用户名: 密码: 验证码:
金、银纳米有序结构的制备与光学性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米材料由于具有表面效应、体积效应、量子尺寸效应和宏观量子隧道效应,从而产生了许多奇异的力学、电学、磁学、热学、光学和化学等特性,因而受到广泛关注,对纳米材料制备与应用的研究已经成为材料科学研究领域备受关注的热点。
     金属纳米材料,尤其是贵金属金、银纳米颗粒的制备与研究一直是科技材料领域工作者研究的重点,有关金、银纳米金属颗粒的制备及性能的研究报导很多,但对于金、银纳米金属颗粒有序结构的制备与组装等方面的研究成果则很有限。另外,金属纳米颗粒所具有的表面等离子体共振使其具有了很好的光学特性。尤其近几年来,随着金、银等金属纳米颗粒的表面增强拉曼散射效应、以及荧光增强效应的进一步确认,对于金、银等金属纳米颗粒光学性能方面的研究已经成为纳米材料研究领域的一个热点。但是,这些研究主要集中在金属纳米颗粒的形貌、尺寸、发色团和局域场等方面,对于其有序纳米结构的光学性能方面的研究较少。
     基于上述国内外的研究现状,本论文从金属纳米有序结构的构建入手,对金、银纳米有序结构的制备进行了研究和探索,然后对所获得的金、银纳米有序结构的光学性能进行了研究,得到的主要研究成果包括以下几个方面:
     1.运用扩散理论和热力学基础理论,对拉伸还原技术中的结晶过程、还原反应过程进行了讨论;对玻璃拉伸中的形变进行了受力分析;结合具体的实验实现了有序银纳米颗粒在玻璃中的定向排布。微结构测试表明:玻璃样品中银颗粒呈长棒状,直径约50~100nm,长100~800nm,它们沿玻璃拉伸的方向呈定向排列。相应的工艺参数如下:晶化温度615℃,保温时间12h;拉伸温度570℃,拉伸速度120mm/min;还原压力0.25Mpa,还原温度430℃,还原时间4h。
     2.采用干法银离子置换-掩模板辅助照射技术,对在玻璃中可控生成有序纳米银簇进行了探索。获得了向玻璃基体中进行银离子注入的干法银离子置换的实验参数:电压1.5kV;温度350℃;时间150min。荧光光谱的研究表明,紫外光照射可以达到银的还原,并成为了卤化银结晶生成的晶核;偏振光透过光谱测试表明,经热处理和还原后玻璃中产生了银纳米簇有序化排布的结构迹象。
     3.依据米氏理论,对含有序纳米银颗粒玻璃的光学吸收性能进行了理论计算,并对具有不同微结构特征的样品进行了对比分析,结果显示:样品测试所得的偏光性能参数与理论计算基本一致;研究表明,样品的偏振波段带宽与样品中所含椭球形银颗粒的长径比分布状态有关,并随银颗粒的长径比分布范围增加而变宽。同时,研究表明玻璃中存在不同结构的Ag纳米颗粒,即针状的Ag颗粒和线状的Ag颗粒链,这些结构都对光的偏振效应有贡献。
     4.采用Z-扫描技术对含有序纳米银玻璃的三阶非线性光学性能进行了研究,结果表明:当入射光偏振方向与银纳米棒的轴向平行时,非线性折射率和非线性吸收系数均达到最大值。在入射光波波长为780nm,激光强度为1.9GW/cm~2的条件下,且当光偏振方向与银纳米棒的轴向呈现垂直状态时,得到最佳的单光子品质因子W=1.6和最佳的双光子品质因子T=0.16,能够满足光开关应用所需的W>1和T<1的要求。
     5.利用二次阳极氧化法制备了平均孔径约为60nm、有序度较高的AAO模板。获得了超纯铝电化学抛光的磷酸-硫酸-乙二醇新体系的配方及工艺参数,新体系具有无污染、抛光效果良好的特点;得到了二次阳极氧化法中各工艺对AAO膜孔结构有序性影响的规律。
     6.利用AAO模板的有序孔结构,获得了金纳米颗粒的规则点阵,经吸收光谱测试表明,这种有序金纳米结构的可见紫外吸收峰位于536nm处,峰形尖锐,且与理想的球形金纳米颗粒的峰值位置一致。通过热处理载玻片表面镀制的掺金TiO_2溶胶,实现了金纳米颗粒的载持,对其光学性能研究中发现,该样品的可见紫外吸收峰产生了显著的红移,这主要归因于金纳米颗粒的等离子体共振吸收峰由于受到周围TiO_2颗粒的影响而产生红移所致。同时,该样品具有显著的荧光效应,在633nm处出现了很明显的荧光峰,这主要是由于金纳米颗粒的局域电场受到周围TiO_2颗粒的影响而产生改变所致。
Nano-materials had many peculiar and fascinating properties in mechanics, electric magnetic,thermology,optics and chemical field,because of their basic properties of nanoparticles,such as surface effect,volume effect,quantum size effect and macroscopic quantum tunneling effect.The research and preparation of nanomaterials became a hot topic of the new times of science and technology.
     Reaearch on metal nano-materials,especially gold and silver metal nano-materials was always the focal point of scientists.There were many research reports about the controllable preparation and the assembly of gold and silver nanoparticles.However there were very limited results about the preparation and assembly of the ordered structure of gold and silver.For example,there were many reports on the preparation of glasses doped with gold and silver nanoprticles,but in these researches the nanoparticles only could be separated out on the surface or near the interface of block glass without spatial ordering.However,the ordered structure of gold and silver nanoparticles in the glass was necessary for opt-electronic integration,especially for all-optical integration technology.
     Moreover,metal nanomaterial had excellent optical properties due to the surface plasmon resonance.Especially in recent years,along with the confirmation of the surface enhanced Raman scattering effect and the fluorescence enhanced effect of gold and silver nanoparticles,the study of the performance and application of gold and silver nanoparticles had become a hot field of research.However,most research on the optical properties of it was focused on its morphology,size,fluorescein and emission field,while research on properties of the ordered structure of gold and silver nanoparticles was very limited.
     Basing on the current situation at home and abroad,the author firstly studied on the assembly of the ordered structure of gold and silver nanoparticles.After that,the optical properties of the ordered structure had been studied.The main results and conclusions of this dissertation were outlined as follows:
     1.With the diffusion theory and thermodynamics theory,the author had studied on the process of crystallization and reduction of the glass,and analyzed the stress of the glass during the stretching process.The ordered structure of silver nanoparticles arranged in the glass had been obtained.The microstructure of the glass samples was studied by FE-SEM.Silver nanorods had diameter of 50~100nm,length of 100~800nm.Corresponding technological parameters were outlined as follows:the heat treatment for crystallization was 615℃for 12h.The elongating temperature was 570℃.A stress of 75 kg was applied to the glass sample to draw at a rate of 120mm/min.The reduction was carried out at 430℃for 4h,and the hydrogen gas pressure was 0.25MPa.
