用户名: 密码: 验证码:
准互穿聚合物网络/纳米粒子复合介质的制备及其用于DNA测序性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
DNA的分离和测序分析是揭开遗传密码的关键。毛细管电泳(CE)是分析带电生物大分子(如DNA和蛋白质等)最重要的技术之一。由于筛分介质在DNA的分离和测序分析过程中影响DNA的迁移特性和分离度,因此对筛分介质的研究显得非常重要。目前,无胶筛分介质(即非交联的高分子溶液)广泛应用于毛细管电泳中,通常包括线形均聚物、共聚物、混合物等。其中,高分子量线形聚丙烯酰胺(LPA)具有筛分能力强、读出长度长等优点。但是,高分子量LPA溶液的粘度很高而且没有自涂覆能力。与之不同的是,聚N,N-二甲基丙烯酰胺(PDMA)具有极好的自涂覆能力,但筛分能力较弱。虽然已经研制和测试了大量高分子溶液用作毛细管电泳筛分介质,但没有一种单一均聚物溶液能满足所有的应用要求。因此,寻求同时具有高筛分能力和自涂覆能力的低粘度高分子溶液仍是DNA高效分析的一个重要课题。然而,研制一种新型聚合物介质通常需要花费大量时间和精力。近年来的研究表明,在低粘度的高分子溶液中加入某种添加剂(如多羟基化合物、蒙脱土、金纳米粒子、聚合物纳米粒子、细菌纤维素原纤维、碳纳米管等)是一种克服毛细管填充困难及改善DNA分离性能的非常有效且简单的方法。尽管在过去的数年时间里各种用于双链DNA(dsDNA)分离的添加剂已引起了广泛的关注,但有关用于单链DNA(ssDNA)测序的添加剂的研究还很少。因此,本论文的目的是通过将添加剂加入到聚合物中制成复合介质来提高ssDNA测序性能。首先制备并表征了准互穿聚合物网络(quasi-IPN),在此基础上制备了三种用于毛细管电泳DNA测序的复合介质,并研究了它们用作DNA测序介质的性能。
     1.准互穿聚合物网络的制备及表征
     通过反相乳液聚合法制备了粘均分子量分别为1.5、3.3和6.5 MDa的LPA,接着在LPA水溶液中引发N,N-二甲基丙烯酰胺(DMA)单体聚合生成非交联的quasi-IPN,该介质结合了LPA的高筛分能力和PDMA的自涂覆能力。利用乌氏粘度计和~1H NMR光谱仪对LPA和quasi-IPN进行了表征,结果证明了LPA和quasi-IPN的生成。
     2.准互穿聚合物网络/金纳米粒子复合介质的制备及其用于DNA测序性能的研究
     制备了粒径约为20、40和60 nm的金纳米粒子(GNPs),将其分别加入由LPA(1.5、3.3和6.5 MDa)和PDMA所组成的quasi-IPN中生成了聚合物/金属复合介质(quasi-IPN/GNPs)。详细研究了各种参数(如GNPs含量、GNPs粒径、LPA分子量、溶液浓度和温度)对ssDNA测序性能的影响。在测序条件(如碱基读出软件)未完全优化的情况下,使用quasi-IPN3/GNPs40-1作为介质,利用ABI 310遗传分析仪在50℃和150 V/cm下得到的读出长度(98%准确度)为766碱基,耗时约57 min。quasi-IPN/GNPs的分离度高于不含GNPs的quasi-IPN,接近于含较高分子量LPA但不含GNPs的quasi-IPN。所以使用含低分子量LPA的quasi-IPN/GNPs可以克服使用高分子量LPA所带来的问题(如难以制备、测序浓度下粘度高及容易降解等),从而有助于实现全自动化。在相同测序条件下,quasi-IPN/GNPs的测序时间要少于quasi-IPN。此外,quasi-IPN/GNPs的分离重现性非常好,而且寿命大于一年。结果表明,GNPs与高分子链之间有相互作用并且生成了物理交联点,它们避免了高分子链彼此之间的滑移,从而可以形成相对更稳定的孔径(更稳固的筛分网络)并增加介质的表观分子量及它们的筛分性能,所以这些复合介质可以显著改善DNA的测序性能。
     3.准互穿聚合物网络/官能化的金纳米粒子复合介质的制备及其用于DNA测序性能的研究
     为了解决GNPs在高盐浓度下易附聚的问题,由“grafting-to”法制备了一种新型介质添加剂,即PDMA官能化的GNPs(GNP-PDMA),并将其加入到由LPA(3.3 MDa)和PDMA所组成的quasi-IPN中得到了用于毛细管电泳DNA测序的聚合物/金属复合筛分介质(quasi-IPN/GNP-PDMA)。在测序条件(如碱基读出软件)未完全优化的情况下,使用quasi-IPN/GNP-PDMA-2作为分离介质,利用ABI 310遗传分析仪在50℃和150 V/cm下得到的读出长度(98%准确度)为801碱基,耗时约64 min。由于GNP-PDMA的存在可以改善GNPs与整个测序体系的相容性、增大网络的缠结程度并增加GNPs在体系中的含量,从而导致整个筛分网络更加受限和稳固、介质的表观分子量更高并且孔径更小,因此与之前的quasi-IPN/GNPs相比,quasi-IPN/GNP-PDMA可以进一步增强ssDNA的测序性能。此外,与其它商用介质的比较表明,该复合介质是一种非常有潜力的全自动化DNA测序(特别是微流动体系)介质。
     4.准互穿聚合物网络/官能化的多壁碳纳米管双网络复合介质的制备及其用于DNA测序性能的研究
     通过原子转移自由基聚合法(ATRP)制备了PDMA官能化的多壁碳纳米管(MWNT-PDMA)添加剂,并加入到由LPA(3.3 MDa)和PDMA所组成的quasi-IPN中,得到了用于毛细管电泳DNA测序的聚合物/纳米管双网络复合筛分介质(quasi-IPN/MWNT-PDMA)。详细研究了MWNT-PDMA含量和MWNT-PDMA上PDMA侧链分子量对ssDNA测序性能的影响。在测序条件(如碱基读出软件)未完全优化的情况下,使用quasi-IPN/MWNT-PDMA2-Ⅱ作为介质,利用ABI 310遗传分析仪在50℃和150 V/cm下得到的读出长度(98%准确度)为792碱基,耗时约62 min。CE结果表明,与quasi-IPN相比,该复合介质可以显著改善DNA测序性能,这是因为在复合筛分介质中形成了双网络,它包括一个柔性的quasi-IPN聚合物网络和一个刚性的MWNTs(具有独特的管状结构)网络。这两种不同类型的网络可以共存于介质溶液中并相互作用,从而避免聚合物之间彼此滑移、稳固和制约总的筛分网络、增加介质的表观分子量并减小介质的孔径。此外,MWNT-PDMA上的PDMA侧链可以与quasi-IPN中的LPA或PDMA发生缠结,从而进一步稳固介质网络。因此,quasi-IPN/MWNT-PDMA介质中的这种更受限、更稳固且孔径更小的纳米结构使得测序性能更优良。复合介质与其它介质的比较结果进一步表明,它们非常有希望用于DNA测序。
