    Durbin AG,Durbin EG(1992)Seasonal changes in size frequency distribution and estimated age in the marine copepod Acartia hudsortica during a winter-spring diatom bloom in Narragansett Bay. Liminol Oceangr 37(2):379-392
    Durbin, E. G., Runge, J. A., Campbell, R. G., Garrahan, P. R., Casas, M. C., and Plourde, S. 1997. Late fall–early winter recruitment of Calanus finmarchicus on Georges Bank. Marine Ecology Progress Series, 151: 103–114.
    Edwards M, Richardson A J. (2004) Impact of climate change on marine pelagic phenology and trophic mismatch. Nature 430:881–841
    Falk-Peterson S, Sagent JR, Tande KS (1987) Lipid composition of zooplankton in relation to the sub-Arctic food web. Polar Biol, 8:115-120
    Field, J.G. et al. (2002) Oceans 2020: Science, Trends, and the Challenge of Sustainability, Island Press
    Fiksen, ?. 2000. The adaptive timing of diapause—a search for evolutionarily robust strategies in Calanus finmarchicus. ICES Journal of Marine Science, 57: 1825–1833.
    Franks, P.J.S. (1992) Phytoplankton blooms at fronts-patterns, scales and physical forcing mechanisms. Rev. Aquat. Sci. 6:121–137.
    Fraser AJ, Sargent JR, Gamble JC et al. (1989) Formation and transfer of fatty acids in an enclosed marine food chain comprising phytoplankton, zooplankton and herring (Clupea harengus L.) larvae. Mar Chem 27: 1-18
    Frederiksen M, Edwards M, Richardson AJ, Halliday NC, Wanless S. (2006) From plankton to top predators: bottom-up control of a marine food web across four trophic levels. J Anim Ecol. 75(6):1259-68
    Fromentin J.-M. and B. Planque, (1996) Calanus and environment in the eastern North Atlantic. II. ... Mar. Ecol. Prog. Ser. 134:111–118
    Gislason A (2005) Seasonal and spatial variability in egg production and biomass of Calanus finmarchicus around Iceland. Mar Ecol Prog Ser 286:177–192
    Gislasson A,Asttorsson OS, Petursdottir H et al. (2000) Life cycle of Calanus finmarchicus south of Iceland in relation to hydrography and chlorophyll a. ICES J Mar Sci 57:1619-1627
    Greene CH, Pershing AJ. (2000) The response of Calanus finmarchicus populations to climate variability in the Northwest Atlantic: basin-scale forcing associated with the North Atlantic Oscillation. ICES J Mar Sci 57(6):1536-1544
    Halpern B S., Walbridge S, Selkoe KA. et al. (2008) A Global Map of Human Impact on Marine Ecosystems Science 319: 948-952
    Halsband-Lenk C, Pierson JJ, Leising AW (2005) Reproduction of Pseudocalanus newmani (Copepoda: Calanoida) is deleteriously affected by diatom blooms-a field study. Prog Oceanogr 67:332–348
    Harris RP (1994) Zooplankton grazing on the coccolithophore Emiliania huxleyi and its role in inorganic carbon flux. Mar Biol 119(3):431-439
    Harris RP, Weibe PH, Lenz J, Skjoldal HR, Huntley M (ed.) 2000 ICES zooplankton methodology manual. Academic Press, London, United Kingdom.
    Hassett RP (2006) Physiological characteristics of lipid-rich‘‘fat’’and lipid-poor ‘‘thin’’morphotypes of individual Calanus finmarchicus C5 copepodites in nearshore Gulf of Maine. Limnol. Oceanogr., 51(2): 997–1003
    Hays GS, Richardson AJ, Robinson C (2005) Climate change and marine plankton. Trends Ecol Evol 6:337-344
    Heath M.R.,Rasmussen J.,Ahmed Y.(2008)Spatial demography of Calanus finmarchicus in the Irminger Sea. Prog Oceanogr 76:39–88
    Hind A, Gurney WSC, Heath M, Bryant AD(2000)Overwintering strategies in Calanus finmarchicus. 193:95-107
    Hirche HJ (1990) Egg production of Calanus finmarchicus at low temperature. Mar Biol 106:53-58
    Hirche HJ (1996a) The reproductive biology of the marine copepod, Calanus finmarchicus-a review. Ophelia 44: 111-128
    Hirche HJ (1996b) Diapause in the marine copepod, Calanus finmarchicus-a review. Ophelia 44: 129-143
    Hirche HJ, Meyer U, Niehoff B (1997) Egg production of Calanus finmarchicus: effect of temperature, food and season. Mar Biol 127:609–620
    Huang C, Uye S, Onbe T (1993) Geographic distribution, seasonal life cycle, biomass and production of a planktonic copepod Calarms sinicus in the Inland Sea of Japan and its neighboring Pacific Ocean. J Plankton Res 15:1129-1146
    Huggett J.A. (2001) Reproductive responses of the copepods Calanoides carinatus and Calanus aguhenlsis to varing periods of starvation in the southern Benguela upwelling region. J. Plankton Res., 23, 1061-1071.
