用户名: 密码: 验证码:
小鼠胚胎干细胞Tle4基因的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
胚胎干细胞是从囊胚内细胞团分离出来的,具有无限增殖、自我更新的能力。其全能性分子机制的研究是多年来的研究热点。Tle4基因是长型Groucho/Tle基因家族的成员之一,包括Q区、WD40区、GP区、CcN基序和SP区5个部分。小鼠Tle4基因位于19号染色体,全长约为234.45kb,包含20个外显子和19个内含子,编码773个氨基酸。差减RNA干扰文库筛选结果提示其是维持ES细胞多能性的靶基因。本论文对Tle4基因的转录调控及其在ES细胞功能进行了相对系统的研究,为深入研究和理解ES细胞多能性维持的分子机制提供科学依据,具有重要的意义。研究内容和结果如下:
     (1)首先利用生物信息学对小鼠Tle4基因进行了分析,发现其编码的蛋白含有7个重复WD40结构域,并且在物种间高度保守。同时通过数据库芯片表达谱分析,表明其在癌细胞、免疫细胞、胚胎干细胞表达量均很高,可能与细胞分化、增殖相关。
     (2)利用生物信息学对小鼠Tle4基因5'侧翼序列特征进行了分析,并对Tle4基因5'侧翼区域进行克隆、鉴定与初步分析。采用PCR定向克隆和酶切亚克隆策略,构建了覆盖Tle4基因5'侧翼起始密码子ATG上游2.8kb区域的7个不同片段长度的缺失报告基因重组载体,用promega的双荧光素酶报告实验系统分别在小鼠ES细胞、畸胎瘤(F9)细胞中检测其活性。结果显示,Tle4基因核心调控区域定位于-2137bp~-1794bp区域(翻译起始密码子ATG中的A定为+1)。利用转录因子结合位点预测软件分析表明,此区域有比较密集的潜在转录因子结合位点,可能含有重要的转录激活元件,为小鼠Tle4基因的关键启动区。另外,还提示在-2521bp~-2137bp区域含有负调控元件。
     (3)对-2137bp~-1794bp区域再次进行缺失,构建了3个缺失片段-pGL3重组质粒。结果发现-2027bp~-1927bp区域荧光素酶活性最强,表明其是Tle4基因的核心调控区域。生物信息学分析发现,此区域存在Tcf1、Lef1、Sp1等多个转录因子的结合位点,它们可能参与Tle4基因的转录调控。
     (4)进行Tle4基因核心调控区域的定点突变分析。针对已经初步鉴定的Tle4基因核心调控区域Tcf1结合位点序列,构建Tle4基因荧光素酶报告基因定点突变载体。活性分析表明,Tcf1结合的保守位点突变后,其活性有所降低,但差异不显著,提示Tcf1可能在Tle4基因的转录调控中起着一定的作用,但不是必需的。
     (5)检测了Tle4基因在小鼠囊胚、胎儿和2d和6d EB的表达情况,结果显示其均表达。另外其在MEF中不表达。
     (6)根据Tle4基因序列设计合成了三对siRNA片段和一对无意义siRNA片段。利用Lipofectamine 2000脂质体将siRNA转染ES细胞系,转染培养后24h,利用总RNA提取试剂盒提取这些细胞总RNA,并经过半定量RT-PCR分析,筛选到干扰效果最好的一对siRNA。之后,将其转染ES细胞,发现干扰后的ES细胞在形态、碱性磷酸酶活性和分化能力等方面并没有发生变化,仍维持全能性的能力。
     (7)克隆了小鼠Tle4基因全长mRNA序列,构建了Tle4基因过表达载体,发现当Tle4基因过表达后,ES细胞发生了分离解体现象。同时构建了Tle4基因荧光融合蛋白表达载体,将Tle4蛋白定位于ES细胞的细胞核上。
     综上所述,本论文对小鼠Tle4基因转录调控及其在ES细胞的分子功能的系统研究,进一步加深了我们对Tle4分子功能和机制的认识,为深入开展Tle4基因的研究具有积极的理论和现实意义。
Mouse embryonic stem (ES) cells are pluripotent cell lines isolated from the inner cell mass of blastulas which can proliferate unlimitedly and have ability of self-renewal. It is a hot spot for studying the molecular mechanisms of its developmental pluripotency. Tle4 gene is a member of Groucho/Tle gene family which includes five domains: the highly conserved glutamine (Q) rich, the WD-repeat domain, GP domain, CcN motif and SP domain. Mouse Tle4 gene is located in chromosome 19 that its full length is 234.45kb with 20 exons and 19 introns. It encodes 773 amino acid. The result from RNA interference library indicates Tle4 gene is a target gene that can maintain ES cells pluripotency. In the present study, we have systematically investigated the transcriptional regulation of Tle4 gene and its role in ES cells. The contents and results were summarized as followings:
     (1)At first, It has found that Tle4 protein contain seven conserved WD40 domains by bioinformatic analysis. At the same time, it was high expressed in tumor cells, immunity cells and ES cells, which indicates that it was related to cell differentiation and proliferation.
