用户名: 密码: 验证码:
黑龙江省森林植被净初级生产力遥感估算研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
森林净初级生产力(NPP)是森林生态系统的基本数量特征之一,其大小反映了某类森林生态系统自身的生物学特性及系统结构特征,同时也反映了环境因子对森林生长的综合影响。NPP不仅是碳循环原动力,而且是判定碳源、碳汇以及调节生态过程的主要因子。
     本文以黑龙江省的森林资源为研究对象,以地理信息系统和遥感为技术手段,利用ETM+遥感数据、DEM数据和气象数据等资料,以C-FIX估算模型为基础,通过开发森林植被NPP估算系统,估算黑龙江省2000年5~9月的森林植被NPP,并定量分析黑龙江省森林NPP空间格局,以及与立地类型因子的关系,为预测未来黑龙江省陆地生态系统碳汇能力提供理论依据。
     主要研究结论如下:
     (1)黑龙江省2000年5~9月林地的总NPP为69.75×10~(12)gC,其中每月的NPP总量最大值出现在6月份,占5~9月林地NPP总量的27.23%。6~8月是NPP的主要积累月份。5月NPP高值区主要集中在大兴安岭北部、小兴安岭南部和西北部、张广才岭和老爷岭南部。9月NPP高值区主要集中在小兴安岭南侧和张广才岭。其中有林地NPP总量为60.99×10~(12)gC,占全省5~9月份林地NPP总量的87.44%,灌木林地占10.41%,疏林地占1.63%,其它林地占0.52%。
     (2)通过提取各土类的分布,并对全省2000年5~9月NPP总量数据进行掩膜处理,分别得到六种土类对应的林地NPP。结果表明,植被NPP总量为暗棕壤>棕色针叶林土>沼泽土>草甸土>白浆土>黑土。植被NPP平均值为暗棕壤>棕色针叶林土>黑土>草甸土>沼泽土>白浆土。NPP平均值排序也基本反映了黑龙江省该六种森林土壤类型的综合肥力。
     (3)分析了森林植被NPP与经纬度、高程、温度、太阳辐射、坡度、坡向和土壤类型的关系,建立了黑龙江省5~9月森林植被NPP估算模型,其中高程和太阳总辐射等因子与NPP密切相关。
     (4)本研究以C-FIX模型为基础,以ERDAS IMAGE为平台,通过空间建模语言(SML)和ERDAS宏语言(EML),开发了黑龙江省森林植被NPP定量估算系统。估算系统能够根据遥感影像的分类数据,完成对研究区各种地类的NPP数据的估算、提取,实现森林植被NPP估算的定量化、自动化。
     论文的创新点:
     (1)在黑龙江省省域尺度上,利用TM影像对森林植被5~9月的NPP进行遥感定量估算,为研究省域尺度NPP提供了新的思路和方法。
     (2)利用多元线性回归方法,建立了黑龙江省5~9月森林植被NPP估算模型,该模型可以分析NPP与经纬度、高程、温度、太阳辐射、坡度、坡向和土壤类型的关系。
     (3)以ERDAS IMAGE为平台,开发了黑龙江省森林植被NPP定量估算系统。该估算系统能够根据遥感影像的分类数据和相关因子,实现森林植被NPP估算的定量化、自动化。
Forest net primary productivity(NPP) is one of the basic quantitative characters of forest ecosystem.NPP represents the biologic and systematic properties for a specific kind of forest ecosystem;besides,it also reflects the impacts of various environmental factors on forest growth.NPP acts not only as the driving force of the carbon cycle,but also as a primary factor to investigate the carbon source and sink,and to adjust the ecosystem processes.
     Using the ETM+ remote sensing data,DEM data and meteorological data,and developing the NPP estimate system of forest vegetation that based on the C-FIX estimate model to study the forest resources of Heilongjiang Province by GIS and RS,the NPP of forest vegetation of Heilongjiang Province from May to September in 2000 was estimated, and the spatial pattern of forest NPP in Heilongjiang Province and the relationship between NPP and site type factors were quantitative analyzed,which provided a theoretical foundation for further prediction of carbon sink ability of terrestrial ecosystem in Heilongjiang Province.
     The primary conclusions were listed as below:
     (1) The gross NPP of forest in Heilongjiang Province from May to September in 2000 was 69.75×10~(12)gC,the maximum NPP value for month appeared in June;shared 27.23% of the gross forest NPP from May to September.June,July and August were the major months for NPP to accumulate.In May,high levels of NPP distributed among the northern of Great Xingan Mountains,the southern and north-western of Xiao xing'an Mountains, and the southern of Zhangguangcai Range and Laoye Range.In September,high level of NPP mainly centered around southem of Xiao xing'an Mountains and Zhangguangcai Range.Forest land owned gross forest NPP of 60.99×10~(12)gC,which accounted for 87.44%of total forest NPP from May to September,while shrub land 10.41%,open forest land 1.63%,and other types of land accounted for 0.52%of the gross forest NPP.
     (2) Got the forest NPP that respectively corresponding to the six categories soil by mask processing the gross NPP of Heilongjiang Province from May to September in 2000. It showed that the order of Vegetation NPP level from high to low was dark brown forest soil,brown taiga soil,swamp,meadow soil,planosol and black soil,meanwhile,the average forest NPP from high to low was dark brown forest soil,brown taiga soil,black soil,meadow soil,swamp and planosol.The order of average NPP basically reflected the integrated soil fertility of these six soil types in Heilongjiang Province.