    Huo Y, Wang S, Sun S, Li C, Liu M (2008) Feeding and egg production of the planktonic copepod Calanus sinicus in spring and autumn in the Yellow Sea, China. J Plankton Res 30:723–734
    Hwang JS, Wong CK (2005) The China Coastal Current as a driving force for transporting Calanus sinicus (Copepoda: Calanoida) from its population centers to waters off Taiwan and Hong Kong during the winter northeast monsoon period. 27(2):205-210
    ICES report (2008): Climate change: changing oceans.
    Idrisi N, Olascoaga MJ, Garraffo Z,et al. (2004) Mechanisms for emergence from diapause of Calanoides carinatus in the Somali current. Limnol. Oceanogr., 49(4, part 2):1262–1268
    IPCC气候变化2007综合报告,网址:http://www.ipcc.ch/pdf/assessment-report/ar4/syr/ar4_syr_cn.pdf Irigoien X (2004) Some ideas about the role of lipids in the life cycle of Calanus finmarchicus. J Plankton Res 26(3):259-263
    Jiang X, Wang G, Li S (2007) Egg density and sinking rate of a planktonic copepod Calanus sinicus (Copepoda: Calanoida). Acta Ecol Sin 27:1550-1557
    Johnson CL, Leising AW, Runge JA et al. (2008) Characteristics of Calanus finmarchicus dormancy patterns in the Northwest Atlantic. ICES J Mar Sci 65(3):339-350
    Jónasdóttir SH (1999) Lipid content of Calanus finmarchicus during overwintering in the Faroe-Shetland Chanel. Fish. Oceanogr. 8 (Suppl.1):61-72
    Jónasdóttir SH, Gudfinnsson HG, Gislason A, Astthorsson OS (2002) Diet composition and quality for Calanus finmarchicus egg production and hatching success off southwest Iceland. Marine Biology 140:1195–1206.
    Jónasdóttir SH, Richardson K, Heath MR, Ingvarsdóttir A, Christoffersen A (2008) Spring production of Calanus finmarchicus at the Iceland-Scotland Ridge. Deep-Sea Res Part I 55:471–489
    Kleppel GS (1993) On the diets of calanoid copepods. Mar Ecol Prog Ser 99:183–195.
    Kleppel GS, Holliday DV, Pieper RE (1991) Trophic interactions between copepods and microplankton: a question about the role of diatoms. Limnol Oceanogr 36:172–178.
    Kobari T, Nagaki T, Takahashi K(2004)Seasonal changes in abundance and development of Calanus pacificus (Crustacea: Copepoda) in the Oyashio–Kuroshio Mixed Region. Marine Biology 144, 713–721.
    Lee RF, Hagen W, Kattner G (2006) Lipid storage in marine zooplankton. Mar Ecol Prog Ser 307:273–306
    Li C, Sun S, Wang R (2007) An experimental study on grazing selectivity of Calanus sinicus to natural food particles (in Chinese with English Abstract). Oceanol Limnol Sin 38:529–535
    Li C, Sun S, Wang R, Wang X (2004) Feeding and respiration rates of a planktonic copepod (Calanus sinicus) oversummering in Yellow Sea Cold Bottom Waters. Mar Biol 145:149–157
    Li H, Xiao T, Lv R, Ding T, Lin Y. (2007) Impact of tidal front on the distribution of bacterioplankton in the southern Yellow Sea, China. J Mar System 67:263–271
    Li J, Sun S, Li C, Zhang Z, Tao Z (2006) Effects of single and mixed diatom diets on the reproduction of copepod Calanus sinicus. Acta Hydrochim Hydrobiol 34:117–125
    Liu, G. M., Sun, S., Wang, H., Zhang, Y., Yang, B. and Ji, P. (2003) Abundance of Calanus sinicus across the tidal front in the Yellow Sea, China. Fish. Oceanogr., 12, 291–298.