     2.With the dry silver ion exchange and masking irradiation technology,the synthesis of silver cluster with ordered structure in the glass was studied.The experimental parameters of dry silver ion exchange were outlined as follows:1.5kV, 350℃,150min.The result showed that the silver ion could be injected into the glass by the dry silver ion exchange.The silver ion could be reduced and formed silver nucleus by UV irradiation.After the heat treatment and reduction,there was an indication of ordered arrangement of silver cluster formed in the glass.
     3.The optical absorption performance of the glass containing ordered structure of silver nanoparticles was calculated,contrastive analysis about the different structure of samples was done.The results showed that the polarizing performance parameters obtained from tests were consistent with the theoretical calculated results.The polarizing wavelength band of the glass sample was related to the distribution range of aspect ratio of the ellipsoid silver particles.Along with the increasing of distribution range,the band became broader.There should be two kinds of different configuration of silver nanoparticles involved in the polarization effect: one was the needle-like siver nanoparticles and another was the filament structure of silver.
     4.The third-order nonlinear optical properties of the glass samples were studied by Z-scan technology.The results showed that when the polarization of the laser was parallel to the elongation of the Ag nanorods,the nonlinear absorption coefficient and nonlinear refraction index reached their maximum values.At 780 nm,with a peak irradiance 1.9 GW/cm~2,when the polarization of the light was perpendicular to the elongation of the Ag nanorods,the appropriate figures of merit W=1.6 and T=0.16 were obtained,which satisfied the requirement of W>1 and T<1 for all optical switching applications.
     5.By two-step anodization method,porous anodic alumina was prepared successfully,and the average diameter of the pores was about 60nm.The vitriol-phosphate-glycol system,which was adopted during the electrochemistry polishing of high purity aluminum patch,was studied.The factors that affect on ordered porous structure of AAO film were studied.The factors included the pretreatment technology,the oxidization voltage,duration time of secondary anodization and pore enlarging treatment.
     6.Au nanoparticles were loaded on porous alumina template surface by photoreduction technique,and spherical gold nanoparticles formed regular arrangement that was consistent with the pore structure of AAO.The UV-Vis optical absorption peak of the ordered structure of gold on the surface of AAO membrane was at 536nm,that was consistent with the absorption peak of the ideal sphere gold nanoparticles.By thermochemical reduction of titanium dioxide sol-gel system doped on glass substrate,sample of Au nanoparticles loaded on glass substrate was obtained. Test results showed that the optical absorption peak had a distinct red shift,this phenomena could be due to the change of the surface plasmons of Au nanoparticles caused by the TiO_2 crystal particles around it.Meanwhile,there was a distinct fluorescence emission at the wavelength of 633nm.With the contrastive analysis,the phenomena could be due to the change of the local electrical field of Au nanoparticles caused by the TiO_2 crystal particles around it.
引文
[1]薛宽宏,包建春,纳米化学-纳米体系的化学构筑及应用,北京:化学工业出版社,2006.
    [2]白春礼,纳米科学与技术,云南:云南科技出版社,1999.
    [3]朱静,纳米材料与器件,北京:清华大学出版社,2003.
    [4]张立德,牟季美,纳米材料和纳米结构,北京:科技出版社,2001.[
    5]K.J.Klabunde,Nanoscale materials in chemistry,John Wiley & Sons,Inc.,New York,USA,2001.
    [6]Z.L.Wang,Characterization of nanophase materials,Wiley-VCH Verlag GmbH,2000.
    [7]J.J.Shiahg,A.N.Goldstein,A.P.Alivisatos,Lattice reorganization in electronically excited semi-conductor clusters[J]J.Chem.Phys.,1990,92:3232-3236.
    [8]M.V.Rama Krishna,R.A.Friesner,Quantum confinement effects in semiconductor dusters[J].J.Chem.Phys,1991,95:8309-8314.
    [9]Y.Wang,W.Mahler,Degenerate four-wave mixing of CdS/polymer composite[J].Opt.Commun.,1987,61(3):233-236.
    [10]E.Hilinski,P.Lucas,Y.Wang,A plicosecond bleaching study of quantum-confined cadmium sulfide microcrystallites in polymer film[J].J.Chem.Phys.,1988,89(6):3435-3441.
    [11]S.Auer,D.Frenkel,Suppression of crystal nucleation in polydisperse colloids due to increase of the surface free energy[J].Nature,2001,413:711-713.
    [12]陈敬中,刘剑洪,纳米材料科学导论,北京:高等教育出版社,2006.
    [13]李永军,刘春艳,有序纳米结构薄膜材料,北京:化学工业出版社,2006.
    [14]A.Henglein,Small-particle research:physicochemical properties of extremely small colloidal metal and semiconductor particles[J].Chem.Rev.,1989,89:1861-1873.
    [15]T.Matsumoto,J.Suzuki,M.Ohnuma,et al.Direct evidence of quantum size effect in nano crystalline silicon[J].Phys.Rev.B,2001,63:195322(1)-195322(5).
    [16]L.E.Brus,Electron-electron and electron-hole interactions in small semiconductor crystallites:the size dependence of the lowest excited electronicstate[J].J.Chem.Phys.,1984,80(9):4403-4409.
    [17]B.Barbara,W.Wernsdorfer,TI quantum tunneling effect in magnetic particles[J].Curr.Opin.Solid State Mater.Sci.,1997,2:220-225.
    [18]N.R.Tana,L.Gearheart,C.J.Murphy,Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio[J].Chem.Commun.,2001,7:617-618.
    [19]S.H.Chen,Z.Y.Fan,D.L.Carroll,Silver nanodisks:synthesis,characterization and self-assembly [J].J.Phys.Chem.B,2002,106(42):10777-10781.
    [20]Y.G.Sun,Y.N.Xia,Triangular nanoplates of silver:synthesis,characterization,and use as sacrificial templates for generating triangular nanorings of gold[J]Adv.Mater.,2003,15(9):695-699.
    [21]O.Jessensky,F.Muller,U.Gosele,Self-organized formation of hexagonal pore arrays in anodic alumina[J]Appl.Phys.Lett.,1998,72(10):1173-1175.
    [22]X.Y.Zhang,L.D.Zhang,W.Chen,et al.Electrochemical fabrication of high ordered semiconductor and metallic arrays[J].Chem.Mater.,2001,13:2511-2515.
    [23]R.L.ZongrJ.Zhou,Q.Li,et al.Synthesis and optical properties of silver nanowires arrays embedded in anodic alumina membrane[J],J.Phys.Chem.B.,2004,108:16713-16716.
    [24]M.S.Sander,R.Gronsky,T.Sands,et al.Structure of bismuth telluride nanowires arrays fabricated by electrodeposition into porous anodic alumina template[J].Chem.Mater.,2003,15:335-339.
    [25]V.M.Cepak,C.R.Martin,Preparation and stability of template-synthesized metal nanorod sols in organic solvents[J]J.Phys.Chem.B,1998,102:9985-9990.