     (2)Characterization and identification of 5'-flanking region of Tle4 gene was analyzed by bioinformatic information. Seven overlapping genomic fragments from the 5'-flanking region of Tle4 gene were coloned into pGL3-basic vector to construct Tle4 promoter reporters. The transcriptional activities of these promoter fragments were tested in ES cells, F9 cells by dual luciferase assay. The results of software suggested that the -2137bp~-1794bp region (the first A nueleotide of the translation initiation codon ATG was numbered as+l) was the critical region, which contains many putative transcription factor binding sites and important element for transcriptional activation. In addition, the -2521bp~-2137bp region may contain negative regulatory elements.
     (3)Three different fragments of -2137bp~-1794bp region have been coloned into pGL3-basic vector for further analysis. The results suggested that transcriptional activity of -2027bp~-1927bp region was strongest and it was the core regulation region. Many transcription factor binding sites, such as Tcf1, Lef1, Sp1, et al, were found, which may be involved in the transcriptional control of Tle4 gene.
     (4) Analysis of site-directed mutations in Tle4 gene core regulation region. The site-directed mutations of Tcf1 fragment was coloned into pGL3-basic vector to detect. The transcriptional activity of mutation Tcf1-binding sites was repressed to some extent, but not significantly. This indicated that Tcf1 may play certain roles, but was not necessary.
     (5)Tle4 gene was expressed in blastulas, fetus, EB of 2d and 6d. It was not expressed in MEF.
     (6) According to the sequence of Tle4 gene, three pairs of siRNA fragments and one unspecific siRNA fragment were synthesized. These siRNA fragments were transfected with Lipofectamine 2000 into mouse ES cells. Total RNA was isolated from ES cells after 24 hours transfection by total RNA kit. The high efficient siRNA that significantly down-regulated Tle4 gene expression was selected by RT-PCR analysis. ES cells were transfected by Lipofectamine 2000 with the selected siRNA fragments. But the morphous, alkaline phosphatase activity, differentiation activity of ES cells were not changed and ES cells still maintained pluripotency after transfection.
     (7) The full-length mRNA sequence of Tle4 gene was cloned into vector for over-expression. ES cells were disintegrated after transfection with over-expression vector. The vector for subcelluar localization pEGFP-N1-Tle4 was also construed and Tle4 protein was localized to cell nucleus in ES cells.
     In summary, the study on transcriptional control and the role in ES cells of Tle4 gene can contribute to the understanding of the molecular function and mechanism of this gene. It has active theory and actual significance.
引文
1.丛笑倩,杜忠伟,芮荣.中国小型猪胚胎生殖细胞的培养和建系.细胞生物学杂志,2003,25(6):325~331.
    2.丛笑倩,夏汉顺,徐露露等.外源TGF-1基因在小鼠ES细胞中的表达及其对细胞分化的影响.实验生物学报,1995,28(2):174~176.
    3.冯书堂,丛笑倩,刘立新等.五指山近交猪胚胎生殖细胞(EG)嵌合体在我国移植产仔.畜牧兽医学报,2005,36(3):311~312.
    4.冯书堂,董晓,刘立新等.猪原始生殖细胞(PGCs)建系因素的研究.畜牧兽医学报,2004,35(5):477~480.
    5.冯秀亮,高志敏,杨春荣等.由猪囊胚内细胞团分离胚胎干细胞的研究.西北农林科技大学学报(自然科学版),2003,31(3):5~10.
    6.付亚娟,叶枫. Notch信号通路的研究现状.医学分子生物学杂志,2007,4(5):447~450.
    7.赖良学,郑惠珍,秦鹏纯.影响体外培养兔胚发育和兔类ES细胞分离的若干因素.中国兽医学报,1996,16(1):16~21.
    8.刘国强,洪天配.诱导性多潜能干细胞的研究进展和应用前景.世界华人消化杂志,2008,16(12):1255~1259.
    9.卢学春,楼方定,韩为东. LRP16基因启动子活性分析.中国实验学血液杂志,2006,14(1):146~149.
    10.潘光锦,裴端卿.维持胚胎干细胞多能性的分子机制.生命科学,2007,19(4):372~377.
    11.芮荣,邱妍,胡元亮等.表达绿色荧光蛋白的猪胚胎生殖细胞分离.南京农业大学学报, 2004,27(4):89~92.
    12.尚克刚,胡新立,李子玉等.饲养层对维持新建ES细胞系的影响.北京大学学报(自然科学版),1994,30(4):500~507.
    13.王又红.基因敲除技术的应用现状与发展前景.国外医学,1999,25(2):196~199.
    14.张俊争.小鼠胚胎干细胞自我更新能力相关基因的功能性筛选-差减RNA干扰文库的构建和应用(博士学位论文).北京:北京大学,2007.
    15. Aghaallaei N, Bajoghli B, Walter I, et al. Duplicated Members of the Groucho/Tle Gene Family in Fish. Developmental Dynamics, 2005, 234:143~150.
    16. Agius E, Oelgeschlager M, Wessely O, et al. Endodermal Nodal-related signals and mesoderm induction in Xenopus. Development,2000, 127: 1173~1183.