    Longhurst AR (1991) Role of marine biosphere in the global carbon cycle. Limnol Oceanogr. 36(8):1507-1526
    Lowe E., 1935. On the anatomy of a marine copepod, Calanus finmarchicus (Gunnerus). Transactions of the Royal Society of Edinburgh, Earth Sciences 58, 561–603.
    Marcus, Nancy H., Ferdinando B (1998) Minireview: The importance of benthic-pelagic coupling and the forgotten role of life cycles in coastal aquatic systems. Limnol Oceanogr. 43(5):763-768
    Marshall SM, Orr AP (1955) The biology of a marine copepod Calanus finmarchicus Gunnerus.-Oliver and Boyd, Edinburgh.
    Mauchline, J., 1998. The biology of calanoid copepods. In: Advances in Marine Biology, vol. 33. Academic Press, San Diego.
    McLaren, I. A., Head, E. J. H., and Sameoto, D. D. 2001. Life cycles and seasonal distributions of Calanus finmarchicus on the central Scotian Shelf. Canadian Journal of Fisheries and Aquatic Sciences, 58: 659–670.
    Meise, C. J., and O’Reilly, J. E. 1996. Spatial and seasonal patterns in abundance andage-composition of Calanus finmarchicus in the Gulf of Maine and on Georges Bank. Deep-Sea Research II, 43:1473–1501.
    Miller CB, Cowles TJ, Wiebe PH et al. (1991) Phenology in Calanus finmarchicus: hypotheses about control mechanisms. Mar Ecol Prog Ser 72:79-91
    Miller CB, Crain JA, Morgan CA (2000) Oil storage variability in Calanus finmarchicus. ICES J Mar Sci, 57:1786–1799
    Miller CB, Morgan CA, Prahl FG, Sparrow MA (1998) Storage lipids in the copepod Calanus finmarchicus from Geoges Bank and the Gulf of Maine. Limn. Oceanogr. 43:488-497
    Miralto A, Barone G, Romano G, Poulet SA, Ianora A, Russo GL, Buttino I, Mazzarella G, Laabir M, Cabrini M, Glacobbe MG (1999) The insidious effect of diatoms on copepod reproduction. Nature 402:173–176.
    M?llmann C., Kornilovs G., Fetter M. (2003)The marine copepod, Pseudocalanus elongatus, as a mediator between climate variability and fisheries in the Central Baltic Sea. Fish Oceangr 12(4/5):360-368
    M?llmanna C, Kornilovsb G, Fetterb M, K?stera FW. (2005) Climate, zooplankton, and pelagic fish growth in the central Baltic Sea. ICES J Mar Sci 62(7):1270-1280
    Niehoff B (2000a). The effect of starvation on the reproductive potential of Calanus finmarchicus. ICES J Mar Sci 57:1764–1772
    Niehoff B (2000b) The effect of food limitation on gonad development and egg production of the planktonic copepod Calanus finmarchicus. J Exper Mar Biol Ecol 307: 237– 259
    Niehoff B (2007) Life history strategies in zooplankton communities: The significance of female gonad morphology and maturation types for the reproductive biology of marine calanoid copepods. Prog Oceanogr 74:1–47
    Niehoff B(2000c)Effect of starvation on the reproductive potential of Calanus finmarchicus. ICES J Mar Sci. 57: 1764–1772.
    Niehoff B, Hirche HJ (1996) Oogenesis and gonad maturation in the copepod Calanus finmarchicus and the prediction of egg production from preserved samples. Polar Biol 16:601-612
    Niehoff B, Hirche HJ (2005) Reproduction of Calanus glacialis in the Lurefjord (western Norway): indication for temperature-induced female dormancy. Mar Ecol Prog Ser 285:107–115
    Niehoff B, Klenke U, Hirche HJ, Irigoien X, Head R, Harris R (1999) A high frequency time series at Weather ship Station M, Norwegian Sea, during the 1997 spring bloom: The reproductive biology of Calanus finmarchicus. Mar Ecol Prog Ser 176:81–92
    Niehoff B, Runge JA (2003) A revised methodology for prediction of egg production of the marine planktonic copepod Calanus finmarchicus from preserved samples. J Plankton Res 25:1581–1587
    Nonomura T,Machida RJ,Nishida S(2008)Stage-V copepodites of Calanus sinicus and Calanus jashnovi (Copepoda: Calanoida) in mesopelagic zone of Sagami Bay as identified with genetic markers, with special reference to their vertical distribution. Prog Oceanogr 77(1):45-55
    Ohman, M.D., Drits, A.V., Clarke, M.E., Plourde, S., 1998. Differential dormancy of co-occurring copepods. Deep-Sea Research II 45, 1709–1740.