     总之,在纳米粒子(GNPs、GNP-PDMA或MWNT-PDMA)存在条件下,DNA的测序表现出分离度高、重现性好且测序介质寿命长等特点,因此易于实现快速、高效分离DNA的目的。这些新型复合介质同时具备了优良的筛分能力、自涂覆能力和适宜的粘度等特点。因此,含纳米粒子的低粘度介质溶液(低溶液浓度、低分子量LPA)可用于取代不含纳米粒子的高粘度介质溶液(高溶液浓度、高分子量LPA),而二者的筛分性能相当甚至前者更高。这非常有利于实现DNA微流动体系分离的全自动化,特别是毛细管阵列电泳(CAE)和微芯片电泳(MCE)的全自动化。
Separation and sequencing of DNA are vital to reveal genetic code.Capillary electrophoresis(CE) is one of the most significant techniques for the analysis of charged biomacromolecules(e.g.DNA and proteins,etc.).During the separation and sequencing analysis of DNA by CE,the sieving matrices are very important because they determine the migration behavior and the resolution of DNA.At present, non-gel sieving matrices(i.e.,noncross-linking polymer solutions) have been employed widely in CE,which usually include linear homopolymers,copolymers, mixtures,etc.Among them,linear polyacrylamide(LPA) with high molecular weight (MW) possesses high sequencing ability and long read length.However,high-MW LPA solution is very viscous and has no self-coating ability.On the contrary,poly(N, N-dimethylacrylamide)(PDMA) shows excellent self-coating ability but offers relatively poor sieving performance.Although a lot of polymer solutions have been developed and tested as sieving matrices for CE,no single existing homopolymer solution can fully meet all expectations.Therefore,searching for the sieving matrices with low viscosity,high-sieving ability and self-coating ability is still an important issue for high-throughput DNA analysis.However,testing and developing a new polymer matrix usually takes a lot of time and effort.Recently,addition of certain additives(such as montmorillonite clay,gold nanoparticles,polymer nanoparticles, bacterial cellulose fibrils,carbon nanotubes) into low viscous polymer solutions has been proved to be a very efficient and simple method to overcome the difficulty of filling capillaries and improve DNA separation performance due to their unique properties.Although various additives used to separate dsDNA have been investigated in the past several years,the study on additives for ssDNA sequencing is very deficient at present.So we aim at improvement of the performances of ssDNA sequencing by incorporating additives into polymer to form composite matrices.In this dissertation,based on the synthesis and characterization of noncross-linking quasi-interpenetrating network(quasi-IPN),we prepared three composite matrices and studied their DNA sequencing performances by CE.