    17. Amit M, Shariki C, Margulets V, et al. Feeder layer-and se-rum-free culture of human embryonic stem cells.Biol Reprod, 2004,70(3):837~845.
    18. Andersson T, Neurath MF, Grant PA, et al.Physiological activation of the IgH 30 enhancer in B lineage cells is not blocked by Pax5. Eur J Immunol, 1996, 26: 2499~2507.
    19. Aoki TO, David NB, Minchiotti G, et al. Molecular integration of casanova in the Nodal signalling pathway controlling endoderm formation. Development, 2002, 129:275~286.
    20. Arulampalam V, Eckhardt L, Pettersson S. The enhancer shift: a model to explain the developmental control of IgH gene expression in B-lineage cells. Immunol Today,1997,18: 549~554.
    21. Bajoghli B, Aghaallaei N, Czerny T. Groucho Corepressor Proteins Regulate Otic Vesicle Outgrowth. Developmental Dynamics, 2005, 233:760~771.
    22. Bajoghli B. Evolution of the Groucho/Tle gene family: gene organization and duplication events. Dev Genes Evol, 2007, 217:613~618.
    23. Basecke J, Schwieger M, Griesinger F, et al. AML1/ETO promotes the maintenance of early hematopoietic progenitors in NOD/SCID mice but does not abrogate their lineage specific differentiation. Leuk Lymphoma. 2005, 46:265~272.
    24. Boesuf H, Hauss C, Graeve FD, et al. Leukemia inhibitory factor-dependent transcriptional activation in embryonic stem cells. J. Cell Biol., 1997, 1207~1217.
    25. Besser D.Expression of nodal, lefty-a and lefty-b in undifferenti- ated human embryonic stem cells requires activation of Smad2/3. J Biol Chem, 2004, 279(43):45076~45084.
    26. Boiani M, Scholer HR. Regulatory networks in embryo-derived pluripotent stem cells. Nat Rev Mol Cell Biol, 2005, 6:872~884.
    27. Boyer LA , Lee TI, Cole MF, et al. Core Transcriptional Regulatory Circuitry in Human Embryonic Stem Cells. Cell, 2005, 122: 947~956.
    28. Bradley A, Robertson EJ. Embryo derived stem cells:a tool to elucidate the development genetics of the mice. Curr Top Dev Biol, 1986, 20:357~371.
    29. Brantjes H, Roose J, van De Wetering M, et al. All Tcf HMG box transcription factors interact with Groucho-related co-repressors. Nucleic Acids Research, 2001, 29:1410~1419.
    30. Brenin D, Look J, Hubner N, et al. Correction: Pluripotent embryonic stem cells from the rat are capable of producing chimeras. Dev Biol, 1997, 185: 124~125.
    31. Brickman JM, Clements M, Tyrell R, et al. Molecular effects of novel mutations in Hesx1/HESX1 associated with human pituitary disorders.Development, 2001, 128:5189~5199.
    32. Brickman J M, Jones CM, Clements M, et al. Hex is a transcriptional repressor that contributes to anterior identity and suppresses Spemann organiser function. Development, 2000,127:2303~2315.
    33. Burks PJ, Isaacs HV, Pownall ME. FGF signalling modulates transcriptional repression by Xenopus groucho-related-4. Biol. Cell, 2009, 101:301~308.
    34. Byrne JA, Pedersen DA, Clepper LL, et al. Producing primate embryonic stem cells by somatic cell nuclear transfer. Nature, 2007, 450(7)169: 497~502.
    35. Cadigan KM, Nusse R. Wnt signaling: a common theme in animal development. Genes Dev., 1997, 11:3286~3305.
    36. Carnac G, Kodjabachian L, Gurdon J, et al. The homeobox gene Siamois is a target of the Wnt dorsalisation pathway and triggers organiser activity in the absence of mesoderm. Development, 1996, 122:3055~3065.
    37. Chambers I, Colby D, Robertson M, et al. Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic cells. Cell, 2003, 113: 643~655.
    38. Chen G, Nguyen PH, Courey AJ. A role for Groucho tetramerization in transcriptional repression. Mol Cell Biol, 1998, 18:7259~7268.
    39. Chen LR, Shiue YL, Bertolini L, et al. Establishment of pluripotent cell lines from porcine preimplantation embryos. Theriogenology, 1999, 52(2):195~212.
    40. Chen G, Fernandez J, Mische S, et al. Courey AJ. A functional interaction between the histone deacetylase Rpd3 and the corepressor groucho in Drosophila development. Genes Dev., 1999,13:2218~2230.
    41. Chen G, Courey AJ. Groucho/TLE family proteins and transcriptional repression. Gene, 2000, 249:1~16.
    42. Chen Y, He ZX, Liu A, et al. Embryonic stem cells generated by nuclear transfer of human somatic nuclei into rabbit oocytes. Cell Res, 2003, 13(4): 251~263.