    Ottersen, G., Planque, B., Belgrano, A., Post, E., Reid, P.C., and Stenseth, N.C. 2001. Ecological effects of the North Atlantic Oscillation. Oecologia 128 (1): 1-14
    Pierson JJ, Halsband-Lenk C, Leising AW (2005) Reproductive success of Calanus pacificus during diatom blooms in Dabob Bay, Washington. Prog Oceanogr 67: 314–331
    Planque, B. and Taylor, A. H. (1998) Long-term changes in zooplankton and the climate of the North Atlantic. Mar. Ecol. Prog. Ser., 134, 101–109
    Plourde S, Pierre J (2008) Comparison between in situ egg production rate of Calanus finmarchicus and Metridia longa: discriminating between methodological and species-specific effects. Mar Ecol Prog Ser 353:165-175
    Plourde S, Runge JA (1993) Reproduction of the planktonic copepod Calanus finmarchicus in the Lower St. Lawrence Estuary: relation to the cycle of phytoplankton production and evidence for a Calanus pump. Mar Ecol Prog Ser 102:217–227
    Plourde, S., Joly, P., Runge, J. A., Zakardjian, B., and Dodson, J. J. 2001. Life cycle of Calanus finmarchicus in the lower St Lawrence Estuary: the imprint of circulation and late timing of the spring bloom. Canadian Journal of Fisheries and Aquatic Sciences, 58:647–658.
    Pond D, Harris R, Head R and Harbour D (1996) Environmental and nutritional factors determining seasonal variability in the fecundity and egg viability of Calanus helgolandicus in coastal waters off Plymouth, UK. Mar Ecol Prog Ser 143:45–63
    Poulet SA Ianora A Miralto A Meijer L (1994) Do diatoms arrest embryonic development in copepods? Mar Ecol Prog Ser 111:79–86
    Pu X, Sun S, Yang B, Zhang G, Zhang F (2004) Life history strategies of Calanus sinicus in the southern Yellow Sea in summer. J Plankton Res 26:1059–1068
    Rey C, Carlotti F, Tande K, Hygum BH (1999) Egg and faecal pellet production of Calanus finmarchicus females from controlled mesocosm and in situ populations: influence of age and feeding history. Mar Ecol Prog Ser 188:133–148
    Rey-Rassat C, Irigoien X, Harris R, Carlotti F (2002b) Energetic cost of gonad development in Calanus finmarchicus and C. helgolandicus. Mar Ecol Prog Ser 238:301-306
    Rey-Rassat C, Irigoien X, Harris R, Head R, Carlotti F (2002a). Egg production rates of Calanus helgolandicus females reared in the laboratory: variability due to present and past feeding conditions. Mar Ecol Prog Ser 238:139–151.
    Richardson A J., Schoeman DS. (2004) Climate Impact on Plankton Ecosystems in the Northeast Atlantic. Science 305: 1609-1612
    Runge JA, Plourde S, Joly P, Niehoff B, Durbin E (2006) Characteristics of egg production of the planktonic copepod, Calanus finmarchicus, on Georges Bank: 1994-1999. Deep-Sea Res Part II 53:2618–2631
    Saumweber WJ, Durbin EG (2006) Estimating potential diapause duration in Calanus finmarchicus. Deep Sea Reas II 53 (23-24):2597-2617
    Savidge, G. (1976) A preliminary study of the distribution of chlorophyll a in the vicinity of fronts in the Celtic and western Irish Seas. Est. and Coastal Mar. Sci.4:617–625.