     1.Preparation and characterization of quasi-interpenetrating network
     Three LPA samples with viscosity-average molecular weight of 1.5,3.3,and 6.5 MDa were synthesized by using inverse emulsion polymerization and then noncross-linking quasi-IPN were prepared by the polymerization of N, N-dimethylacrylamide(DMA) monomer in LPA aqueous solution.These matrices combine high sequencing ability of LPA and excellent self-coating ability of PDMA. LPA and quasi-IPN were characterized by Ubbelohde viscometer and ~1H NMR and the results demonstrate the preparation of LPA and quasi-IPN.
     2.Preparation of quasi-interpenetrating network/gold nanoparticle composite matrix and its performance for DNA sequencing
     Gold nanoparticles(GNPs) with particle sizes of about 20,40,and 60 nm were prepared and added into noncross-linking quasi-IPN composed of LPA with different viscosity-average MW of 1.5,3.3 and 6.5 MDa and PDMA to form polymer/metal composite matrices,respectively.The effects of the parameters in relation to quasi-IPN/GNPs matrices,such as GNP contents,GNP particle sizes,LPA MW, solution concentrations,and temperature,on ssDNA sequencing performances were studied.Without complete optimization(such as base calling software), quasi-IPN3/GNPs40-1 yielded a readlength of 766 bases at 98%accuracy in about 57 min by using the ABI 310 Genetic Analyzer at 50℃and 150 V/cm.Resolutions of quasi-IPN/GNPs were higher than those of quasi-IPN without GNPs and approximated those of quasi-IPN with higher-MW LPA without GNPs in the bare fused-silica capillaries.So the use of quasi-IPN/GNPs with low-MW LPA could avoid the problems in relation to LPA with high MW such as difficult preparation, very high viscosity,and easy degradation,and thus help for full automation.The sequencing time of quasi-IPN/GNPs was shorter than that of quasi-IPN under the same sequencing conditions.Furthermore,the separation reproducibility of quasi-IPN/GNPs solution was excellent and shelf life was more than one year.The results showed that these novel matrices could improve ssDNA sequencing performances due to the interactions between GNPs and polymer chains and the formation of physical cross-linking points as demonstrated by intrinsic viscosities and glass transition temperatures,which prevented the polymer chains from sliding away from each other and thus could form relatively more stable "pore" sizes(more robust sieving matrix networks) and increase the apparent MW of the matrices and their sieving properties.
     3.Preparation of quasi-interpenetrating network/functionalized gold nanoparticle composite matrix and its performance for DNA sequencing
     A new matrix additive,PDMA-functionalized gold nanoparticle(GNP-PDMA), was prepared by "grafting-to" approach to avoid GNP aggregation at high concentration of salt in buffer solution,and then incorporated into quasi-IPN composed of LPA(3.3 MDa) and PDMA to form novel polymer/metal composite sieving matrix(quasi-IPN/GNP-PDMA) for DNA sequencing by CE.Without complete optimization(such as base calling software),quasi-IPN/GNP-PDMA-2 yielded a readlength of 801 bases at 98%accuracy in about 64 min by using the ABI 310 Genetic Analyzer at 50℃and 150 V/cm.Compared with previous quasi-IPN/GNPs,quasi-IPN/GNP-PDMA can further improve DNA sequencing performances.This is because the presence of GNP-PDMA can improve the compatibility of GNPs with the whole sequencing system,enhance the entanglement degree of networks,and increase the GNP concentration in system,which consequently lead to higher restriction and stability,higher apparent MW,and smaller pore size of the total sieving networks.Furthermore,the composite matrix was also compared with quasi-IPN containing higher-MW LPA and commercial POP-6.The results indicate that the composite matrices are potential ones for DNA sequencing to achieve full automation.
     4.Preparation of quasi-interpenetrating network/functionalized multi-walled carbon nanotube double-network composite matrix and its performance for DNA sequencing
     PDMA-functionalized multi-walled carbon nanotubes(MWNT-PDMA) were prepared via atom transfer radical polymerization(ATRP),and then added into quasi-IPN composed of LPA(3.3 MDa) and PDMA to form polymer/nanotube double-network composite sieving matrices for DNA sequencing by CE.The effects of MWNT-PDMA concentration in matrices and MW of PDMA side chains in MWNT-PDMA on ssDNA sequencing performances were studied in detail.Without complete optimization(such as base calling software),quasi-IPN/MWNT-PDMA2-Ⅱyielded a readlength of 792 bases at 98%accuracy in about 62 min by using the ABI 310 Genetic Analyzer at 50℃and 150 V/cm.The CE results show that,compared with quasi-IPN,the novel composite matrices can improve ssDNA sequencing performances due to the formation of a double-network consisting of a flexible quasi-IPN polymer network and a rigid MWNT network based on unique tubular structure,which makes the total sieving networks more restricted and stable and increases the apparent MW of the matrices.Furthermore,the PDMA side chains on MWNT-PDMA may entangle with homo LPA or PDMA in quasi-IPN to further stabilize the matrix network.Therefore,more restricted,stable,and smaller nanopore structure in quasi-IPN/MWNT-PDMA matrix results in more excellent properties. Furthermore,these double-network composite matrices were also compared with other matrices and the results indicate that they are promising ones for DNA sequencing.