    43. Chen Yan Mei,YAO Zhen.Regulation of downstream target genes of transcription factor Oct4 an d its relationship with Toti/pluripotency of embryonic development.Chinese Journal of Cell Biology, 2004,26(5):45~49.
    44. Cibelli JB, Stice S L, Kane J J, et al. Production of germ line chimeric bovine fetuses from transgenic embryonic stem cells. Theriogenology, 1997, 47(1): 241.
    45. Choi CY, Kim YH, Kwon HJ, et al. The homeodomain protein NK-3 recruits Groucho and a histone deacetylase complex to repress transcription. J Biol Chem 1999, 274:33194~33197.
    46. Choudhury BK, Kim J, Kung HF, et al. Cloning and developmental expression of Xenopus cDNAs encoding the Enhancer of split groucho and related proteins. Gene, 1997,195:41~48.
    47. Daniels DL, Weis WI. Beta-catenin directly displaces Groucho/TLE repressors from Tcf/Lef in Wnt-mediated transcription activation. Nature Struc and Mol Bio, 2005, 12:364~371.
    48. Dattena M, Chessa B, Lacerenza D, et al. Isolation culture and characterization of embryonic cell lines from vitrified sheep blastocysts. Mol Repro and Deve, 2006, 73:31~39.
    49. Dayyani F, Wang J, Yeh JR, et al. Loss of TLE1 and TLE4 from the del(9q) commonly deleted region in AML cooperates with AML1-ETO to affect myeloid cell proliferation and survival. Blood, 2008,111(8): 4338~4347.
    50. Dehal P, Satou Y, Campbell RK, et al. The draft genome of Ciona intestinalis: insights into chordate and vertebrate origins. Science, 2002,298:2157~2167.
    51. Dehni G, Liu Y, Husain J, Stifani S. Tle expression correlates with mouse embryonic segmentation, neurogenesis, and epithelial determination. Mech Dev, 1995, 53:369~381.
    52. Delhaise F, Bralion V, Schuurbiers N, et al. Establishment of an embryonic stem cell line from 8-cell stage mouse embryos. Eur J Morphol, 1996, 34(4): 237~243.
    53. Doetschman T, Gossler A, Serfling E, et al. Introduction of genes into mouse embryonic stem cells. Prog Clin Biol Res, 1986, 217A:47~50.
    54. Dorsett Y, Tuschl T.siRNAs: applications in functional genomics and potential as therapeutics.Nat Rev Drug Discov.2004, 3(4):318~29.
    55. Eberhard D, Jimenez G, Heavey B, et al. Transcriptional repression by Pax5 (BSAP) through interaction with corepressors of the Groucho family. EMBO J., 2000,19: 2292~2303.
    56. Eistetter HR. Pluripotent embryonal stem cell lines cam be established from disaggregated mouse morulae. Developmental Growth and Differentiation, 1989, 31: 275~282.
    57. Enst M, Oates A, Dann AR. Gp130 mediated signal transductionin embryonic stem cells involves in activation of JAK and Ras/mitogen activated protein kinase pathways. J Biol Chem, 1996, 271: 30136~30143.
    58. Evans MJ, Notarianni, Moor RM. Derivation and preliminary characterization of pluripotent cell lines from porcine and bovine blastocysts. Theriogenology, 1990, 33:125~128.
    59. Evans MJ, Kaufman MH. Establishment in culture of plufipo-tential ceils from mouse onbrya.Nature,1981,292:154~156.
    60. Ezashi T, Ghosh D, Roberts RM.Repression of Ets-2-induced transactivation of the tau interferon promoter by oct-4.Mol and Cellular Bio,2001,21(23):7883~7891.
    61. Fenske TS, Pengue G, Mathews V, et al. Stem cell expression of the AML1/ETO fusion protein induces a myeloproliferative disorder in mice. Proc Natl Acad Sci USA, 2004, 101:15184~15189.
    62. Fisher AL, Caudy M. Groucho proteins transcriptional corepressors for specific subsets of DNA-binding transcription factors in vertebrates and invertebrates. Genes Dev, 1998, 12:1931~1940.
    63. Force A, Lynch M, Pickett FB, et al. Postlethwait JPreservation of duplicate genes by complementary, degenerative mutations. Genetics,1999,151:1531~1545.
    64. Graves KH, Moreadith RW. Derivation and characterization of putative pluripotential embryonic stem cells from preimplantation rabbit embryos. Molecular reproduction and development, 1993, 36(4):424~433.
    65. Grimwade D, Walker H, Harrison G, et al. The predictive value of hierarchical cytogenetic classification in older adults with acute myeloid leukemia (AML): analysis of 1065 patients entered into the United Kingdom Medical Research Council AML11 trial. Blood, 2001, 98:1312~1320.
    66. Grimwade D, Walker H, Oliver F, et al. The importance of diagnostic cytogenetics on outcome in AML: analysis of 1.612 patients entered into the MRC AML 10 trial. The Medical Research Council Adult and Children's Leukaemia Working Parties. Blood, 1998,92:2322~2333.