     (3) The monthly NPP estimation model of Heilongjiang Province from May to September in 2000 was build by analyzing the relationship between vegetation NPP of forest and the latitude and longitude,elevation,temperature,solar radiation,slope gradient, slope direction and soil type.It concluded that the forest NPP in Heilongjiang was closely related to the elevation and solar radiation.
     (4) Based on the C-FIX model,taking ERDAS IMAGE as the platform for the development,the quantitative estimate system of forest vegetation NPP in Heilongjiang Province was realized through spatial Modeling Language(SML) and the ERDAS Macro Language(EML).The system could accomplish the evaluation and extraction of NPP data for various soil types according to the classified remote sensing image data,and achieve the goal of estimating forest NPP quantitatively and automatically.
     The innovation of this dissertation:
     (1) The forest vegetation NPP from May to September was quantitatively estimated using TM images in the scale of Heilongjiang Province,which provided an idea and method to the NPP study of province scale.
     (2) A monthly forest NPP estimation model was built using multivariate linear regression method,which analysed the relationship of NPP and the latitude and longitude, elevation,temperature,solar radiation,slope gradient,slope direction and soil type in Heilongjiang Province from May to September in 2000.
     (3) The quantitative estimate system of forest vegetation NPP in Heilongjiang Province was developed and realized,taking ERDAS IMAGE as a platform.This estimate system realized the quantification and automation of forest vegetation NPP estimation that based on the classified remote sensing image data and related factors.
引文
1.岑奕,张良培,李平湘,等.植被净初级生产力的遥感模型在武汉地区的应用[J].遥感 技术与应用,2008,23(1):12-19
    2.陈斌,王绍强,刘荣高.中国陆地生态系统NPP模拟及空间格局分析[J].资源科学,2007,29(6):43-52
    3.陈波.陆地植被净第一性生产力对全球气候变化影响研究的进展[J].浙江林学院学报,2001,18(4):445-449.
    4.陈国南.用迈尔密模型测量我国生物生产量的初步尝试[J].自然资源学报,1987,2(3):270-278.
    5.陈镜明.利用卫星成像技术反演生物物理学参数和模拟生态系统碳循环,遥感技术与应用高级研讨班资料,1999,南京大学.
    6.陈利军,刘高焕,冯险峰.遥感在植被净第一性生产力研究中的应用[J].生态学杂志,2002,21(2):53-57.
    7.陈利军,刘高焕,励惠国.中国植被净第一性生产力遥感动态监测[J].遥感学报,2002,6(2):129-135.
    8.陈利军,刘高焕,励惠国.中国植被净第一性生产力遥感动态监测[J].遥感学报,2002,6(2):129-135.
    9.陈四清,崔骁勇,周广胜,李凌浩.内蒙古锡林河流域大针茅草原土壤呼吸河凋落物分解的CO_2排放速率研究[J].植物学报,1999,41(6):645-650.
    10.党安荣,王晓栋,陈晓峰,等.ERDAS IMAGE遥感图像处理方法[M].北京:清华大学出版社,2003:508-522.
    11.方精云,陈安平.中国森林植被碳库的动态变化及其意义[J].植物学报,2001,43(9):967-973
    12.方精云,陈平安,赵淑清,慈龙骏.中国森林生物量的估算:对Fang等Science一文的若干说明[J].植物生态学报,2002,26(2):243-249.
    13.方精云,柯金虎,唐志绕,陈安平.生物生产力的“4P”概念、估算及其相互关系[J].植物生态学报,2001,25(4):414-419.
    14.方精云,刘国华,徐嵩龄.我国森林植被的生物量和净生产量[J].生态学报,1996,(5):497-508.
    15.方精云,唐艳鸿,林俊达,等.全球生态学——气候变化与生态响应[M].北京:高等教育出版社&施普林格出版社,2000.
    16.方精云,徐嵩龄,刘国华.中国陆地生态系统的碳库.见:王庚辰,温玉璞主编,温室气体浓度和排放监测及相关过程[M].北京:中国环境科学出版社,1996:109-128.
    17.方精云,徐嵩龄,刘国华.中国陆地生态系统的碳循环及其全球意义.见:王庚辰,温玉璞主编,温室气体浓度和排放监测及相关过程[M].北京:中国环境科学出版社,1996:129-139.
    18.方精云.探索CO_2失汇之谜[J].植物生态学报,2002,26(2):255-256.
    19.冯险峰,刘高焕,陈述彭,等.陆地生态系统净第一性生产力过程模型研究综述[J].自然资源学报,2004,19(3):369-378.
    20.冯宗炜,陈楚莹,张宪武,等.湖南会同地区马尾松林生物量的测定[J].林业科学,1982,18(2):127-134.
    21.葛忠强.基于RS和GIS的城市郊区生态质量综合评价研究[D],北京林业大学博士学位论文,2006:36-52
    22.谷晓平,黄玫,季劲钧,等.近20年气候变化对西南地区植被净初级生产力的影响[J].自然资源学报,2007,22(2):251-261
    23.国志兴,王宗明,张柏,等.2000年-2006年东北地区植被NPP的时空特征及影响因素分析[J].资源科学,2008,30(8):1226-1235
    24.贺庆棠.中国植被的可能生产力-农业和林业的气候产量[J].北京林业大学学报,1986,(2):84-97.