     In conclusion,in the presence of nanoparticles(GNPs,GNP-PDMA,or MWNT-PDMA),the separation had the advantages of high resolution,speediness, excellent reproducibility,long shelf life,and easy automation.The composite matrices seem able to combine optimal sieving ability and dynamic coating ability with moderate viscosity.Therefore,less viscous composite matrix solutions(with nanoparticles) due to lower solution concentration and lower-MW LPA could be used to replace more viscous solutions(without nanoparticles) due to higher solution concentration or higher-MW LPA to separate DNA,while the sieving performances were approximate even higher,which helped to achieve full automation especial for capillary array electrophoresis(CAE) and microchip electrophoresis(MCE).
引文
Albarghouthi M N.Hydrophilic poly-N-substituted acrylamide matrices for microchannel electrophoresis of DNA and proteins:matrix design,synthesis and characterization [D]:[Ph.D.]USA:Northwestern university,2002
    Albarghouthi M N,Barron A E.Polymeric matrices for DNA sequencing by capillary electrophoresis!;J].Electrophoresis 2000,21:4096-4111
    Albarghouthi M N,Buchholz B A,Doherty E A S,Bogdan F M,Zhou H,Barron A E.Impact of polymer hydrophobicity on the properties and performance of DNA sequencing matrices for capillary electrophoresis[J].Electrophoresis 2001,22,737-747
    Albarghouthi M N,Buchholz B A,Huiberts P J,Stein T M,Barron A E.Poly-N-hydroxyethyl acrylamide(polyDuramide):A novel hydrophilic,self-coating polymer matrix for DNA sequencing by capillary electrophoresis[J].Electrophoresis 2002,23,1429-1440.
    Albarghouthi M N,Stein T M,Barron A E.Poly-N-hydroxyethylacrylamide as a novel,adsorbed coating for protein separation by capillary electrophoresis[J].Electrophoresis 2003,24,1166-1175.
    Ashton R,Padalay C,Kane R S.Microfluidic separation of DNA[J].Curr.Opin.Biotechnol.2003,14:497-504
    Baba Y,Ishimaru N,Samata K,et al.High-resolution separation of DNA restriction fragments by capillary electrophoresis in cellulose derivative solutions[J].J.Chromatogr.1993,653:329-335.
    Bae Y C,Soane D.Polymeric separation media for electrophoresis:Cross-linked systems or entangled solutions[J].J.Chromatogr.1993,652:17-22
    Barbier V,Buchholz B,Barron A,Vivoy J.Comb-like copolymers as self-coating,low-viscosity and high resolution matrices for DNA sequencing[J].Electrophoresis 2002,23:1441-1449
    Barkema G T,Marko J F,Widom B.Electrophoresis of charged polymers simulation and scaling in lattice model of reptation[J].Phys.Rev.1994,49:5303-5309
    Barron A E,Soane D S,Blanch H W.Capillary electrophoresis of DNA in uncross-linked polymer solutions[J].J.Chromatogr.A.1993,652:3-16
    Barron A E,Blanch H W,Soane D S.A transient entanglement coupling mechanism for DNA separation by capillary electrophoresis in ultradilute polymer solutions[J].Electrophoresis 1994,15:597-615
    Barron A E,Sunada W M,Blanch H W.The use of coated and uncoated capillaries for the electrophpretic separation of DNA in dilute polymer solutions[J].Electrophoresis 1995,16:64-74
    Barron A E,Sunada W M,Blanch H W.The effects of polymer properties on DNA separation by capillary electrophoresis in uncross-linked polymer solutions[J].Electrophoresis 1996,17:744-757
    Belder D,Husmann H,Warnke J.Direct control of electroosmotic flow in nonaqueous electrolytes using poly(ethylene glycol)coated capillaries [J].Electrophoresis 2001,22:666-672
    Best N,Arriaga E,Chen D Y,Dovichi N J.Use of 6%T noncrosslinked polyacrylamide for DNA sequencing in capillary electrophoresis-separation of fragments up to 570 bases in length[J].Anal.Chem.1994,66:4063-4067.
    Bodie E D.(Ed.).Inorganic Syntheses.John Wiley & Sons Inc.,New York 1978.
    Bokias G A,Durand A,Hourdet D.Molar mass control of poly(N-isopropylacrylamide)and poly(acrylic acid)in aqueous polymerizations initiated by redox initiators based on persulfates.Macromol[J].Chem.Phys.1998,199:1387-1392
    Broseta D,Leibler L,Lapp A,Strazielle C.Universal properties of semi-dilute polymer solutions:a comparison between experiments and theory[J].Europhys.Lett.1986,2:733-737
    Buchholz B A,Barron A E.Multi-angle laser light scattering characterization of high molar mass,linear polyacrylamides with application as DNA sequencing matrices for microchannel electrophoresis[J].Electrophoresis 2001,22:4118-4128
    Butler J M,McCord B R,Jung J M,et al.Quantitation of polymerase chain reaction products by capillary electrophoresis using laser fluorescence[J].J.Chromatogr.1994,658:271-280.