    67. Guo Y, Costa R, Ramsey H, et al. The em-bryonic stem cell transcription factors Oct-4 an d FoxD3 interact to regulate endodermal-specific promoter expression. Proc Natl Acad Scf USA, 2002,99(6):3663~3667.
    68. Hare N R, Miller NL, Givens ML, et al. The Groucho-related Gene Family Regulates the Gonadotropin-releasing Hormone Gene through Interaction with the Homeodomain ProteinsMSX1 and OCT1. J Bio Chem, 2005, 280(35): 30975~30983.
    69. Hills G, Ainscough JFX, McLaren A. Pluripotential stem cells derived from migrating primordial germ cells. Differentiation, 2001, 68 (4-5): 220~226.
    70. Hoffman BG, Zavaglia B, Beach Mand,et al. Expression of Groucho/TLE proteins during pancreas development. BMC Developmental Biology, 2008, 8:81.
    71. Horii T, Nagao Y, Tokunaga T, et al. Serum-free culture of murine primordial germ cells and embryonic germ cells. Theriogenology, 2003, 59(5-6): 1257~1264.
    72. Hou EW, Liss. Genomic organization and chromosome localization to band 19p13.3 of the human AES gene: gene product exhibits strong similarity to the N-terminal domain of Drosophila enhancer of Split Groucho protein. DNA Cell Biol, 1998, 17(10):911~913.
    73. Iannaccone PM, Taborn GU, Garton RL, et al. Pluripotent embryonic stem cells from the rat are capable of producing chimeras. Dev Biol, 1994, 163: 288~292.
    74. Jing Yao,Yanling Liu,Junaid Husain,et al.Combinatorial expression patterns of individual TLE proteins during cell determination and differentiation suggest ono-redundant functions for mammalian homologs of Drosophila Groucho. Develop.Growth Differ, 1998,40:133~146.
    75. Jurlander J, Caligiuri MA, Ruutu T, et al. Persistence of the AML1/ETO fusion transcript in patients treated with allogeneic bone marrow transplantation for t(8;21) leukemia. Blood, 1996, 88:2183~2191.
    76. Kaufman MH, Robertson EJ. Handyside ANH, et al. Establishmeant of pluripotential cell lines from haploid mouse embryos. J Embryol Exp Morph, 1983, 73: 249~261.
    77. Kawase E, Yamazaki Y, Yagi T, et al. Mouse embryonic stem (ES) cell lines established from neuronal cell-derived cloned blastocysts. Genesis, 2000, 28: 156~163.
    78. Kim HS, Son HY, Kim S, et al. Isolation and initial culture of porcine inner cell masses derived from in vitro-produced blastocysts. Zygote. 2007, 15(1):55~63.
    79. Kim S J,Cheon S H,Yoo S J,et al.Contribution of the PI3K/Akt/PKB signal pathway to maintenance of self-renewal in human embryonic stem cells.EBS Lett,2005,579(2):534~540.
    80. Kitiyanant Y, Saikhun J, Guocheng J, et al. Establishment and long-term maintenance of bovine embryonic stem cell lines using mouse and bovine mixed feeder cells and their survival after cryopreservation. Science Asia, 2000, 26: 81~86.
    81. Klimanskaya I, Chung Y, Becker S, et al. Human embryonic stem cell lines derived from single blastomeres. Nature, 2006, 444: 481~485.
    82. Koop KE, MacDonald L, Lobe CG. Transcripts of Grg4, a murine groucho-related gene, are detected in adjacent tissues to other murine neurogenic gene homologues during embryonic development aren E. Mechanisms of Development, 1996, 59:73~87.
    83. Kusec R, Laczika K, Knobl P, et al. AML1/ETO fusion mRNA can be detected in remission blood samples of all patients with t(8;21) acute myeloid leukemia after chemotherapy or autologous bone marrow transplantation. Leukemia. 1994, 8:735~739.
    84. Labosky PA, Barlow DP, Hogan BLM. Mouse embryonic germ (EG) cell lines: transmissionthrough the germline and differences in the methylation imprint of insulin- like growth factor
    2 receptor (Igf2r) gene compared with embryonic stem cell (ES) lines. Development, 1994, 120:3197~3204.
    85. Lamson G, Koshland ME. Changes in J chain and mu chain RNA expression as a function of B cell differentiation. J Exp Med., 1984, 160: 877~892.
    86. Lee CK, Moore K, Scales N, et al. Isolation and genetic transformation of primordial germ cell (PGC)-derived cells from cattle, goats, rabbits and rats. Asian-Aus Anim Sci, 2000, 13(5): 587~559.
    87. Leon C, Lobe CG. Grg3, a murine Groucho-related gene, is expressed in the developing nervous system and in mesenchyme-induced epithelial structures. Dev Dyn 1997, 208:11~24.
    88. Li M, Li Y H, Hou Y, et al. Isolation and culture of pluripotent cells from in vitro produced porcine embryos. Zygote, 2004, 12: 43~48.
    89. Linderson Y, irk Eberhard D, MalinS, et al. Corecruitment of the Grg4 repressor by PU.1 is critical for Pax5-mediated repression of B-cell-specific genes. EMBO reports, 2004,5(3): 291~296.