    25.侯光良,游松才.用筑后模型估算我国植物气候生产力[J].自然资源学报,1990,5(1):60-65.
    26.胡自治,孙吉雄,李洋,等.甘肃天祝主要高山草地的生物量及光能转化率[J].植物生态学报,1994,18(2):121-131.
    27.季劲钧,黄玫,李克让.21世纪中国陆地生态系统与大气碳交换的预测[J].中国科学D辑:地球科学,2008,38(2):211-223
    28.蒋有绪.全球气候变化与中国森林的预测问题[J].林业科学,1992,28(5):431-438.
    29.焦彩霞,郑光辉,孙东敏.陕西省植被净第一性生产力时空变化研究[J].安徽农业科学,2008,36(22):9684-9685,9709
    30.李世华,牛铮,李壁成.植被净第一性生产力遥感过程模型研究[J].水土保持研究,2005,12(3):126-128
    31.李文华,邓坤纹,李飞.长白山主要生态系统生物量的研究[J].森林生态系统研究,1980,试刊:34-50.
    32.李文华.森林生物生产力的概念及其研究的基本途径[J].自然资源,1978,(1):71-92.
    33.李新,程国栋,卢玲.空间内插方法比较[J].地球科学进展,2000,15(3):260-265.
    34.林文鹏,王臣立,赵敏,等.基于森林清查和遥感的城市森林净初级生产力估算[J].生态环境2008,17(2):766-770.
    35.刘国华,傅伯杰,方精云.中国森林碳动态及其对全球碳平衡的贡献[J].生态学报,2000,20(5):733-740.
    36.刘俊杰,贾永红,柯美忠.Erdas Imagine二次开发与客户化方法研究[J].地理空间信息,2003,1(4):29-33.
    37.刘绍辉,方精云.土壤呼吸地影响因素及全球尺度下温度地影响[J].生态学报,1997,17(5):469-476.
    38.刘喜云,孙向阳,夏朝宗,等.东北地区森林植被生产力遥感定量估测[J].林业资源管理,2007(6):78-83.
    39.刘永霞.北京山地油松林分生长过程数量化模拟研究[D].北京林业大学,2007:36-48
    40.刘允芬.中国农业生态系统碳循环研究[J].自然资源学报,1995,10(1):1-8.
    41.卢玲.中国西部地区净初级生产力及碳循环研究[D].中国科学院,2003:23-36.
    42.卢玲,李新.黑河流域植被净初级生产力的遥感估算[J].中国沙漠,2005,25(6):823-830.
    43.倪建.中国亚热带常绿阔叶林净第一生产力的估算[J].生态学报,1996,15(6):1-8.
    44.朴世龙,方精云,郭庆华.利用CASA模型估算我国植被净第一性生产力[J].植物生态学报,2001,25(5)603-608.
    45.朴世龙,方精云.1982-1999年青藏高原植被净第一性生产力及其时空变化[J].自然资源学报,2002,17(3):373-380.
    46.施雅风,沈永平,胡汝骥.西北气候由暖干向暖湿转型的信号、影响和前景初步探讨[J].冰川冻土,2002,24(3):219-226.
    47.史培军,潘耀忠,陈晋,等.深圳市土地利用/覆盖变化与生态环境安全分析[J].自然资源学报,1999,14(4):293-299.
    48.松下文经,杨翠芬,陈晋,等.广域空间尺度上植被净初级生产力的精确推算[J].地理学报,2004,59(1):80-87.
    49.孙睿,朱启疆.陆地植被净第一性生产力的研究[J].应用生态学报,1999,10(6):757-760.
    50.孙睿,朱启疆.气候变化对中国陆地植被净第一性生产力影响的初步研究[J].遥感学报,2000,5(1):58-61.
    51.田国良,呼伦贝尔草原的太阳分光辐射能和光合潜力[J].地理学报,1980,35(1):76-82.
    52.王桥,王文杰.基于遥感的宏观生态监控技术研究[M].北京:中国环境科学出版社,2006:88-91
    53.夏朝宗.森林生态系统生产力遥感模型研究[D].中国科学院,2004:66-72.
    54.肖乾广,陈维英.用NOAA气象卫星的AVHRR遥感数据估算中国的第一性生产力.植物学报,1996,38(1):35-39.
    55.叶菲莫娃,N.A.著,王炳宗译,植被产量的辐射因子[M].北京:气象出版社,1983:157-202.
    56.叶亚平,刘鲁君.中国省域牛态环境质量评价指标体系研究[[J].环境科学研究,2000,13(3):33-36.
    57.张峰,周广胜.中国东北样带植被净初级生产力时空动态遥感模拟[J].植物生态学报,2008,32(4):798-809.
    58.张峰,周广胜,王玉辉.基于CASA模型的内蒙古典型草净初级生产力动态模拟[J].植物生态学报,2008,32(4):786-797.
    59.张宏.毛乌素沙地南缘禾草杂类草草地地上部生物量动态及光能转化率研究[J].草业科学,1999,16(5):9-14.
    60.张宪州.我国自然植被净第一性生产力的估算与分布[J].自然资源,1992,(1):15-21.
    61.张新时.研究全球变化的植被-气候分类系统[J].第四纪研究,1993,(2):157-169.
    62.赵俊芳,延晓冬,朱玉沽.陆地植被净初级生产力研究进展[J].中国沙漠,2007,27(5):780-787
    63.郑度.关于地理学的区域性和地域分异研究[J].地理研究,1998,(1):233-295.