    Carlsson C,Larsson A,Jonsson M,Norden B.Dnacing DNA in capillary solution electrophoresis[J].J.Am.Chem.Soc.1995,117:3871-3872
    Carrilho E,Ruiz-Martinez M C,Berka J,et al.Rapid DNA sequencing of more than 1000 bases per run by capillary electrophoresis using replaceable linear polyacrylamide solutions[J].Anal.Chem.1996,68:3305-3313
    Carson S,Cohen A S,Belenkii A,et al.DNA sequencing by capillary electrophoresis:use of a two-laser-two-window intensified diode array detection system[J].Anal.Chem.1993,65:3219-3226
    Chang H T,Yeung E S.Poly(ethyleneoxide)for high resolution and high-speed separation of DNA by capillary electrophoresis [J].J.Chromatogr.B 1995,669:113-123
    Cheng J,Kasuga T,Mitchelson K R,et al.PCR heteroduplex polymorphism analysis by entangled solution capillary electrophoresis(ESCE)[J].J.Chromatogr.A.,1994,677:169-177.
    Cheng J,Mitchelson K R.Glycerol-entangled separation of DNA dragments in entangled solution capillary electrophoresis[J].Anal.Chem.1994,66:4210-4214
    Chiari M,Micheletti C,Nesi M,et al.Towards new formulations for polyacrylamide matrices:N-acryloylaminoethoxyethanol,a novel monomer combining high hydrophilicity with extreme hydrolytic stability[J],Electrophoresis 1994,15:177-186
    Chiari M,Nesi M,Righetti P G.Capillary zone electrophoresis of DNA fragments in a novel polymer network:Poly(N-acryloylaminoethoxyethanol)[J].Electrophoresis 1994,15:616-622
    Chiari M,Riva S,Gelain A,et al.Separations of DNA fragments by capillary electrophoresis in N-substituted polyacrylamides[J].J.Chromatogr.A 1997,781:347-355
    Chiari M,Melis A.Low viscosity DNA sieving matrices for capillary electrophoresis[J].Trends Anal.Chem.1998,17:623-632
    Chiari M,Damin F,Melis A,et al.Separation of oligonucleotides and DNA fragments by capillary electrophoresis in dynamically and permanently coated capillaries,using a copolymer of acrylamide and P-D-glucopyranoside as a new low viscosity matrix with high sieving capacity [J].Electrophoresis,1998,19:3154-3159
    Chiari M,Cretich M,Damin F,et al.New adsorbed coatings for capillary electrophoresis [J],Electrophoresis 2000,21:909-916
    Chiari M,Cretich M,Riva S,Casali,M.Performances of new sugar-bearing poly(acrylamide)copolymers as DNA sieving matrices and capillary coatings for electrophoresis[J].Electrophoresis 2001,22:699-706
    Chiefari J,Chong Y K,Ercole F,et al.Living free-radical polymerization by reversible addition-fragmentation chain transfer:the RAFT process.Macromolecules 1998,31:5559-5562
    Chiou S H,Huang M F,Chang H T.Separation of double-stranded DNA fragments by capillary electrophoresis:Impacts of poly(ethylene oxide),gold nanoparticles,ethidium bromide,and pH[J].Electrophoresis 2004,25:2186-2192.
    Chu B,Liang D.Copolymer solutions as separation media for DNA capillary electrophoresis[J].J.Chromatogr.A 2002,966:1-13
    Cohen A S,Najarian D R,Paulus A,et al.Rapid separation and purification of oligonucleotides by high-performance capillary gel electrophoresis[J].Proc.Natl.Acad.Sci.USA 1988,85:9660-9663
    Cole K D,Tellez C M.Electrophoresis of large circular DNA in agarose gels[J].Biotechnol.Prog.2002,18:82-87
    Corbierre M K,Cameron N S,Sutton M,et al.Polymer-stabilized gold nanoparticles and their incorporation into polymer matrices[J].J.Am.Chem.Soc.2001,123:10411-10412.