    90. Lindsley DL, Grell EH. Genetic variations of Drosophila melanogaster.Washington, DC: Carnegie Institution of Washington. 1968.
    91. Liss. Structure and function of the Groucho gene family and encoded transcriptional corepressor proteins from human, mouse, rat, Xenopus, Drosophila and nematode. Proc Natl Sci Counc Repub China B. 2000, 24(2):47~55.
    92. Loh YH, Agarwal S, Park IH, et al. Generation of induced pluripotent stem cells from human blood. Blood, 2009.
    93. Lopez-Rios J, Tessmar K, Loosli F, et al. Six3 and Six6 activity is modulated by members of the groucho family. Development, 2003, 130:185~195.
    94. Martin GR. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarelnoma stern cells. Proc.Nat1 Acad.Sei.USA,1981,78:7634~7636.
    95. Matsui Y, Toksoz D, Nishikawa S, et al.Effect of Steel factor and leukaemia inhibitory factor on murine primordial germ cells in culture. Nature, 1991, 353(6346):750~752.
    96. Matsui Y, Zsebo K, Hogan BM. Derivation of pluripotential embryonic stem cells from murine primordial germ cells in culture. Cell, 1992, 70(5):841~847.
    97. Mayanagi T, Kurosawa R, Ohnuma K, et al. Purification of mouse primordial germ cells by Nycodenz. Reproduction, 2003, 125: 667~675.
    98. Meissner A, Wernig M, Jaenisch R. Direct reprogramming of genetically unmodified fibroblasts into pluripotent stem cells. Nat Biotechnol, 2007, 25(10): 1177~1181.
    99. Meyer A, Schartl M. Gene and genome duplications in vertebrates: the one-to-four (-to-eight in fish) rule and the evolution of novel gene functions. Curr Opin Cell Biol., 1999,11:699~704.
    100. Mikkola I, Heavey B, Horcher M, et al. Reversion of B cell commitment upon loss of Pax5expression. Nature, 2002, 297: 110~113.
    101. Mililt ML, Gauthier L, Veran J, et al. A new Groucho TLE4 protein may regulate the repressive activity of Pax5 in human B lymphocytes. Immunology, 2002, 106:447~455.
    102. Mitsui K, Tokuzawa Y, Itoh H, et al. The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell, 2003, 113:631~642.
    103. Miyasaka H, Choudhury BK, Hou EW, et al. Molecular cloning and expression of mouse and human cDNA encoding AES and ESG proteins with strong similarity to Drosophila enhancer of split groucho protein. Eur J Biochem, 1993, 216:343~352.
    104. Molenaar M, Brian E, Roose J, et al. Differential expressionof the Groucho-related genes 4 and 5 during early development of Xenopus laevis. Mech Dev, 2000, 91:311~315.
    105. Molenaar M, Wetering M. XTcf-3 transcription factor mediates beta-catenin-induced axis formation in Xenopus embryos. Cell, 1996, 86:391~399.
    106. Mueller S, Prelle K, Rieger N, et al. Chimeric pigs following blastocyst injection of transgenic porcine primordial germ cells. Mol. Reprod Develop, 1999, 54: 244~254.
    107. Mulloy JC, Cammenga J, Berguido FJ, et al. Maintaining the self-renewal and differentiation potential of human CD34+ hematopoietic cells using a single genetic element. Blood, 2003, 102:4369~4376.
    108. Munsie MJ, Michalska A E, O'Brien CM, et al. Isolation of pluripotent embryonic stem cells fromreprogrammed adult mouse somatic cell nuclei. Current Biology, 2000, 10: 989~992.
    109. Nadeau JH, Sankoff D. Comparable rates of gene loss and functional divergence after genome duplications early in vertebrate evolution. Genetics, 1997, 147:1259~1266.
    110. Niwa H, Miyazaki J, Smith A. Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat Genet, 2000, 24:372~376.
    111. Notarianni E, Laurie S, Moor RM, et al. Maintenance and differentiation in culture of pluripotential embryonic cell lines from pig blastocysts. J Reprod Fertil Suppl, 1990, 41:51~56.
    112. Palaparti A, Baratz A, Stifani S. The Groucho/transducin-like enhancer of split transcriptional repressors interact with the genetically defined amino-terminal silencing domain of histone H3. J Biol Chem., 1997, 272:26604 ~26610.
    113. Park IH, Arora N, Huo H, et al. Disease-specific induced pluripotent stem cells. Cell, 2008, 134(5):8778~86.
    114. Pesce M, Scholer HR. Oct4: Gatekeeper in the Beginnings of Mammalian Development. Stem Cells, 2001, 19:271~278.
    115. Petkov SG, Anderson G. Culture of Porcine Embryonic Germ Cells in Serum-Supplemented and Serum-Free Conditions: The Effects of Serum and Growth Factors on Primary and Long-Term Culture. Cloning and Stem Cells, 2008, 10 (2):263~275.
    116. Pflugrad A, Meir JY, Barnes TM, et al. The Groucho-like transcription factor UNC-37 functions with the neural specificity gene unc-4 to govern motor neuron identity in C.elegans. Development, 1997, 124:1699~1709.