    Shin K, Jang MC, Jang PK et al. (2003) Influence of food quality on egg production and viability of the marine planktonic copepod Acartia omorii. Progress Oceanogr, 57:265-277
    Sommer U (1996) Plankton ecology: The past two decades of progress. Naturwissenschaften 83(7):293-301
    Speirs, D. C., Gurney, W. S. C., Heath, M., and Wood, S. N. 2005. Modeling the basin-scale demography of Calanus finmarchicus in the north-east Atlantic. Fisheries Oceanography, 14: 333–358
    Stenseth NC,Mysterud A,Ottersen G et al.(2002)Ecological effects of Climate fluctuations. Science 297:1292-1296
    Su Y, Weng X (1994) Water masses in China Seas. In: Zhou D, Liang YB, Zeng CK (eds) Oceanology of China Seas, Vol 1. Kluwer Academic Publishers, Dordrecht/Boston/London, p 3–26
    Sun J, Song S, Wang D, Xu Z (2007) Estimating Calanus sinicus grazing on phytoplankton and microzooplankton (in Chinese with English Abstract). Acta Ecol Sin 27:3302–3315
    Sun S (2005) Over-summering strategy of Calanus sinicus. GLOBEC Int Newsl 11:34 Sun X, Sun S, Li C, Zhang G (2008) Seasonal and spatial variation in abundance and egg production of Paracalanus parvus (Copepoda: Calanoida) in/out Jiaozhou Bay, China. Est Coast Shelf Sci 79:637-643
    Svetlichny LS, Kideys AE, Hubareva ES, Besiktepe S, Isinibilir M (2006) Development and lipid storage in Calanus euxinus from the Black and Marmara seas: Variabilities due to habitat conditions. J Mar Syst 59:52–62
    Tarrant AM, Baumgartner MF, Verslycke T et al. (2008) Differential gene expression in diapausing and active Calanus finmarchicus (Copepoda). Mar Ecol Prog Ser 355:193-207
    Taylor, A.H. et al. (2002) Extraction of a weak climatic signal by an ecosystem. Nature 416, 629–632
    Thorisson K(2006)How are the vertical migrations of copepods controlled? J Exp Mar Biol Ecol,329:86–100
    Uye SI (1988) Temperature-dependent development and growth of Calanus sinicus (Copepoda: Calanoida) in the laboratory. Hydrobiologia 167/168:285–293
    Uye SI (2000) Why does Calanus sinicus prosper in the shelf ecosystem of the Northwest Pacific Ocean? ICES J Mar Sci 57: 1850-1855
    Uye SI, Murase A (1997a) Relationship of egg production rates of the planktonic copepod Calanus sinicus to phytoplankton availability in the Inland Sea of Japan. Plankton Biol Ecol 44:3–11
    Uye SI, Murase A (1997b) Infertility of the planktonic copepod Calanus sinicus caused by parasitism by larval epicaridian isopod. Plankton Biol Ecol 44:97-99
    Uye SI, Yamaoka T, Fujisawa T (1992) Are tidal fronts good recruitment for herbivorous copepod? Fish Oceanogr 1(3):216-226
    Wang G, Jiang X, Wu L, Li S (2005) Differences in the density, sinking rate and biochemical composition of Centropages tenuiremis (Copepoda: Calanoida) subitaneous and diapause eggs. Mar Ecol Prog Ser 288:165-171
    Wang R, Zuo T (2004) The Yellow Sea Warm Current and the Yellow Sea Cold Bottom Water, their impact on the distribution of zooplankton in the Southern Yellow Sea. J Korean Soc Oceanogr 39:1–13
    Wang R, Zuo T, Wang K (2003) The Yellow Sea Cold Bottom Water-an oversummering site for Calanus sinicus (Copepoda, Crustacea). J Plankton Res 25:169–183
    Wang S, Li C, Sun S, Ning X, Zhang W (2009) Spring and autumn reproduction of Calanus sinicus in the Yellow Sea. Mar Ecol Prog Ser 379:123–133
    Watson NSF, Smallman BN (1971) The physiology of diapause in Diacyclops navus Herrick (Crustacea, Copepoda). Can J Zool 49:1449-1454
    Wei H., Su J., Wan R.J., Wang L,Lin Y.A. (2003) Tidal front and the convergence of anchovy (Engraulis japonicus) eggs in the Yellow Sea. Fisheries Oceanogr. 12 (4–5):434–442.