    Cottet H,Gareil P,Viovy J L.The effect of blob size and network dynamics on the size-based separation of polystyrenesulfonates by capillary electrophoresis in the presence of entangled polymer solutions [J].Electrophoresis 1998,19:2151-2162
    Cretich M,Chelaru C,Pirri G,et al.Nonconventional synthesis and characterization of ultrahigh-molar-mass polyacrylamides[J].Electrophoresis 2003,24:2322-2327
    Cretich M,Chiari M,Rech I,Cova S.Use of high-molecular-mass polyacrylamides as matrices for microchip electrophoresis of DNA fragments[J].Electrophoresis 2003,24:3793-3799
    Cui J,Wang W P,You Y Z,et al.Functionalization of multiwalled carbon nanotubes by reversible addition fragmentation chain-transfer polymerization[J].Polymer 2004,45:8717-8721.
    de Gennes P G Reptation of polymer chain in the presence if fixed obstacles[J].J Chem.Phys.1971,55:572-579
    de Gennes P G.Scaling Concepts in Polymer Physics.Ithaca,N Y:Cornell Univ.Press,1979
    Doherty E,Berglund K,Buchholz B,et al.Critical factors for high-performance physically adsorbed(dynamic)polymeric wall coatings for capillary electrophoresis of DNA[J].Electrophoresis 2002,23:2766-2776
    Doherty E A S,Kan C W,Barron A E.Sparsely cross-linked "nanogels" for microchannel DNA sequencing[J].Electrophoresis 2003,24:4170-4180.
    Doherty E A S,Kan C W,Paegel B M,et al.Sparsely cross-Linked “nanogel” matrixes as fluid,mechanically stabilized polymer networks for high-throughput microchannel DNA sequencing[J].Anal.Chem.2004,76:5249-5256
    Dolnik V,Gurske W A.Capillary electrophoresis in sieving matrices:Selectivity per base,mobility slope,and inflection slope[J].Electrophoresis 1999,20:3373-3380.
    Dolnik V,Gurske W A,Padua A.Sieving matrices in capillary electrophoresis:inflection slope and double reciprocal plot[J].Electrophoresis 2001,22:692-698.
    Du M,Flanagan J H,Lin B C,et al.Separation and Detection of Mutation DNA Fragments by Capillary Electrophoresis with LIF in Dynamic-coated Capillary Using Low Viscosity Polymer Matrix[J].Electrophoresis 2003,24:3147-3153
    Duke T,Semenov A N,Viovy J L.Mobility of a reptating polymer[J].Phys.Rev.Lett.1992,69:3260-3263
    Duke T,Viovy J L.Theory of DNA electrophoresis in physical ges and entangled polumer solutions[J].Phys.Rev.E 1994,49:2408-2416
    Duke T,Viovy J L,Semenov A N.Electrophoretic mobility of DNA in gels.I.New biased reptation theory including fluctuations[J].Biopolymers,1994,34:239-247
    Ferguson K A.Starch-gel electrophoresis-application to the classification of pituitary proteins and polypeptides[J].Metabolism 1964,13:985-1002
    Francois J,Sarazin D,Schwartz T,Weill G.Polyacrylamide in water:molecular weight dependence of and(n)and the problem of the excluded volume exponent[J].Polymer 1979,20:969-975.
    Frens,G,Controlled nucleation for the regulation of the particle size in monodisoerse gold suspensions[J].Nat.Phys.Sci.1973,241:20-22.
    Fung E N,Yeung E S.High-speed DNA sequencing by using mixed poly(ethylene oxide)solutions in uncoated capillary columns[J].Anal.Chem.1995,67:1913-1919
    Gao Q,Yeung E S.A matrix for DNA separation:genotyping and sequencing using poly(vinylpyrrolidone)solution in uncoated capillaries[J].Anal.Chem.1998,70:1382-1388
    Gao Q,Yeung E S.High-Throughput Detection of Unknown Mutations by Using Multiplexed Capillary Electrophoresis with Poly(vinylpyrrolidone)Solution[J].Anal.Chem.2000,72:2499-2506.
    Gelfi C,Simo-Alfonso E,Sebastiano R,et al.Novel acrylamido monomers with higher hydrophilicity and improved hydrolytic stability:Ⅲ.DNA separations by capillary electrophoresis inpoly(Af-acryloylaminopropanol)[J].Electrophoresis 1996,17:738-743
    Gelfi C,Vigano A,Palma S D,et al.Single-strand conformation polymorphism for p53 mutation by a combination of neutral pH buffer and temperature gradient in capillary electrophoresis[J].Electrophoresis 2002,23:1517-1523
    Giddings J C.Generation of variance,theoretical plates,resolution and peak capacity in electrophoresis and sedimentation[J].Sep.Sci.1969,4:181-189.
    Goetzinger W,Kotler L,Carrilho E,et al.Characterization of high molecular mass linear polyacrylamide powder prepared by emulsion polymerization as a replaceable polymer matrix for DNA sequencing by capillary electrophoresis[J].Electrophoresis 1998,19:242-248
    Grabar K C,Freeman R G,Hommer M B,Natan M J.Preparation and characterization of Au colloid monolayers[J].Anal.Chem.1995,67:735-743.
    Grossman P D,Soane D S.Experimental and theoretical studies of DNA separation by capillary electrophoresis in entangled polymer solutions[J].Biopolymers,1991,31:1221-1228
    Han F,Huynh B,Ma Y,Lin B.High-efficiency DNA separation by capillary electrophoresis in polymer solution with ultralow viscosity[J].Anal.Chem.1999,71:2385-2389
    He H,Buchholz B A,Kotler L,et al.DNA sequencing with hydrophilic hydrophobic polymers at elevated column temperatures.[J]Electrophoresis 2002,23:1421-1428.