    64.周才平,欧阳华,曹宇,等.“一江两河”中部流域植被净初级生产力估算[J].应用生态学报,2008,19(5):1071-1076.
    65.周广胜,王玉辉,蒋延玲,等.陆地生态系统类型转变与碳循环[J].植物生态学报,2002,26(2):250-254.
    66.周广胜,张新时.自然植被净第一性生产力模型初探[J].植物生态学报,1995,19(3):193-200.
    67.周广胜,郑元润,陈四清,等.自然植被净第一性生产力模型及其应用[J].林业科学,1998,34(5):2-11.
    68.周兴民.青藏高原蒿草草甸的基本特征和主要类型[J].高原生物学集刊,1980,(1):151-161.
    69.周允华,项月琴,单福芝.光合有效辐射的气候学研究[J].气象学报,1984,42(4):387-397.
    70.周允华.光合有效辐射(PAR)的测量.农田作物环境实验研究[M].北京:气象出版社,1990:78-90.
    71.朱文泉,潘耀忠,张锦水.中国陆地植被净初级生产力遥感估算[J].植物生态学报,2007,31(3):413-424.
    72.朱文泉.中国陆地生态系统植被净初级生产力遥感估算及其与气候变化关系的研究[D].北京师范大学,2005:25-29.
    73.朱志辉,张福春.我国陆地生态系统的植物太阳能利用率[J].生态学报,1985,5(4):343-356
    74.朱志辉.自然植被净第一性生产力估计模型[J].科学通报,1993,38(15):1422-1426.
    75.左大康,周允华,项月琴,等.地球表层辐射研究[M].北京:科学出版社,1991:67-92.
    76.Asrar,G.,Fuchis,M.,Kanemasu,E.T.,& Hatfield,J.L.,Estimating absorbed photosynthetically active radiation and leaf area index from spectral reflectance in wheat[J].Agronomy Journal,1984,76:300-306.
    77.Asrar,G.,Myneni,R.B.,& Choudhury,B.J.,Spatial heterogeneity in vegetation canopies and remote sensing of absorbed photosynthetically active radiation:a modeling study[J].Remote Sensing of Environment,1992,41:85-103.
    78.Band L.E.,Peterson D.L.,Running S.W.,Coughlan J.,Lammers R.,Dungan J.,& Nemani,R.,Forest ecosystem process at the watershed scale:Basis for distributed simulation[J].Ecological Modelling,1991,56:171-196.
    79.Baret,F.,and Guyot,G.,Potential and limits of vegetation indices for LAI and APAR assessment[J].Remote Sensing of Environment,1991,35:161-173.
    80.Bazilevich,N.I.,Drozdov,A.V.,Rodin,L.E.,World forest productivity,its basic regularities and relationship with climatic factors[M].In:Duvigneard,P,Ⅲ(Ed.),Productivity of Forest Ecosystems.UNESCO,paris,1971:345-353.
    81.Bonan,G.B.,Land-atmosphere CO_2 exchange simulated by a land surface process model coupled to an atmospheric general circulation model[J].Journal of Geophysical Research,1995,100:2817-2831.
    82.Box,E.,Quantitative evaluation of global primary productivity models generated by computers[M].In:Lieth,H.,Whittaker,R.H.(Eds),Primary Productivity of the Biosphere.New York:Springer-Verlag,1975,305-328.
    83.Box,E.O.,Holben,B.N.,& Kalb.V.,Accuracy of the AVHRR vegetation index as a predictor of biomass[J],primary productivity and net CO_2 flux.Vegetatio,1989,80:71-89.
    84.Chen,J.M.,Liu,J.,Cihlar,J.,& Goulden,M.L.,Daily canopy photosynthesis model through temporal and spatial scaling for remote sensing applications[J].Ecological Modelling,1999,124:99-119.
    85.Choudhury,B.J.,Relationships between vegetation indices,radiation absorption,and net photosynthesis evaluated by a sensitivity analysis.Remote Sensing of Environment,1987,35:161-173.
    86.Cramer,W.,Kicklighter,D.W.,Bondeau,A.,Moore B.,& Chrukina,G.,Comparing global models of terrestrial net primary productivity (NPP):overview and key results[J].Global Change Biology,1999,5 (S1):1-15.
    87.Daughtry,C.S.T.,Gallo,K.P.,& Bauer,M.E.,Spectral estimates of solar radiation intercepted by corn canopies[J].Agron.J.,1983,75:527-531.
    88.Diallo,O.,Diouf,A.,Hanan,N.P.,Ndiaye,A.,& Prevost,Y.,AVHRR monitoring of savanna primary production in Senegal,West Africa:1987-1988[J].International Journal of Remote Sensing,1991,12(6):1259-1279.
    89.Esser,G.,In Soils and the Greenhouse Effect.Bouwman,A.F.(Eds.)[M].Press:Wiley,Chichester,1990,249-261.
    90.Esser,G.,Osnabruck biosphere model:structure,construction,results[M].In:Esser,G.,Overdieck,D.(Eds.),Modern Ecology:Basic and Applied Aspects.Elsevier,Amsterdam,1991:210-235.
    91.F.Maselli,M.Chiesi,M.Moriondo,et al.Modelling the forest carbon budget of a Mediterranean region through the integration of ground and satellite data[J].Ecological Modelling,2009,220:330-342.