    Weng X, Wang C (1982) Determining the boundary and range of temperature and salinity of Yellow Sea Cold Water Mass (in Chinese with English Abstract). In: Anon (eds) Hydrometeology. Chinese Society of Oceanology and Limnology Science, Beijing, p 61–70
    Zhang G, Li C, Sun S, Zhang H, Sun J, Ning X (2006) Feeding habits of Calanus sinicus (Crustacea: Copepoda) during spring and autumn in the Bohai Sea studied with the herbivore index. Sci Mar 70:381–388
    Zhang G, Sun S, Yang B (2007) Summer reproduction of the planktonic copepod Calanus sinicus in the Yellow Sea: influences of high surface temperature and cold bottom water. J Plankton Res 29:179–186
    Zhang G, Sun S, Zhang F (2005) Seasonal variation of reproduction rates and body size of Calanus sinicus in the southern Yellow Sea, China. J Plankton Res 27:135–143
    Zhu, D. and Iverson, A. (1990) Anchovy and other fish resources in the Yellow Sea and East China Sea November 1984–April 1988. Mar. Fish. Res. 11:1–143 (in Chinese).
    陈清潮.中华哲水蚤的繁殖、性比率和个体大小的研究.海洋与湖沼,1964,6(3):272–288.
    郭炳火黄海物理海洋学的主要特征.黄渤海海洋,1993, 11(3):7-17
    赫崇本,汪园祥,雷宗友,徐斯.黄海冷水团的形成及其性质的初步探讨.海洋与湖沼,1959,2(1):11-15
    李超伦,张芳,申欣,杨波,沈志良,孙松.胶州湾叶绿素浓度、分布特征及周年变化.海洋与湖沼,2005,36(6):499-506
    李松,方金钏.中华哲水蚤幼体的发育.台湾海峡,1983,2(1):110-118
    林元烧,李松.厦门港中华哲水蚤产卵量的初步研究.厦门大学学报自然科学版. 1986,25(1):107-112
    孟田湘.黄海中南部鳀鱼各发育阶段对浮游动物的摄食.海洋水产研究,2003,24(3):1–9.
    孟田湘.山东半岛南部鳀鱼产卵场鳀鱼仔、稚鱼摄食的研究.海洋水产研究,2001,22(2):21–25.
    孙松,刘桂梅,张永山,吴玉霖,蒲新明,杨波. 90年代胶州湾浮游植物种类组成和数量分布特征.海洋与湖沼,2002a,增刊,37-44
    孙松,王荣,张光涛,杨波,吉鹏,张芳.黄海中华哲水蚤度夏机制初探.海洋与湖沼,2002b,增刊,92–99.
    孙松,张永山,吴玉霖,张光涛,张芳,蒲新明.胶州湾初级生产力周年变化.海洋与湖沼,2005, 36(6):481-486
    王保栋等南黄海冬季生源要素的分布特征.黄渤海海洋,1999,17(1):40-45
    王雄进,康洁生,李松.厦门港中华哲水蚤体长、体重和碳、氢、氮含量的季节变化.台湾海峡, 1988,28(1):19-24
    翁学传,王从敏.黄海冷水团边界及温盐范围的确定.中国湖沼学会水文气象学术会议论文集.1980,61–70.
    翁学传,张以肯,王从敏,张启龙.黄海冷水团的变化特征.海洋与湖沼,1988,19(4):368-379
    吴荣军,吕瑞华,朱明远,夏滨,胡正华.海水混合和层化对叶绿素a垂直分布的影响.生态环境,2004,13(4):515-519
    张芳,孙松,王新刚.温度和饵料对中华哲水蚤生长影响的初步研究.海洋与湖沼,2002b,增刊,19–25.
    张芳,孙松,张光涛.中华哲水蚤室内产卵和孵化的初步研究.海洋与湖沼,2002a,增刊,19–25.
    张光涛.中华哲水蚤在南黄海的生殖策略研究.博士学位论文,2003,中科院海洋研究所,青岛.
    张书文.黄海冷水团夏季叶绿素垂向分布结构的影响机制.海洋与湖沼,2003,34:179-186
    张武昌,王荣,王克.温度对中华哲水蚤代谢率的影响.海洋科学,2000,24(2):42-44
    赵保仁,方国洪,曹德明.渤海、黄海和东海的潮余流特征及其与近岸环流输送的关系.海洋科学集刊,1995,36,1–11.
    赵保仁.北黄海冷水团环流结构探讨——潮混合锋对环流结构的影响.海洋与湖沼,1996,27(4):429-435
    赵楠中科院海洋研究所硕士论文:黄海纤毛虫的丰度和生物量. 2008青岛
    朱明远,毛兴华,吕瑞华,孙明华.黄海海区的叶绿素a和初级生产力.黄渤海海洋,1993,11(3):38-51
    左涛,王克,李超伦.南黄海中华哲水蚤体长—干重的关系.水产学报,2003, 27, (增刊). 103-107

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700