    Heiger D N,Cogen A S,Karger B L.Separation of DNA restiiction fragments by high-performance capillary electrophoresis with low and zone cross-linked polyacrylamide using continuous and pulsed electric-fields[J].J.Chromatogr.1990,516:33-48
    Heller C.Principles of DNA separation with capillary electrophoresis[J].Electrophoresis,2001,22:629-643
    Heller C,Duke T,Viovy J L.Electrophoretic mobility of DNA in gels.Ⅱ.Systematic experimental study in agarose gels[J].Biopolymers,1994,34:249-259
    Hjert(?)n S.High-performance electrophoresis:Elimination of electroendosmosis and solute adsorption[J].J Chromatogr A.1985,347:191-198.
    Hjert(?)n S,Valtcheva L,Elenbring K,et al.High-performance electrophoresis of acidic and basic low-molecular-weight compounds and of proteins in the presence of polymers and neutral surfactants[J].J.Liq.Chromatogr.1989,12:2471-2499.
    Hoagland D A,Muthukumar M.Evidence for entropic barrier transport of linear,star,and ring macromolecules in electrophoresis gels[J].Macromolecules 1992,25:6696-6698
    Huang M F,Huang C C,Chang H T.Improved separation of double-stranded DNA fragments by capillary electrophoresis using poly(ethylene oxide)solution contain colloids[J].Electrophoresis 2003,24:2896-2902
    Huang M F,Kuo Y C,Huang C C,et al.Separation of long double-stranded DNA by nanoparticle-filled capillary electrophoresis [J].Anal.Chem.2004,76:192-196
    Huang X C,Quesada M A,Mathies R A.Cappillary array electrophoresis using laser-excited confocal fluorescence detection[J].Anal.Chem.1992,64:967-972
    Huang X C,Quesada M A,Mathies R A.DNA sequencing using capillary array electrophoresis[J].Anal.Chem.1992,64:2149-2154
    Hubert S,Slater G,Viovy J.Theory of capillary electrophoretic separation of DNA using ultradilute polymer solutions[J].Macromolecules 1996,29:1006-1009
    Iki N,Yueng E S.Non-bonded poly(ethylene oxide)polymer-coated column for protein separation by capillary electrophoresis[J].J.chromatogr.A 1996,731:273-282
    Isenberg A R,McCord B R,Koons B W.DNA typing of a polymerase chain reaction amplified D1S80/amelogenin multiplex using capillary electrophoresis and a mixed entangled polymer matrix[J].Electrophoresis 1996,17:1505-1511.
    Jana N R,Gearheart L,Murphy C J.Seeding growth for size control of 5-40 run diameter gold nanoparticles[J].Langmuir 2001,17:6782-6786.
    Jin Y,Lin B,Feng Y.A collision model for DNA separation by capillary electrophoresis in dilute polymer solution[J].Fresenius' J.Anal.Chem.,2001,370:1015-1022
    Jung H J,Bae Y C.Theory for the capillary electrophoresis separation of DNA in polymer solutions[J].J.Chromatogr.A,2002,967:279-287
    Kan C W,Barron A E.A DNA separation matrix with thermally tunable mesh size[J].Electrophoresis 2003,24:55-62
    Kan C W,Doherty E A S,Barron A E.A novel thermogelling matrix for microchannel DNA sequencing based on poly-N-alkoxyalkylacrylamide copolymers [J].Electrophoresis 2003,24:4161-4169
    Kan C W,Fredlake C P,Doherty E A S,Barron A E.DNA sequencing and genotyping in miniaturized electrophoresis systems[J].Electrophoresis 2004,25:3564-3588
    Kheterpal I,Mathies R A.Capillary array electrophoresis DNA sequencing[J].Anal.Chem.1999,71:31A-37A.
    Kim D J,Kang S M,Kong B,et al.Formation of thermoresponsive gold/PNIPAAm hybrids by surface-initiated,atom transfer radical polymerization in aqueous media[J].Macromol.Chem.Phys.2005,206:1941-1946.
    Kim Y,Morris M D.Separation of nucleic acids by capillary electrophoresis in cellulose solutions with mono-and bis-intercalating dyes[J].Anal.Chem.1994,66:1168-1174.
    Kim Y,Yeung E S.Separation of DNA sequencing fragments up to 1000 bases by using poly(ethylene oxide)-filled capillary Electrophoresis [J].J.Chromatogr.A 1997,781:315-325
    Kleemib M H,Gilges M,Schomburg G.Capillary electrophoresis of DNA restriction fragments with solutions of entangled polymers [J].Electrophoresis 1993,14:515-522
    Kleparnik K,Foret F,Berka J,et al.The use of elevated column temperature to extend DNA sequencing read lengths in capillary electrophoresis with replaceable polymer matrices[J].Electrophoresis 1996,17:1860-1866.