    92.Fabio Maselli,Anna Barbati,Matra Chiesi,et al.Use of remotely sensed and ancillary data for estimating forest gross primary productivity inItaly[J].Remote Sensing of Environment,2006,100:563-575.
    93.Fabio Maselli,Dario Papale,Nicola Puletti,et al.Combining remote sensing and ancillary data to monitor the gross productivity of water-limited forest ecosystems[J].Remote Sensing of Environment,2009,113:657-667.
    94.Fang,J.Y.,Chen,A.P.,Peng,C.H.,Zhao,S.Q.,& Ci,L.J.,Changes in forest biomass carbon storage in China between 1949 and 1998[J].Science,2001,292:2320-2322.
    95.Field C B,Behrenfeld M J,Randerson J T,et al.Primary Production of the Biosphere:Integrating Terrestrialand Oceanic Components[J],Science,1998,281:237-240.
    96.Field,C.B.,Behrenfeld,M.J.,Randerson,J.T.,& Falkowski,P.,Primary production of the biosphere:integrating terrestrial and oceanic components [J].Science,1998,281:237-240.
    97.Field,C.B.,Randerson,J.T.,& Malmstrom,CM.,Global net primary production:combining ecology and remote sensing[J].Remote Sensing of Environment,1995,51:74-88.
    98.Foley,J.A.,Net primary productivity in the terrestrial biosphere:The application of a global model[J].Journal of Geophysical Research,1994,99:20,773-20,783.
    99.Foley,J.A.,Prentice,I.C,Ramankutty,N.,Levis,S.,Pollard,D.,Sitch,S.,& Haxeltine,A.,An integrated biosphere model of land surface processes,terrestrial carbon balance and vegetation dynamics[J].Global Biogeochemical Cycles,1996,10:603-628.
    100.Francois,L.M.,Godderis,Y.,Warnant,P.,et al.,Carbon stocks and isotopic budgets of the terrestrial biosphere at mid-Holocene and last glacial maximum times[J].Chemical Geology,1999,159:163-189.
    101.Gallo,K.P.,Daughtry,C.S.T.,& Bauer,M.E.,Spectral estimation of absorbed photosynthetically active radiation in corn canopies[J].Remote Sensing of Environment,1985,17:221-232.
    102.Gherardo Chirici,Anna Barbati,Fabio Maselli.Modelling of Italian forest net primary productivity by the integration of remotely sensed and GIS data[J].Forest Ecology and Management,2007,246:285-295
    103.Goetz,S.J.,& Prince,S.D.,Modeling terrestrial carbon exchange and storage:evidence and implications of functional convergence in light ues efficiency [J].Adv.Ecol.Res.,1999,28:57-92.
    104.Goetz,S.J.,& Prince,S.D.,Remote sensing of net primary production boreal forest stands[J].Agricultural and Forest Meteorology,1996,78:149-179.
    105.Goetz,S.J.,& Prince,S.D.,Variability in carbon exchange and light utilization among boreal forest stands:implications for remote sensing of net primary production[J].Can.J.For.Res.,1998,28(3):375-389.
    106.Goetz,S.J.,Prince,S.D.,Goward,S.N.,Thawley,M.M.,& Small,J.,Satellite remote sensing of primary production:an improved production efficiency modeling approach[J].Ecological Modelling,1999,122:239-255.
    107.Gong,P.,Xu.M.,Chen,J.,Cheng,J.M.,Qi,Y.,Greg,B.,Liu,J.Y.,& Wang,S.Q.,A preliminary study on the carbon dynamics of China's terrestrial ecosystems in the past 20 years[J].Earth Science Frontiers,2002,9 (1):55-61.
    108.Goward,S.N.,& Dye,D.G.,Evaluating North-American net primary productivity with satellite observation[J].Advanced Space Research,1987,7(11):165-174.
    109.Goward,S.N.,& Huemmrich,K.F.,Vegetation canopy PAR absorptance and the normalized difference vegetation index:An assessment using the SAIL model[J].Remote Sensing of Enviroment,1992,39:119-140.
    110.Goward,S.N.,Tucker,C.J.,& Dye,D.G.,North American vegetation patterns observed with the NOAA-7 Advanced Very High Resolution Radiometer[J].Vegetatio,1985,64:3-14.
    111.Hanan,N.P.,Prince,S.D.,& Begue,A.,Modelling vegetation primary production during HAPEX-Sahel using production efficiency and canopy conductance model formulations[J].Journal of Hydrology,1997,188-189:651-675.
    112.Hatfield,J.I.,Asrar,G.,& Kanemasu,E.T.,Intercepted photosynthetically active radiation estimated by spectral reflectance[J].Remote Sensing of Environment,1984,14:65-75.
    113.Haxeltine,A.,& Prentice,I.C,BIOME3:an equilibrium terrestrial biosphere model based on ecophysiological constraints,resource availability,and competition among plant functional types[J].Global biogeochemical cyscles,1996,10:693-709.
    114.Heimann,M.,& Keeling,CD.,A three-dimensional model of atmospheric CO_2 transport based on observed wind.2:Model description and simulated tracer experiments[J].In:Aspects of Climate variablility in the pacific and the western Americas (eds.Perterson,D.H.),Geophysical Monograph,1989,55:237-274.
    115.Holben,B.N.,& Justice,CO.,An examination of spectral band ratioing to reduce the topographic effect on remotely sensed data[J].International Journal of Remote Sensing,1981,2:115-121.
    116.Houghton,R.A.,Hackler,J.L.,& Lawrence,K.T.,The U.S.carbon budget:contribution from land use change[J].Science,1999,285:574-578.