    [26]J.K.N.Mbindyo,T.E.Mallouk,J.B.Mattzela,et al.Template synthesis of metal nanowires containing monolayer molecular junctions[J]J Am.Chem.Soc.,2002,124(15):4020-4026.
    [27]C.M.Yang,H.S.Sheu,K.J.Chao.Templated synthesis and structural study of densenly packed metal namostructures in MCM41 and MCM48[J].Adv.Funct.Mater.,2002,12(2):143-148.
    [28]Y.Zhang,H.Dai,Formation of metal nanowires on suspended single-walled carbon nanotubes[J]Appl.Phys.Lett.,2000,77(19):3015-3017.
    [29]C.J.Murphy,N.R.Jana,Controlling the aspect ratio of inorganic nanorods and nanowires[J].Adv.Mater.,2002,14(1):80-82.
    [30]N.R Jana,L.Gearheart,C.J.Murphy,Wet chemical synthesis of high aspect ratio cylindrical gold nanorods[J].J.Phys.Chem.B,2001,105:4065-4071.
    [31]N.R.Jana,L.Gearheart,C.J.Murphy,Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template[J].Adv.Mater.,2001,13(18):1389-1393.
    [32]Y.G.Sun,B.Gates,B.T.Mayers,Y.N.Xia,Crystalline silver nanowires by soft solution processing[J]..Nano.lett.,2002,2:165-168.
    [33]Y.G.Sun,Y.D.Yin,B.T.Mayers,et al.Uniform silver nanowires synthesis by reducing AgNO_3 with ethylene glycol in the presence of seeds and poly(vinyl pyrrolidone)[J].Chem.Mater.,2002,14:4736-4745.
    [34]M.H.Huang,S.Mao,H.Feick,H.Yan,et al.Room-temperature ultraviolet nanowire nanolasers[J].Science,2001,292:1897-1899.
    [35]Q.T.Zhao,J.R.Qiu,C.J.Zhao,et al.Synthesis and formation mechanism of silver nanowires by a templateless and seedless method[J].Chem.Lett.,2005,34:30-31.
    [36]Y.Gao,P.Jiang,D.F.Liu,Synthesis,charactedzation and self-assembly of silver nanowires[J].Chem.Phys.Lett.,2003,380:146-149.
    [37]Y.G.Sun,B.Mayers,T.Herricks,et al.Polyol synthesis of uniform silver nanowires:a plausible growth mechanism and the supporting evidence[J].Nano.Lett.,2003,3:955-960.
    [38]Z.H.Wang,X.Y.Chen,J.W.Liu,et al.Glucose reduction route synthesis of uniform silver nanowires in large-scale[J].Chem.Lett.,2004,33:1160-1161.
    [39]X.W.Zheng,L.Y.Zhu,A.H.Yan,et al,Controlling synthesis of silver nanowires and dendrites in mixed surfactant solutions[J].J.Colloid Interf.Sci.,2003,268:357-361.
    [40]G.D.Wei,C.W.Nan,D.P.Yu,Large-scale self-assembled Ag nanotubes[J].Tsinghua Science and Technology,2005,10(6):736-740.
    [41]J.W.Bai,Y.Qin,C.Y.Jiang,et al.Polymer-controlled synthesis of silver nanobelts and hierarchical nanocolumns[J].Chem.Mater.,2007,19:3367-3369.
    [42]I.Pastoriza-Santos,L.M.Liz-Marzan,Synthesis of silver nanoprisms in DMF[J].Nano.Lett.,2002,2(8):903-905.
    [43]T.C.Deivaraj,N.L.Lala,J.Y.Lee,et al.Solvent-induced shape evolution of PVP protected spherical silver nanoparticles into triangular nanoplates and nanorods[J]J.Colloid Interf.Sci.,2005,289:402-409.
    [44]S.H.Chen,D.L.Carroll,Synthesis and characterization of truncated triangular silver nanoplates [J].Nano.Lett.,2002,2:1003-1007.
    [45]E.Stathatos,P.Lianos,Photocatalytically deposited silver nanoparticles on mesoporous TiO_2films[J].Langmuir,2000,16:2398-2400.
    [46]A.Dawson,P.V.Kamat,Semiconductor metal nanocomposites:photoinduced fusion and photocatalysis of gold-apped TiO_2(TiO_2/Gold)nanoparticles[J].J.Phys.Chem.B,2001,105:960-966.
    [47]K.Kawano,M.Komatsu,Y.Yajima,et al.Photoreduction of Ag ion on ZnO single crystal [J].Appl.Surf.Sci.,2002,189:265-270.
    [48]C.Pacholski,A,Kornowski,H.Weller,Site-specific photodeposition of silver on ZnO nanorods [J].Angew.Chem.2004,116:4878-4881.
    [49]黄华,吴世法,纳米银胶的光化学制备及其特性研究.光子学报,2005,34(11):1643-1646.
    [50]J.Zhu,Y.Shen,A.Xie,et al.Photoinduced synthesis of anisotropic gold nanoparticles in room temperature ionic liquid[J].J.Phys.Chem.C,2007,111:7629-7633.
    [51]M.Maillard,P.Huang,L.Brus,Silver nanodisk growth by surface plasmon enhanced photoreduction of absorbed[Ag~+][J].Nano.Lett.,2003,3(11):1611-1615.
    [52]F.Kim,J.H.Song,P.D.Yang,Photochemical synthesis of gold nanorods[J].J.Am.Chem.Soc.,2002,124:14316-14317.
    [53]R.Jin,Y.Cao,C.A.Mirkin,et al.Photoinduced conversion of silver nanospheres to nanoprisms [J].Scinece,2001,294(30):1901-1903.
    [54]K.Sollner,Ultrasonic waves in colloid chemistry[J].J.Phys.Chem.,1938,42(8):1071-1078.
    [55]侯烨,超声辅助制备纳米级Cu_2(OH)PO_4:[硕士学位论文].长春:东北师范大学,2005.
    [56]K.S.Susilck,Seok-Burn Choe,A.A.Cichowlas,et al.Sonochemical sythesis of amorphous iron [J].Nature,1991,353:414-420.
    [57]Y.T.Didenko,W.B.Mcnamara,K.S.Susilck,Hot spot condition during cavitation in water[J]J.Am.Chem.Soc.,1999,121:5817-5818.
    [58]K.S.Susilck,GJ.J.Price,Application of ultrasound to material chemistry[J].Annu.Rev.Mater.Sci.,1999,29:295-326.
    [59]V.G.Pol,A.Gedanken,J.Calderon-Moreno,Deposition of gold nanoparticles on silica spheres:a sonochemicalapproach[J].Chem.Mater.,2003,15:1111-1118.
    [60]L.P.Jiang,S.Xu,J.M.Zhu,et al.Uitrasonic-assisted synthesis of monodisperse single-crystalline silver nanoplates and gold nanorings[J].Inorg.Chem.,2004,43:5877-5883.