    117. Piedrahita JA, Anderson GB, Bondurant RH. Influence of feeder layer type on the efficiency of isolation of porcine embryo-derived cell lines. Theriogenology 1990, 34(5):865~877.
    118. Piedrahita JA, Moore K, Oetama B, et al. Generation of transgenic porcine chimerias using primordial germ cell-derived colonies. Biol Reprod, 1998, 58(5):1321~1329.
    119. Qi XX, Li TG, Hao J, et al. BMP4 supports self-renewal of embryonic stem cells by inhibiting mitogen-activated protein kinase pathways. Proc Natl Acad Sci USA, 2004, 101: 6027~6032.
    120. Qin DJ, Li W, Zhang J, et al. Direct generation of ES-like cells from unmodified mouse embryonic fibroblasts by Oct4/Sox2/Myc/Klf4. Cell Res, 2007, 17(11): 959~962.
    121. Raimondi SC, Chang MN, Ravindranath Y, et al. Chromosomal abnormalities in 478 children with acute myeloid leukemia: clinical characteristics and treatment outcome in a cooperative Pediatric Oncology Group Study-POG 8821. Blood, 1999, 94:3707~3716.
    122. Ravindranath Y, Chang M, Steuber CP, et al. Pediatric Oncology Group (POG) studies of acute myeloid leukemia (AML): a review of four consecutive childhood AML trials conducted between 1981 and 2000. Leukemia, 2005, 19:2101~2116.
    123. Ren B, Chee KJ, Kim TH, et al. PRDI-BF1/Blimp-1 repression is mediated by corepressors of the Groucho family of proteins. Genes Dev, 1999, 13:125~137.
    124. Resnick JL, Bixler LS, Cheng L, et al. Long-stem proliferation of mouse primordial germ cells in culture. Nature, 1992, 359:550~553.
    125. Robertson EJ. Isolation, properties and karyotype analysis of pluripotential (EK) cell line from normal and parthenogenetic embryo. In: Silver LM, et al. Treato-carcinoma Stem cells, Cold Spring Harbor, 1983, 10: 647~669.
    126. Roose J, Molenaar M. Peterson J, et al. The Xenopus Wnt effector XTcf-3 interacts with Groucho-related transcriptional repressors. Nature, 1998, 395: 608~612.
    127. Sambrook J, Russell DW.Molecular Cloning: A laboratory manual,3rd Edition. Cold Spring Harbor Laboratory Press; Cold Spring Harbor, New York.2001.
    128. Saito S, Strelchenko N, Niemann H, et al. Bovine embryonic stem cell-like cell lines cultured over several passages. Dev Biol, 1992, 201: 134~141.
    129. Sato N, Meijer L, Skaltsounis L, et al. Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nature Med., 2004, 10: 55~63.
    130. Schoch C, Haase D, Haferlach T, et al. Fifty-one patients with acute myeloid leukemia and translocation t(8;21)(q22;q22): an additional deletion in 9q is an adverse prognostic factor. Leukemia. 1996, 10:1288~1295.
    131. Scholer H R, Octamania. The POU factors in murinedevelopment. Trends Genet, 1991, 7: 323~329.
    132. Sladek TE. A rat homolog of the Drosophila enhancer of split (groucho) locus lackingWD-40 repeats. J Biol Chem, 1993, 268:25681~25686.
    133. Schmidt CJ, Sladek TE. A rat homolog of the Drosophila enhancer of split (groucho) locus lacking WD-40 repeats. J Biol Chem, 1993, 268:25681~25686.
    134. Shamblott MJ, Axelman J, Wang S, et al. Derivation of pluripotent stem cells from cultured human primordial germ cells. Proc Natl Acad Sci USA, 1998, 95: 13726~13731.
    135. Sharief FS, Tsoi SC, Liss. cDNA cloning and genomic organization of enhancer of split grouch gene from nematode Caenorhabditis elegans. Biochem Mol Biol, 1997,43(2):327~337.
    136. Sharma M, Fopma A, Brantley JG, et al. Coexpression of Cux-1 and Notch Signaling Pathway Components During Kidney Development. Developmental Dynamics, 2004, 231:828~838.
    137. Shi Y, Hou L, Tang F, et al. Inducing embryonic stem cells to differentiate into pancreatic beta cells by a novel three-step approach with activin A and all-transretinoic acid. Stem Cells, 2005, 23(5):656~662.
    138. Shim H, Gutieeeez-Adon A, Chen LR,et al. Isolation of pluripotent stem cells from cultured porcine primordial germ cells. Biol Reprod, 1997, 57(5):1089~1095.
    139. Shiue Y L, Liou J F, Shiau J W, et al. In vitro culture period but not the passage number influencesthe capacity of chimera production of inner cell mass and its deriving cells from porcine embryos. Anim Repro Sci, 2006, 93: 134~143.