    117.Hunt,E.R.,Piper,S.C,Nemani,R.,Keeling,CD.,Otto,R.D.,& Running,S.W.,Global net carbon exchange and intra-annual atmospheric CO_2 concentrations predicted by an ecosystem simulation model and three-dimensional atmospheric transport model[J].Global Bipgeochemical Cycles,1996,10:431-456.
    118.Hunt,E.R.,Relationship between woody biomass and PAR conversion efficiency for estimationg net primary production from NDVI[J].Internatinal Journal of Remote Sensing,1994,15(8):1725-1730.
    119.Hunt,L.A.,Kuchar,L.,& Swanton,C.J.,Estimation of solar radiation for use in crop modeling[J].Agricultural and Forest Meteorology,1998,91:293-300.
    120.IGBP (Steffan,W.,Noble,I.,Canadell,P.,et al.).The Terrestrial carbon cycle:implications for the Kyoto Protocol[J].Science,1998,280:1393-1394.
    121.IPCC (Intergovernmental Panel on Climate Change)[R/OL],Climate Change 2001:Synthesis report,http://www.grida.no/climate/ipcc_tar/vol4/english/,2001.
    122.Jiang,H.,Apps,M.j.,Zhang,Y.L.,et al,Modeling the spatial pattern of net primary productivity in Chinese forests[J].Ecological Modelling,1999,122:275-288.
    123.Law,B.E.,& Waring,R.H.,Applying spectral indices to estmate leaf area index and radiation intercepted by understory vegetation[J].Ecological applications,1994,4:272-279.
    124.Law,B.E.,& Waring,R.H.,Combining remote sensing and climatic data to estimate net primary production across Oregon[J].Ecological Applications,1994,4:717-728.
    125.Lieth,H.,& Box,E.,The gross primary production pattern of the land vegetation:a first attempt.Trop[J].Ecol.,1977,18:109-115.
    126.Lieth,H.,In primary Productivity of the Biosphere.Lieth,H & Whttaker,R.H.(Eds)[M].Press:Springer,New York,1975,237-263.
    127.Lieth,H.,Modeling the primary production of the world[C].In:Lieth H.,Whittaker,R.H.(Eds.),Primary Productivity of the Biosphere.New York:Springer-Verlag,1975,237-263.
    128.Lieth,H.,Promary production:terrestrial ecosystem[J].Human Ecology,1973,1:303-332.
    129.Liu J,Chen J M,Chen W.Net Primary Productivity Distribution in the BOREAS Region from a Process Model Using Satellite and Surface Data[J],Journal of Geophysical Research,1999,104(D22):27735-27754.
    130.Liu,J.,Chen,J.M.,Cihlar,J..& Park,W.M.,A process-based boreal ecosystem productivity simulator using remote sensing inputs[J].Remote Sensing of Environment,1997,62:158-175.
    131.Maisongrande,P.,Tuimy,A.,Dedieu,G.,&Saugier,B.,Monitoring seasonal and interannual variation of grass primary productivity,net primary productivity and ecosystem productivity using a diagnostic model and remotely sensed data[J].Tellus,1995,47(8):178-190.
    132.Matsushita,B.& Tamura,M.,Integrating remotely sensed data with an ecosystem model to estimate net primary productivity in East Asia[J].Remote Sensing of Environment,2002,81:58-66.
    133.McCrady,R.L.,& Jokela,E.J.,Canopy dynamics,light interception and radiation use efficiency of selected loblolly pine families[J].Forest Science,1988,44(1):64-72.
    134.Melillo,J.M.& VEMAP Members,Vegetation/Ecosystem modeling and analysis project:comparing biogeography and biogeochemistry models in a continental-scale study of terrestrial ecosystem responses to climate changes and CO_2 doubling[J].Global Biogeochemical Cycles,1995,9:407-437.
    135.Melillo,J.M.,Callaghan,T.V.,Woodward,F.I.,Salati,E.,& Sinha,S.K.,In climate change[R]The IPCC Scienctific Assessment.Eds Houghton,J.T.,et al.Cambridge Univ.Press,Cambridge,1990,283-310.
    136.Melillo,J.M.,McGuire,A.D.,Kicklighter,D.W.,Moore,B,Vorosmarty,C.J.,& Schloss,A.,Global climate change and terrestrial net primary production[J].Nature,1993,363:234-240.
    137.Moncrieff,J.B.,Massheder,J.M.,de Bruin,H.,Elbers,J.,Friborg,T.,Heusinkveld,B.,Kabat,P.,Scott,S.,Sogaard,H.,& Verhoef,A.,A system to measure surface fluxes of monentum,sensible heat,water vapour and carbon dioxide[J].Journal of Hydrology,1997a,188-189:589-611.
    138.Moncrieff,J.B.,Monteny,B.,Verhoef,A.,Friborg,Th.,Elbers,J.,Dabat,p.,de Bruin,h.,Soegaard,H.,Jarvis,P.G.and Taupin,J.D.,Spatial and temporal variations in net carbon flux during HAPEX-Sahel[J].Journal of Hydrology,1997b,188-189:563-588.
    139.Myneni,R.B.,& Willianms,D.L.,On the relationship between fAPAR and NDVI[J].Remote Sensing of Environment,1994,49:200-211.