    [61]F.Tao,Z.Wang,D.Chen,et al.Synthesis of silver dendritic hierarchical structures and transformation into silver nanobelts through an ultrasonic process[J].Nanotechnology,2007,18:295602(6pp).
    [62]J.Zhang,B.Han,M.Liu,et al.Ultrasonication-induced formation of silver nanofibers in reverse micelles and small-angle X-ray scattering studies[J]J.Phys.Chem.B,2003,107:3679-3683.
    [63]邵丽,王西奎,国伟林等,超声化学法制备树枝状纳米银的研究.无机化学学报,2007,23(10):1842-1828.
    [64]袁怡松,颜色玻璃(六)银和金的着色.玻璃与搪瓷,1997,25(3):56-61.
    [65]K.Fukumi,A.Chayahara,K.Kadon.Nonlinear optical property of Au-doped silica glass by ion implantation.Science and Technology of New Glass,Japan,1991:p364-369.
    [66]王承遇,玻璃中离子注入研究的现状与发展趋势.硅酸盐学报,2001,29(5):455-459.
    [67]P.Mazzoldi,G.W.Arnol,G.Battaglin,et al.Peculiarities and application perspectives of metal-ion implants in Glass[J].Nucl.Instr.Meth.Phys.Res.,1994,B91:478-492.
    [68]E.Cattaruzza,G.Battaglin,R.Polloni,et al.Nanocluster formation in silicate glasses by sequential ion implantation procedures[J].Nuclear Instruments and Methods in Physics Research,1999,B148:1007-1011.
    [69]邱建荣,钱国栋,飞秒激光空间选择性诱导玻璃微结构及应用.材料研究学报,2003,17(1):1-9.
    [70]曾惠丹,曲士良,姜雄伟等,飞秒激光作用下金掺杂硅酸盐玻璃的光致晶化研究.物理学报,2003,52(10):139-143.
    [71]曾惠丹,姜雄伟,曲士良等,激光诱导玻璃内部金纳米颗粒的析出及光谱.光学学报,2003,23(90):1076-1079.
    [72]曲士良,赵崇军,高亚臣等,飞秒激光所致金纳米颗粒析出的玻璃非线性吸收.物理学报,2005,54(01):139-143.
    [73]曾惠丹,邱建荣,姜雄伟等,氧化铅的添加对激光诱导玻璃中金纳米颗粒析出的影响.无机材料学报,2004,19(2):444-448.
    [74]X.W.Jiang,J.R.Qiu,H.D.Zeng,et al.Laser controlled dissolution of gold nanoparticles in glass[J].Chemical Physics Letters,2004,391:91-94.
    [75]J.W.Sheng,K.Kadono,T.Yazawa.Nanosized gold clusters formation in selected areas of soda-lime silicate glass[J].Journal of non-crystalline solids,2003,324:295-299.
    [76]J.W.Sheng,K.Kadono,T.Yazawa.Photo-irradiation induced recyclable coloration for soda lime silicate glass[J].Physics and chemistry of glasses,2004,45(1):27-31.
    [77]曾惠丹,邱建荣,姜雄伟等,透明玻璃内部金纳米颗粒的空间选择性析出控制.硅酸盐学报,2004,32(3):270-274。
    [78]徐建梅,银离子交换法制备光致变色玻璃的研究.非金属矿,2001,24(51):39-40.
    [79]W.Liu,X.M.Gu,K.M.Liang.The phase separation mechanism of CaO-B_2O_3-P_2O_5 in an electric field[J].Mat.Sci.&Eng,1999,A265:25-28.
    [80]肖学山,李维火,童远达等,聚合物熔体在强静电场下成核与长大的理论分析.上海大学学报(自然科学版),2001,7(3):235-238.
    [81]J.J.Shyu,Y.H.Chen.Effect of electric field on the crystallization of lead titanate in a Glass [J].Mat.Sci.,2004,39:159-163.
    [82]林健,黄文,罗丽庆,辅助电场下TeO_2-Nb_2O_5-AgCI系统玻璃的核化与析晶机理研究.无机材料学报,2005,3(20):557-562.
    [83]J.Sasai,K.Hirao.Relaxation behavior of nonlinear optical response in borate glasses containing gold nanoparticles[J].J.Appl.Phys.,2001,89(8):4548-4553.
    [84]Y.Hamanaka,A.Nakamura,N.D.Fatti,et al.Ultrafast response on nonlinear refractive index of silver nanocrystal sembedded in glass[J].Appl.Phys.Lett.,1999,75(12):1712-1715.
    [85]S.D.Stocky,R.J.Araujo,Selctive polarization of light due to absorption by small elongated silver particles in glass[J].Appl.Opt.,1968,7(5):777-779.
    [86]T.P.Seward III,Coloration and optical anisotropy in silver-containing glasses[J].J.Non-Cryst.Solids,1980,40:499-513.
    [87]K.Baba,J.Katsu,M.Miyagi,Optical anisotropy of stretched gold island films:experimental results[J].Opt.Lett.1992,17:622-624.
    [88]A.J.Naylor,J.L.Neumann,S.Robert,et al.Polarizers and isolators and methods of manufacture,US 7110179,2006-9-19.
    [89]K.Miura,H.Inouye,J.Qiu,et al.Optical waveguides induced in inorganic glasses by a femto second laser[J].Nuclear Instruments and Methods in Physics Research B,1998,141(1-4):726-732.
    [90]Y.Kondo,K.Miura,T.Suzuki,et al.Three-dimensional arrays of crystallites within glass by using non-resonant femtosecond pulses[J].J.Non-crystalline solids,1999,253(1-3):143-156.
    [91]J.R.Qiu,C.Sh.Zhu,T.Nakaya,et al.Space-selective valence state manipulation of transition metal ions inside glasses by a femtosecond laser[J].Appl.Phys.Lett.,2001,79(22):3567-3569.
    [92]P.A.Smith,C.D.Nordquist,T.N.Jackson,T.S.Mayer,Electric-field assisted assembly and alignment of metallic nanowires[J].Applied Physics Letters,2000,77:1399-1401.
    [93]Y.Huang,X.Duan,Q.Wei,C.M.Lieber,Directed assembly of one-dimensional nano structures into functional networks[J].Science,2001,291:630-633.
    [94]S.Auvray,V.Derycke,M.Goffman,A.Filoramo,O.Jost,J.P.Bourgoin,Chemical optimization of self-assembled carbon nanotube transistors[J].NanoLetters,2005,5:451-455.
    [95]S.Jin,D.M.Whang,M.C.McAlpine,R.S.Friedman,Y.Wu,C.M.Lieber,Scalable intercomnection and integration of nanowire devices without registration[J].NanoLetters,2004,4:915-919.
    [96]G.H.Yu,A.Y.Cao,C.M.Lieber,Large-area blown bubble films of aligned nanowires and carbon nanotubes[J].Nature Nanotechnology,2007,2:372-377.