    140. Smith AG. Emryo-derived stem cells: of mice and men. Annu Rev Cell Dev Biol, 2001, 17:435~462.
    141. Stewart CL, Gadi I, Bhatt H. Stem cells from primordial germ cells can reenter the germ line. Dev Biol, 1994, 161: 626~628.
    142. Stifani S, Blaumueller CM, Redhead NJ, et al. Human homologs of a Drosophila Enhancer of split gene product define a novel family of nuclear proteins. Nat Genet, 1992, 2:119~127.
    143. Strojek RM, Reed MA, Hoover JL, et al. A method for culturing morphologically undifferentiated embryonic stem cells from porcine blastocysts. Theriogenology, 1990, 33(4): 901~913.
    144. Szebenyi G, Fallon J F. Fibroblast growth factors as multifunctional signaling factors. Int Rev Cyto l, 1999, 185:45~106.
    145. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 2006, 126(4): 663~676.
    146. Takashi A, Kojiro Y, Masato N, et al. Generation of Pluripotent Stem Cells from Adult Mouse Liver and Stomach Cells. Science, 2008, 321:699~702.
    147. Tesar PJ. Derivation of germ-line-competent embryonic stem cell lines from preblastocyst mouse embryos. Proc Natl Acad Sci USA, 2005, 102: 8239~8244.
    148. Tillmann SM, Meinecke B. Isolation of ES-like cell lines from bovine and caprine preimplantation embryos. J Anim Breed Cenet, 1996, 113:413~421.
    149. Thomson JA, Itskovitz-Eldor J, Shapiro SS, et a1.Embryonic stem cellsderived from humanblastocysts. Science, 1998, 282(5391):1145~1147.
    150. Thomson JA, Kalishman J, Golos TG, et al. Isolation of a primate embryonic stem cell line. Proc. Natl Acad Sci USA, 1995, 92: 7844~7848.
    151. Tian HB, Wang H, Sha HY, et al. Factors derived from mouse embryonic stem cells promote self-renewal of goat embryonic stem-like cells. Cell Biology International,2006,30: 452~458.
    152. Tutter AV, Fryer CJ, Jones KA.Chromatinspecific regulation of LEF-1 beta-catenin transcription activation and inhibition in vitro. Genes and Development, 2001, 15:3342~3354.
    153. Wakayama S, Hikichi T, Suetsugu R, et al. Efficient establishment of mouse embryonic stem cell lines from single blastomeres and polar bodies. Stem Cell, 2007, 2006~2015.
    154. Wakayama S, Ohta H, Kishigami S, et al. Establishment of male and female nuclear transfer embryonic stem cell lines from different mouse strains and tissues. Biology of Reproduction, 2005, 72:932~936.
    155. Wakayama T, Tabar V, Rodriguez I, et al. Differentiation of embryonic stem cell lines generated from adult somatic cells by nuclear transfer. Science, 2001, 292:740~743.
    156. Wang G, Zhang H, Zhao Y, et al.Noggin and bFGF cooperate to maintain the pluripotency of human embryonic stem cells in the absence of feeder layers. Biochem Biophys Res Commun, 2005, 330(3):934~942.
    157. Wang L, Duan E K, Sung L Y, et al. Generation and characterization of pluripotent stem cells from cloned bovine embryos. Biology of Reproduction, 2005, 73:149~155.
    158. Wernig M, Meissner A, Foreman R, et al. In vitro reprogramming of fibroblasts into a pluripotent ES cell-like state. Nature, 2007, 448: 318~324.
    159. Wheeler MB. Development and validation of swine embryonic stem cells: a review. Reprod Fertil Dev, 1994, 6(5):563~568.
    160. Wiemels JL, Xiao Z, Buffler PA, et al. In utero origin of t(8;21) AML1-ETO translocations in childhood acute myeloid leukemia. Blood, 2002, 99:3801~3805.
    161. Wobus AM, Holzhausen H, Jakel P, et al. Characterization of a pluripotent stem cell lines derived from a mouse embryo. Exp Cell Res, 1984, 152:212~219.
    162. Wulbeck C, Campos-Ortega JA. Two zebrafish homolugues of the Drosophila neurogenic gene groucho and their pattern of transcription during early embryogenesis.Dev Genes Evol, 1997, 207:156~166.
    163. Ying QL, Wray J, Nichols J, et al. The ground state of embryonic stem cell selfrenewal. Nature, 2008, 453:519~523.
    164. Yu JY, Vodyanik MA, Smuga-Otto K, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science, 2007, 318(5858):1917~1920.
    165. Yuan Y, Zhou L, Miyamoto T, et al. AML1-ETO expression is directly involved in the development of acute myeloid leukemia in the presence of additional mutations. Proc Natl Acad Sci USA., 2001, 98:10398~10403.
    166. Zamparini AL, Watts1 T, Gardner CE, et al. Hex acts withβ-catenin to regulateanteroposterior patterning via a Groucho-related co-repressor and Nodal. Development, 2006, 133:3709~3722.
    167. Zhu CC, Dyer MA, Uchikawa M, et al. Six3-mediated auto repression and eye development requires its interaction with members of the Groucho-related family of co-repressors. Development, 2002, 129:2835~2849.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700