    140.Myneni,R.B.,Asrar,G.,Tanre,D.,& Choudhury,B.J.,Remote sensing of solar radiation absorbed and reflected by vegetated land surfaces[J].IEEE Transactions on Geoscience and Remote Sensing,1992,30:302-314.
    141.Myneni,R.B.,Hall,F.G.,Sellers,P.J.,& Marshak,A.L.,The interpretation of spectral vegetation indexes[J].IEEE Transactions on Geoscience and Remote Sensing,1995,33:481-486.
    142.Myneni,R.B.,Keeling,CD.,Tucker,C.J.,Asrar,G.,& Nemani,R.R.,Increased plant growth in the northern high latitudes from 1981-1991[J].Nature,1997,386:698-701.
    143.Myneni,R.B.,Nemani,R.R.,& Running,S.W.,Estimation of global leaf area index and absorbed par using radiative transfer models[J].IEEE Transactions on Geoscience and Remote Sensing,1997,35(6):1380-1393.
    144.Nicholas C.Coops,Colin J.Ferster,Richard H.Waring,et al.Comparison of three models for predicting gross primary production within forested ecoregions in the contiguous United States[J].Remote Sensing of Environment,2009,113:680-690.
    145.Nouvellon,Y.,Seen,D.L.,Rambal,S.,Begue,A.,Moran,M.S.,Kerr,Y.,& Qi,J.G.,Time variation of radiation use efficiency of a semi-arid grassland:consequences for remotely-sensed estimation of primary production[J].In Proceedings of SPIE:Remote Sensing for Agrculture,Ecosystems,and Hydrology,1998,3499:191-203.
    146.Paruelo,J.M.,Esstei,H.E.,Lauenroth,W.K.,et al.,ANPP estimates from NDVI for the central grassland region of the United States[J].Ecology,1997,78(3):953-958.
    147.Post,W.M.,Peng,T.H.,Emammuel W.R.,King,A.W.,Dale,V.H.,& DeAngelis,D.L.,The global carbon cycle[J].American Scientist,1990,78:310-326.
    148.Potter,C.S.,Randerson,J.,Field,C.B.,Matson,P.A.,Vistousek,P.M.,Mooney,H.A.,& Klooster,S.A.,Terrestrial ecosystem production:a process model based on global satellite and surface data[J].Global Biogeochemical Cycle,1993,7:811-841.
    149.Prince,S.D.,& Goward,S.N.,Global primary production:A remote sensing approach[J].Journal of Biogeography,1995,22:815-835.
    150.Prince,S.D.,&Tucher,C.J.,Satellite remote sensing of rangelands in Botswana:NOAA AVHRR and herbaceous vegetation[J].International Journal of Remote Sensing,1986,7:1555-1570.
    151.Prince,S.D.,A model of regional primary production for use with coarse resolution satellite data[J].International Journal of Remote Sensing,1991,12 (6):1313-1330.
    152.Prince,S.D.,Justice,C.D.,Moore Ⅲ,B.,Monitoring and Modeling of Terrestrial Net and Gross Primary Production[C].International Geosphere Biosphere Program (IGBP),Data and Information System,Global Analysis,Interpetation and Modeling (GAIM).Working Paper 1,1994:57-58.
    153.Prince,S.D.,Satellite remote sensing of primary production in the Sahel using NOAA AVHRR 1981-1988[C].In:Remote Sensing of the Biosphere.Series:Proceedings of the Society of Photo-Optical Instrumentation Engineers,1990:36-47.
    154.Prince,S.D.,Satellite remote sensing of primary production:comparison of results for Sahelian grasslands 1981-1988[J].International Journal of Remote Sensing,1991b,12(6):1301-1311.
    155.Prince,S.D,Goward,S.N.Global primary productions remote sensing approach[J].Biogeogr.,1995,22:815-835.
    156.Ruimy,A.,Dedieu,G.,& Saugier,B.,TURCL a diagnostic model of continental gross primary productivity and net primary productivity [J].Global Biogeochemical Cycle,1996,10:269-285.
    157.Ruimy,A.,Kergoat,L.,Bondeau,A.,et al.,Comparing global models of terrestrial net primary productivity (NPP):analysis of differences in light absorption and light-use efficiency [J].Global Change Biology,1999,5(S1):56-64.
    158.Ruimy,A.,Modelisation de la productivity primaire nette continentale[D].Ph.D.thesis,Universite Paris Sud,1995.
    159.Ruimy,A.,Saugier,B.,& Dedieu,G.,Methodology for the estimation of terrestrial net primary production from remotely sensed data[J].Journal of Geographical Research,1994,99:5263-5283.
    160.Ruimy,A.,Jarvis,P.G.,Baldocchi,D.D.,Saugier,B.,CO_2 fluxes over plant canopies and solar radiation:a review[J].Advances in Eclological Research,1995,26:1-68.
    161.Running,S.W.,& Coughlan,J.C.,A general model of forest ecosystem processes for regional applications:I.Hydrological balance,canopy gas exchange and primary production processes[J].Ecological Modelling,1988,42:125-154.
    162.Running,S.W.,& Hunt,E.R.,Generalization of a forest ecosystem process model for other biomes, BIOME-BGC,and an application for global-scale models[C].In:Scaling Processes Between Leaf and Landscape Levels,Ehleringer,J.R.and Field,C.(eds),Academic Press,1993:141-158.
    163.Running,S.W.,Nemani,R.,Glassy,J.M.& Thornton,P.E.,MODIS daily photosynthesis (PSN)and annunal net primary production (NPP)product (MOD17)[R].Algorithm Theoretical Basis Document,Version 3.0,1999.