    [97]C.A.Mirkin,R.L.Letsinger,R.C.Mucic,JJ.Storhoff,A DNA-based method for rationally assembling nanoparticles into macroscopic materials[J].Nature,1996,38:607-609.
    [98]A.P.Alivasatos,K.P.Johnsson,X.G.Peng,T.E.Willson,et al.Nature,1996,38:609-610.
    [99]K.B.Blodgett,I.Langmuir,Built-up of barium stearate and their optical properties[J].Phys.Rev.,1937,57:964-982.
    [100]C.P.Collier,R.J.Saykally,J.J.Heath,et al.Reversible tuning of silver quantum dot monolayers through the metal-insulator transition[J].Science,1997,277:1978-1981.
    [101]J.J.Brown,J.A.Porter,C.P.Daghlian,et al.Ordered arrays of amphiphilic gold nanoparticles in Langmuir monolayers[J].Langmuir,2001,17:7966-7969.
    [102]K.L.Kelly,E.Coronado,L.L.Zhao,et al.The optical properties of metal nanoparticles:the influence of size,shape,and dielectric environment[J].J.Phys.Chem.B,2003,107:668-677.
    [103]S.Link,M.A.El-Sayed,Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods[J].J.Phys.Chem.B,1999,103,8410-8426.
    [104]T.Takagahara.Effects of dielectric confinement and electron-hole exchange interaction on excitonic states in semiconductor qutantum dots[J].Phys.Rev.B.,1993,47(8):4569-4584.
    [105]C.L.Haynes,A.D.McFarland,et al.Nanoparticle optics:the importance of radiative dipole coupling in two-dimensional nanoparticle arrays[J].J.Phys.Chem.B,2003,107,7337-7342.
    [106]L.Zhang,C.F.Li,J.Li,F.Zhang,L.N.Shi,Design and fabrication of metal-wire nanograting used as polarizing beam splitter in optical telecommunication[J].Journal of optoelectronics and advanced materials,2006,8(2):847-850.
    [107]K.L.Kelly,E.Coronado,L.L.Zhao,et al,The optical properties of metal nanoparticles:the influence of size,shape,and dielectric environment[J].J.Phys.Chem.B,2003,107:668-677.
    [108]C.Burda,X.B.Chen,R.Narayanan,et al.Chemistry and properties of nanocrystals of different shapes[J].Chem.Rev.,2005,105:1025-1102.
    [109]J.J.Mock,S.J.Oldenburg,D.R.Smith,et al,Composite plasmon resonant nanowires[J].Nano,Lett.,2002,2(5):465-469.
    [110]B.J.Wiley,S.H.Im,Z.Y.Li,et al,Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis[J].J.Phys.Chem.B,2006,110:15666-15675.
    [111]O.Siiman,L.A.Bumm,R.Callaghan,C.G.Blatchford,M.Kerker.Surface-enhanced raman scattering by citrate on colloidal silver[J].J.Phys.Chem.,1984,87:1014-1023.
    [112]刘云,刘春艳,张志颖,银-金红石复合纳米微晶的光谱性能.化学学报,2000,58(4):397-401.
    [113]A.Henglein.Physicochemical properties of small metal particles in solutin:"microelectrode"reactions,chemisorption,composite metal particles and the atom-to-metal transition[J].J.Phys.Chem.,1993,97:5457-5471.
    [114]张宇,汪昕,傅德刚,陆祖宏,表面修饰的Ag_2S纳米微粒的光学非线性特性.光学学报,2001,21(2):218-221.
    [115]凌绍明,蒋治良,闭献树,义祥辉,Ag/AgCl纳米粒子的制备及其共振散射光谱研究.光谱学与光谱分析,2001,21(6):820-821.
    [116]蒋治良,冯忠伟,李廷盛,李芳,钟福新,谢济运,义祥辉,金纳米粒子的共振散射光谱.中国科学(B),2001,31(2):183-188.
    [117]Keitarou Nakamura,Takashi Kawabata,Yasushige Mori.Size distribution analysis of colloidal gold by small angle X-ray scattering and light absorbance[J].Powder Technology,2003,131:120-128t
    [118]D.Cotter,M.G.Burt,R.J.Manning,Below-band-gap third-order optical nonlinearity of nanometer-size semiconductor crystallites[J].Phys.Rev.Lett.,1992,68(8):1200-1203.
    [119]Y.Wang,Nonlinear optical propertieds of nanometer sized semiconductor dusters[J].Acc.Chem.Res.,1991,24(5):133-139.
    [120]T.Takagahara,Effects of dielectric confinement and electron-hole exchange interaction on excitonic states in semiconductor quantum dots[J].Phys.Rev.B,1993,47(8):4569-4584.
    [121]N.Pincon-Roetzinger,D.Prot,B.Palpant,et al.,Large optical Kerr in matrix-embedded metal nanoparticles[J].Mater.Sci.Engin.C.,2002,19:51-54.
    [122]Y.Hamanaka,K.Fukuta,A.Nakamura,Enhancement of third-order nonliner optical suscep tibilities in silica-capped Au nanoparticles films with very high concentrations[J].Appl.Phys.Lett.,2004,84(24):4938-4940.
    [123]S.V.Gaponenko,Optical properties of semiconductor nanocrystals.Cambddge University Press:Cambridge,1998.
    [124]A.P.Alivisatos,Semiconductor clusters,nanocrystals and quantum dots[J].Science,1996,271:933-937.
    [125]J.Zhu,Enhanced fluorescence from Dy~(3+) owing to surface plasmon resonance of Au colloid nanoparticles[J].Materials Letters,2005,59:1413-1416.
    [126]H.J.Bi,W.P.Cai,L.D.Zhang.Reversible emission enhancement for Ce31-doped silica nanoparticles dispersed within pores of mesoporous silica[J].Materials Research Bulletin,2000,35:1495-1501.
    [127]H.Y.Xie,J.G.Liang,Z.L.Zhang,Y.Liu,Z.K.He,D.W.Pang.Luminescent CdSe-ZnS quantum dots as selective Cu~(2+) probe[J].Spectrochimica Acta Part A,2004,60:2527-2530.
    [128]L.Y.Wang,L.Wang,T.T.Xia,L.Dong,H.Q.Chen,L.Li,Selective fluores-cence determination of chromium(Ⅵ)with poly-4-vinylaninline nanoparticles[J].Spectro-chimica Acta Part A,2004,60:2465-2468.
    [129]J.R.Lakowicz,Radiative decay engineering:biophysical and biomedical application[J].Anal.Biochem.,2001,298:1-24.
    [130]J.R.Lakowicz,Y.Shen,S.D.Auria,et al.Radiative decay engineering 2:effect of silver island films on fluorescence intensity,lifetime,and resonance energy transfer[J].Anal.Biochem.,2002,301:261-277.
    [131]J.R.Lakowicz,Y.Shen,Z.Gryczynski,et al.Intrinsic fluorescence from DNA can be enhanced by metallic particles[J].Biochem.Biophys.Res.Commun.,2001,286:875-879.
    [132]K.Sokolov,G.Chamanov,T.M.Cotton,Enhancement of molecular fluorescence near the surface of colloidal metal films[J].Anal.Chem.,1998,70:3898-3905.
    [133]J.Kummerlen,A.Leitner,H.Brunner,et al.Enhanced dye fluorescence over silver island films:analysis of the distance dependence[J].Mol.Phys.,1993,80(5):1031-1046.
    [134]C.D.Geddes,J.R.Lakowicz.Metal-enhanced fluorescence[J].J.Fluoresc.,2002,12(2):121-129.
    [135]J.Malicka,I.Gryczynski,Z.Gryczynski,et al.Effects of fluorophore-to-silver distance on the emission of cyanine dye-labeled oligonuleotides[J].Anal.Biochen.,2003,317:57-66.
    [136]L.Shang,H.J.Chen,S.J.Dong,Electrochemical preperation of silver nanostructure on the planar surface for application in metal-enhanced fluorescence[J].J.Phys.Chem.C,2007,111:10780-10784.
    [137]K.Aslan,C.D.Geddes.Microwave-accelarated metal-enhanced fluorescence(MAMEF):A new platform technology for ultra-fast and ultra-bright assays[J].Anal.Chem.,2005,77:8057-8067.
    [138]K.Aslan,R.Badugu,J.R.Lakowicz,et al.Metal-enhanced fluorescence from plastic substrates[J].J.Fluoresc.,2005,15:99-104.
    [139]K.Aslan,P.Holley,C.D.Geddes.Metal-enhanced fluorescence from silver nanoparticles-deposited polycarbonate substrates[J].J.Mater.Chem.,2006,16:2846-2857.
    [140]C.D.Geddes,A.Parfenov,J.R.Lakowicz.Photodepositon of silver can result in metalenhanced fluorescence[J].J.Appl.Spectrosc.,2003,57:526-531.
    [141]J.Zhang,E.Matveeva,I,Gryczynski,et al.Metal-enhanced fluoroimmunoassay on a silver film by vapor deposition[J].J.Phys.Chem.B,2005,109:7969-7975.
    [142]C.D.Geddes,A.Parfenov,D.Roll,et al.Electrochemical and laser deposition of silver for use in metal-fluorescence[J].Langmuir,2003,19:6236-6241.
    [143]I.Gryczynski,J.Malicka,C.D.Geddes,J.R.Lakowicz.The CFS engineers the intrinsic radiative decay rate of low quantum yield fluorophores[J].J.Fluoresc.,2003,12(1):11-13.
    [144]C.D.Geddes,H.Cao,I.Gryczynski,et al.Metal-enhanced fluorescence(MEF) due to silver colloids on a planar surface:potential applications of indocyanine green to in vivo imaging [J].J.Phys.Chem.A,2003,107:3443-3449.
    [145]J.Lukomska,J.Malicka,I.Gryczynski,et al.Fluorescence enhancements on silver colloid coated surface[J].J.Fluoresc.,2004,14:417-423.
    [146]A.Parfenov,I.Gryczynski,J.Malicka,et al.Enhanced fluorescence from fluorophores on fractal silver surface[J].J.Phys.Chem.B,2003,107:8829-8833.
    [147]C.D.Geddes,A.Parfenov,D.Roll,et al.Silver fractal-like structures for metal-enhanced fluorescence:Enhanced fluorescence intensities and increased probe photostabilities[J].J.Fluoresc.,2003,13:267-276.
    [148]K.Aslan,Z.Leonenko,J.R.Lakwicz,et al.Fast and Slow deposition of silver nanorods on planar surface:application to metal-enhanced fluorescence[J].J.Phys.Chem.B,2005,109,3157-3162.
    [149]A.R.Tao,P.D.Yang,Polarized surface-enhanced raman spectroscopy on coupled metallic nanowires[J].J.Phys.Chem.B,2005,109:15687-15690.
    [150]R.C.Del,J.Requejo-Isidro,J.Solis,J.Gonzalo,C.N.Afonso,Third order nonlinear optical sus-ceptibility of Cu:Al2O3 nanocomposites:From spherical nanoparticles to the percolation threshold[J].J.Appl.Phys.,2004,95(5):2755-2762.
    [151]M.L.Sandrock,C.A.Foss,Synthesis and linear optical properties of nanoscopic gold particle pair structures[J]J.Phys.Chem.B,1999,103:11398-11406.
    [152]P.Royer,J.P.Goudonnet,R.J.Warmark,T.L.Ferrell,Substrate effects on surface-plasmon spectra in metal-island films[J].J.Phys.Rev.B,1987,35(8):3753-3759.
    [153]S.D.Stookey,R.J.Araujo,Selctive polarization of light due to absorption by small elongated silver particles in glass[J].Appl.Opt.,1968,7(5):777-779.
    [154]R.J.Araujo,W.H.Cramer,Y.Wash,S.D.Stookey,Method of forming photochromic polarizing glass,US 3653863,19724-17.
    [155]W.P.Lentz,I.T.P.Seward,G.C.Shay,Drawing laminated polarizing glasses,US 4486213,1982-12-4.
    [156]Tajima Hidemi,Takahashi Takeshi,Miyashita Yukad,Matsuoka Yoshihiko,Process for the production of polarizing glass,US 5840096,1995-11-24.
    [157]M.Mennig,J.Spanhel,H.Schmidt,S.Betzholz,Photoinduced formation of silver colloids in a borosilicate sol-gel system[J].J.Non-Cryst.Solids.,1992,147-148:326-330.
    [158]张联盟,黄学辉,宋晓岚,材料科学基础,武汉:武汉理工大学出版社,2004.
    [159]W.Jimmy,S.Larry,et al.,Wikipedia,http://en.wikipedia.org.
    [160]林文辉,偏光玻璃的制备工艺机理研究:[硕士学位论文].武汉:武汉工业大学,1983.
    [161]J.X.Liu,Y.L.Chen,K.J.Yi,et al.,Study of silver free photochromic glass[J].J.Non-cryst.Solids.,1989,112:165-166.
    [162]A.A.Anikin,V.K.Malinovsky,The structure of colour centers in photochromic glass[J].J.Non-cryst.Solids.,1979,34:393-403.
    [163]J.K.Lee,T.Hochbauer,R.D.Averitt,M.Nastasi,Relationship between damage evolution and Si-H complexes formation in hydrogen implanted Si[J].Nuclear instruments and methods in physics research B,2004,219-220:662-665.
    [164]E.J.Liang,C.Engert,W.Kiefer,Surface-enhanced Raman scattering of halide ions,yridine and crystal violet on colloidal silver with near-infrared excitation:low-wavenumber vibrational modes[J].Vibrational Spectroscopy,1995,8:435-444.