    164.Running,S.W.,Nemani,R.R.,Peterson,D.L.,Band,L.E.,Potts,D.F.,Pierce,L.L.,& Spanner,M.A.,Mapping regional forest Evapotraspiration and photosynthesis by coupling satellite data with ecosystem simulation[J].Ecology,1989,70:1090-1101.
    165.Schimel,D.,Melillo,J.,Tian,H.,McGurie,A.D.,Kicklighter,D.,Kittel,T.,et al.,Contribution of increasing CO_2 and climate to carbon storage by ecosystems in the United States[J].Science,2000,287:2004-2006.
    166.Schimel,D.,Melillo,J.,Tian,H.Q.,et al.,Contribution of increasing CO_2 and climate to carbon balance in European forests[J].Nature,2000,404:861-865.
    167.Schimel,D.S.,House,J.I.,Hibbard,K.A.,et al.,Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems[J].Nature,2001,414:169-172.
    168.Sellers,P.,Canopy reflectance,photosynthesis and transpiration[J].International Journal of Remote Sensing,1985,8:1335-1372.
    169.Sellers,P.J.,Berry,J.A.,Collatz,G.J.,Field,C.B.,& Hall,F.G.,Canopy reflectance,photosynthesis and transpiration.Ⅲ:A reanalysis using improved leaf models and a new canopy integration scheme[J].Remote Sensing of Environment,1992,42:187-216.
    170.Sellers,P.J.,Canopy reflectance,photosynthesis and transpiration.Ⅱ:The role of biophysics in the linearlity of their interdependence[J].Remote Sensing of Environment,1992,21:143-183.
    171.Sellers,P.J.,Dickinson,R.E.,Randall,D.A.,et al.,Modelling the exchanges of energy,water and carbon between continents and the atmosphere[J].Science,1997,275:502-509.
    172.Sellers,P.J.,Los,S.O.,Tucher,C.J.,Justice,CO.,Dazlich,D.A.,Collatz,G.J.,& Randall,D.A.,A revised land surface parameterization (Sib2)for atmospheric Gems.Part Ⅱ:the generation of global fields of terrestrial biophysical parameters from satellite data[J].Journal of Climate,1996,9:706-737.
    173.Sellers,P.J.,Los.,S.O.,Tucker,C.J.,Justice,C.O.,Dazlich,D.A.,Collatz,G.J.,& Randall,D.A.,A global 1°×1° NDVI data set for climate studies.Part 2:The generation of global fields of terrestrial biophysical parameters from the NDVI[J].International Journal of Remote Sensing,1994,15(7):3519-3545.
    174.Sun,R.,& Zhu,Q.J.,Estimation of net primary productivity in China using remote sensing data[J].Journal of Geographical Sciences,2001,11(1):14-23.
    175.Tucker,C.J.& Sellers,P.J.,Satellite remote sensing of primary production[J].International Journal of Remote Sensing,1986a,7(11):1395-1416.
    176.Uchijima Z,Seino H.An agroclimating net primary productivity of natural vegetation[J].JAgric.Res.Q,1985,214:244-250.
    177.Uchijima,Z.,& Seino,H.,Agroclimatic evaluation of net primary productivity of natural vegetations (1)Chikugo model for evaluation net primary productivity [J].Journal of Agricultural Meteorology,1985,40:343-352.
    178.Veroustraete,F.,On the use of ecosystem modeling for the interpretation of climate change effects at the ecosystem level[J].Ecological Modelling,1994,75-75:221-237.
    179.Veroustraete,F.,Patyn,J.& Myneni,R.B.,Forcing of a simple ecosystem model with fAPAR and climatic data to estimate regional scale photosynthetic assimilation[C].In:Vegetation,Modelling and Climate Change Effects,eds.Academic Publishing,The Hague,the Netherlands,1994,151-177.
    180.Veroustraete,F.,Patyn,J.,& Myneni,R.B.,Estimating net ecosystem exchange of carbon using the Normalized Difference Vegetation Index and an Ecosystem Model[J].Remote Sensing of Environment,1996,58:115-130.
    181.Veroustraete,F.,Sabbe,H.& Eerman E.,Estimation of carbon mass fluxes over Europe using the C-FIX model and Euroflux data[J].Remote Sensing of Environment,2002,83:376-399.
    182.White,A.,Cannel.M.G.R.,& Friend,A.D.,Climate change impacts on ecosystems and the terrestrial carbon sink:a new assessment[J].Global Environmental Change,1999,9:21-30.
    183.Wiegand,C.L.,Mass,S.J.,Aase,J.K.,et al.,Mutispectral analyses of spectral-biophysical data for wheat[J].Remote Sensing of Environment,1992,42:1-21.
    184.Wiegand,C.L.,Richardson,A.J.,Escobar,D.E.,& Gerbermann,A.H.,Vegetation indices in crop assessments[J].Remote Sensing of Environment,1991,35:105-119.
    185.Willem W.Verstraeten,Frank Veroustraete,et al.On temperature and water limitation of net ecosystem productivity:Implementation in the C-FIX model[J].Ecological Modelling,2006,199:4-22.
    186.Woodward,F.I,Smith,T.M.,& Emanuel,W.R.,A global land primary productivity and phytogeopgraphy model[J].Global Biogeochemical Cycle,1995,9:471-490.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700