    [165]W.C.S.Daniel,S.R.Seshadri,Thin-film grating polarizer[J].Optics letters,1994,19:469-471.
    [166]W.C.S.Daniel,S.R.Seshadri,"Thin dielectric waveguide with a phased array of two gratings on its surface,"[J].J.Appl.Phys.1994,75:4851-4872.
    [167]M.J.Bloemer,T.L.FerreU,M.C.Buncick,R.J.Warmack,Optical properties of submicrometer size silver needles[J].Physical Review B,1988,37(14):8015-8020.
    [168]M.C.Buncick,R J.Warmack,T.L.Ferrell,Optical absorbance of silver ellipsoidal particales[J].J.Opt.Soc.Am.B.,1987,4(6):927-933.
    [169]H.Kozuka,M.Okuno,T.Yoko,Dispersion of elongated gold nano-particles aligned in a pseudoboehmite matrix by sol-gel method[J].J.Ceramic.Soc.of Japan,1995,1103(12):1305-1308.
    [170]R.Chuang,C.J.Lee,Low-loss deep glass waveguides produced with dry silver electromigration process[J].Lightwave Technol,2002,20:1590-1597.
    [171]S.Hendy,Light scattering in transparent glass ceramics[J]Appl.Phys.Lett.,2002,81:1171-1173.
    [172]D.Manikandan,S.Mohan,K.G.M.Nair,Absorption and luminescence of silver nanocomposite soda-lime glass formed by Ag~+-Na~+ ion-exchange[J].Mater.Res.Bull.,2003,38:1545-1550.
    [173]K.C.Lee,Photoluminescence from Ag colloids,powder,film,and roughened electrodes[J],Surf.Sci.,1985,163:L759-765.
    [174]R.C.Baetzold,Calculated properties of Ag clusters on silver halide cubic surface sites[J].J.Phys.Chem.B,1997,101:8180-8190.
    [175]D.W.Wang,S J.Guo,H.X.Ren,S.Yin,Optical characteristics of silver-doped polarizing glass[J].OpticsLetters,2002,27(12):992-994.
    [176]B.Kazutaka,M.Mitsunobu,Optical polarizer using anisotropic metallic island films with a large aperture and a high extinction ratio[J].Optics Letters,1991,16(12):964-966.
    [177]T.P.Seward,Coloration and optical anisotropy in silver-containing glasses[J].Journal of noncrystalline solids,1980,40:499-513.
    [178]J.A.Osborn,Demagnetizing factors of the general ellipsoid,Physical review[J].1945,67:351-357.
    [179]E.D.Palik,Handbook of optical constants of solids,Academic,Orlando,Fla.,1985.
    [180]S.Polizzi,P.Riello,GFagherazzi,N.F.Borrelli,The microstructure of borosilicate glasses containing elongated and oriented phase-separated crystalline particles[J].Journal of noncrystalline solids,1998,232-234:147-154.
    [181]D.Ricard,P.Roussignol,C.Flytzanis,Surface-mediated enhancement of optical phase conjugation in metal colloids[J].Opt.Lett.,1985,10:511-513.
    [182]J.Zyss,Molecular nonlinear optics,New York,Academic,1994.
    [183]S.R.Marder,W.E.Torruellas,D.M.Blanchard,et al.,Large molecular third-order optical non linearities in polarized carotenoids[J].Science,1997,276:1233-1236.
    [184]M.M.Fejer,S.J.B.Yoo,R.L.Byer,et al.Observation of extremely large quadratic susceptibility at 9.6-10.8 μm in electric-field-biased AlGaAs quantum wells[J].Phys.Rev.Lett.,1989,62:1041-1044.
    [185]Y.Wang,X.Xie,T.Goodson,et al.Enhanced third-order nonlinear optical properties in dendrimer-metal nanocomposites[J].Nano.Lett.,2005,5:2379-2384.
    [186]C.Halvorson,A.Hays,B.Kraabel,et al.A 160-femtosecond optical image processor based on a conjugated polymer[J].Science,1994,265:1215-1216.
    [187]Q.F.Zhang,W.M.Liu,Z.Q.Xue,et al.Ultrafast optical Kerr effect of Ag-BaO composite thin films[J].Appl.Phys.Lett.,2003,82:958-961.
    [188]J.F.Xu,M.Xiao,Lasing action in colloidal CdS/CdSe/CdS quantum wells[J].Appl.Phys.Lett.,2005,87:173117-173120.
    [189]A.P.Alivisatos,Semiconductor dusters,nanocrystals,and quantum dots[J].Science,1996,271:933-937.
    [190]X.G.Peng,L.Manna,W.Yang,et al.,Shape control of CdSe nanoctystals[J].Nature,2000,404:59-61.
    [191]Y.Hamanaka,K.Fukuta,A.Nakamura,et al.,Enhancement of third-order nonlinear optical susceptibilities in silica-capped Au nanoparticle films with very high concentrations[J].Appl.Phys.Lett.,2004,84:4938-4940.
    [192]R.D.Coso,I.J.Requejo,J.Solis,et al.,Third order nonlinear optical susceptibility of Ca:Al_2O_3 nanocomposites:From spherical nanoparticles to the percolation threshold[J].J.Appl.Phys.,2004,95:2755-2759.
    [193]Y.Lu,G.L.Liu,L.P.Lee,High-density silver nanoparticle film with temperature-controllable interparticle spacing for a tunable surface enhanced Raman scattering substrate[J].,Nano.Lett.,2005,5:5-9.
    [194]M.S.Bahae,A.A.Said,E.W.V.Stryland,High-sensitivity,single-beam n2 measure-ments [J].,Opt.Lett.,1989,14:955-957.
    [195]M.S.Bahae,D.C.Hutchings,D.J.Hagan,E.W.Stryland,Dispersion of bound electronic nonlinear refraction in solids[J].IEEE J.Quantum Electron.1991,27:1296-1309.
    [196]M.S.Bahae,J.Wang,R.Desalvo,et al.,Measurement of nondegenerate nonlinearities using a two-color Z-scan[J].Opt.Lett.,1992,17:258-260.
    [197]J.N.Hayes,Thermal blooming of laser beams in fluids[J].Appl.Opt.,1972,2:455-461.
    [198]A.Miller,K.R.Welford,B.Baino,Nonlinear optical materials for applications in information technology,Kluwer,Dordrecht,1995.
    [199]Y.Hamaka,A.Nakamu,Dispersion curve of complex third-order optical susceptibity around the surface plasmon resonance in Ag glass[J].Opt.Soc.Am.B,2003,20:1227-1232.
    [200]V.G.Shadrow,A.V.Boltushkin,T.M.Tkachenko,et al.,Growth processes and properties of Fe-and Co electrodeposited alumite films[J].Cryst.Res.Technol.,1995,30(4):457-461.
    [201]U.Kohei,O.Kentaro,K.Hideaki,Preparative method for fabricating a microelectrode ensemble:electrochemical response of microporous aluminum anodic oxide film modified gold electrode[J].Anal.Chem.,1990,62(6):652-656.
    [202]L.G.Hornyak,J.C.Patrissi,R.J.C.Martin,Fabrication,characterization,and optical properties of gold nanoparticle/porous alumina composites:the nonscattering Maxwell-Garnett limit[J].J.Phys.Chem.B,1996,101(9):1548-1555.
    [203]B.Das,S.P.McGinnis,P.Sines,High-efficiency solar cells based on semiconductor nanostructures [J].J.Solar Energy Materials & Solar Cells,2000,63:117-123.
    [204]G.L.Che,B.B.Lakshmi,E.R.Fisher,et al.,Carbon nanotubule membranes for electrochemical energy storage and production[J].Nature,1998,393(28):346-349.
    [205]G.L.Che,B.B.Lakshmi,C.R.Martin,et al.,Metal-nanocluster-filled carbon nanotubes:Catalytic properties and possible applications in electrochemical energy storage and production[J].Langmuir,1999,15(3):750-758.
    [206]H.Masuda,K.Fukuda,Ordered metal nanohole arrays made by a two step replication of honeycomb structures of anodic alumina[J].Science,1995,268:1466-1468.
    [207]H.Masuda,M.Satoh,Fabrication of gold nanodot array using porous alumina as an evaporation mask[J].Jpn.J.Appl.Phys.,1996,35:L126-129.
    [208]H.Masuda,et al.,Cluster models for the photoabsorption of divalent defects in silicate glasses:basis set and cluster size dependence[J].Appl.Phys.Lett.,1997,71(2):770-773.
    [209]杨培霞,安茂忠,预处理工艺对制备多孔阳极氧化铝膜的影响.材料工程,2005,(9):26-29.
    [210]薛宽宏,铝及铝合金无铬电化学抛光研究.电镀与精饰,1988(1):25-26.
    [211]方景礼,金属材料抛光技术,国防工业出版社,2005.
    [212]安成强,铝及铝合金的无铬电化学抛光新工艺.新技术新工艺,1996(3):37-40.
    [213]Y.C.Zhao,M.Chen,Y.N.Zhang,et al.,A facile approach to formation of through hole porous anodic aluminum oxide film[J].Materials Letters,2005,59(1):40-43.
    [214]C.Y.Han,Z.L.Xiao,H.H.Wang,et al.,Anodized aluminum oxide membranes as templates for nanoscale structures[J].Plating and Surface Finishing,2004,91(7):40-45.
    [215]D.A.Brevnov,G.V.R.Rao,et al.Dynamics and temperature dependence of etching processes of porous and barrier aluminum oxide layers[J].Electro-chimicacta.,2004,49(15):2487-2494.
    [216]C.S.Cojocaru,J.M.Padovani,T.Wade,et al.,Conformal anodic oxidation of aluminum thin films[J].Nano.Letters.,2005,5(4):675-680.
    [217]X.Wang,G.R.Han,Fabrication and characterization of anodic aluminum oxide template[J].Microelectronic Engineering,2003,(66):166-170.
    [218]Y.Xu,G.E.Thompson,G.C.Wood,Mechanism of anodic film growth on aluminium[J].Trans.Inst.Metal Finish.,1986,63:98-103.
    [219]董艳锋,李清山,多孔铝纳米列阵模板的形成及其机理分析.曲阜师范大学学报,2002,3(28):54-56.
    [220]王爱华,管荻华,周维亚等,多孔氧化铝有序膜的制备研究.无机化学学报,2002.18(5):447-450.
    [221]G.Frens,Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions[J].Nature Phys.Sci.,1973,241:20-22.
    [222]郑化桂,曾京辉,梁家和,刘方新,溶剂化团簇银的制备及表征.物理化学学报,1999,15(11):955-980.
    [223]F.Kim,J.H.Song,P.Yang,Photochemical synthesis of gold nanorods[J].J.Am.Chem.Soc.,2002,124(48):14316-14317.
    [224]N.R.Jana,Nanorod shape separation using surfactant assited self-assembly[J].Chem.Comm.,2001,7:1950-1951.
    [225]X.Y.Zhang,E.M.Hicks,J.Zhao,G.C.Schatz,R.P.V.Duyne,Electrochemical turning of silver nano-particles fabricated by nano-sphere lithography[J].Nano.Lett.,2005,5(7):1503-1507.
    [226]B.J.Tan,C.H.Sow,T.S.Koh,K.C.Chin,et al.,Fabrication of size-tunable gold nanoparticles array with nanosphere lithography,reactive ion etching,and thermal annealing[J].J.Phys.Chem.B,2005,109(22):11100-11109.
    [227]Y.Y.Yu,S.S.Chang,C.L.Lee,C.R.C.Wang,Gold nanorods:electrochemical synthesis and optical properties[J].J.Phys.Chem.B,1997,101:6661-6664.
    [228]G.Decher,Fuzzy nanoassemblies:toward layered polymeric multicomposites[J].Science,1997,277:1232-1237.
    [229]X.Li,W.Xu,J.Zhang,Self-assembled metal colloid films:Two approaches for preparing new SERS active substrates[J].Langmuir,2004,20:1298-1304.
    [230]高镰,郑珊,张青红,纳米氧化钛光催化材料及应用,北京:化学工业出版社,2002.
    [231]U.Kreibig,M.Vollmer,Optical properties of metal clusters,Springer,Berlin,1995.
    [232]S.Link,M.A.El-Sayed,Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles[J].J.Phys.Chem.B,1999,103:4212-4217.
    [233]S.Link,M.Mohamed,M.A.El-Sayed,Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant [J].J.Phys.Chem.B,1999,103:3073-3077.
    [234]M.B.Mohamed,V.Volkov,S.Link,M.A.El-Sayed,The 'lightning' gold nanorods:fluorescence enhancement of over a million compared to the gold metal[J].Chem.Phys.Letters.2000,317:517-523.
    [235]J.H.Liao,Y.Zhang,W.Yu,Linear aggregation of gold nanoparticles in ethanol[J],Colloids Surf.A.2003,223:177-183.
    [236]L.Liu,H.Z.Zheng,ZJ.Zhang,et al.,Photoluminescence from water-soluble BSA-protected gold nanoparticles[J].Spectrochimica Acta Part A,2008,69:701-705.
    [237]ZJian,W.Y.Chang,W.Qin,Fluorescence characteristics of Au colloidal nanoparticles[J].Acta Photonica Sinica,2003,32(3):357-360.
    [238]J.Zhu,Y.C.Wang,S.N.Yan,Fluorescence spectrum characteristics of gold namorods[J].Chin.phys.lett.,2004,21(3):559-561.
    [239]J.Zhu,Y.C.Wang,L.Q.Huang,Simulation of the medium dielectric constant dependent optical properties for gold nanosphere[J].Materials Chemistry and Physics,2005,93:383-387.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700