    Kong H,Gao C,Yan D Y.Controlled functionalization of multi-walled carbon nanotubes by in situ atom transfer radical polymerization[J].J.Am.Chem.Soc.2004,126:412-413.
    Kurata M,Tsunashima Y.in:Brandrup J,Immergut E H.Polymer Handbook,John Wiley,New York 1989,pp.Ⅶ/1-Ⅶ/46
    Lammertink R G H,Komfield JA.Network formation and sieving performance of self-assembling hydrogels[J].Macromolecules 2003,36,9154-9161
    Lerman L S,Frisch H L.Why does the electrophoretic mobility of DNA in gels vary with the length of the molecule [J].Biopolymers 1982,21:995-997.
    Li Y,Lokitz B S,McCormick C L.RAFT synthesis of a thermally-responsive ABC triblock copolymer incorporating N-acryloxysuccinimide for facile in situ formation of shell cross-linked micelles in aqueous media[J].Macromolecules 2006,39:81-89.
    Liang D,Chu B.High speed separation of DNA fragments by capillary electrophoresis in poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide)triblock polymer[J].Electrophoresis 1998,19:2447-2453
    Liang D,Song L,Zhou S,et al.Poly(/V-isopropylacrylamide)-g-poly(ethyleneoxide)for high resolution and high speed separation of DNA by capillary electrophoresis[J].Electrophoresis 1999,20:2856-2863
    Liang D,Zhou S,Song L,et al.Copolymers of poly(N-isopropylacrylamide)densely grafted with poly(ethylene oxide)as high performance matrix of DNA separation[J].Macromolecules 1999,32:6326-6332
    Liang D,Song L,Quesada M,et al.Formation of concentration gradient and its application to DNA capillary electrophoresis [J].Electrophoresis 2000,21:3600-3608
    Liang D,Liu T,Song L,Chu B.Mixed triblock copolymers used as DNA separation medium in capillary electrophoresis[J].J.Chromatogr.A 2001,909:271-278.
    Liang D,Song L,Chen Z.Effect of glycerol-induced DNA conformational change on the separation of DNA fragments by capillary electrophoresis[J].J.Chromatogr.A,2001,931:163-173
    Liang D,Song L,Chen Z,Chu B.Clay-enhanced DNA separation in low molecular weight poly(N,N-dimethylacrylamide)solution by capillary electrophoresis [J].Electrophoresis 2001,22:1997-2003
    Lindberg P,Stjersnstrom M,Roeraade J.Gel electrophoresis of DNA fragments in narrow-bore capillaries [J].Electrophoresis 1997,18:1973-1979.
    Lin Y W,Huang M J,Chang H T.Analysis of double-stranded DNA by microchip capillary electrophoresis using polymer solutions containing gold nanoparticles[J].J.Chromatogr.A 2003,1014:47-55
    Lin Y W,Huang M F,Chang H T.Nanomaterials and chip-based nanostructures for capillary electrophoretic separations of DNA[J].Electrophoresis 2005,26:320-330
    Liu T,Liang D,Song L,et al.Spatial open-network formed by mixed triblock copolymers as a new medium for double-stranded DNA separation by capillary electrophoresis [J].Electrophoresis 2001,22:449-458
    Liu Y,Locke B R,van Winkle D H,Rill R L.Optimizing capillary gel electrophoretic separations of oligonucleotides in liquid crystalline Pluronic F127[J].J.Chromatogr.A 1998,817: 367-375
    Lowe A B,Sumerlin B S,Donovan M S,McCormick C L.Facile preparation of transition metal nanoparticles stabilized by well-defined(co)polymers synthesized via aqueous reversible addition-fragmentation chain transfer polymerization[J].J.Am.Chem.Soc.2002,124:11562-11563.
    Lumpkin O J,Dejardin P,Zimm B H.Theory of gel eletrophoresis of DNA[J].Biopolymers,1985,24:1573-1593
    Lunney J,Chrambach A,Rodbard D.Factors affecting resolution,band width,number of theoretical plates,and apparent diffusion coefficient in polyacrylamide gel electrophoresis[J].Anal.Biochem.1971,40:158-173
    Luo S,Xu J,Zhang Y,et al.Double hydrophilic block copolymer monolayer protected hybrid gold nanoparticles and their shell cross-linking[J].J.Phys.Chem.B 2005,109:22159-22166.
    Luong J H T,Bouvrette P,Liu Y L,et al.Electrophoretic separation of aniline derivatives using fused silica capillaries coated with acid treated single-walled carbon nanotubes[J].J.Chromatogr.A 2005,1074:187-194.
    Mac Crehan W A,Rasmussen H T,Northrop D M.Size-selective capillary electrophoresis(SSCE)separation of DNA fragments[J].J.Liq.Chromatogr.1992,15:1063-1080.
    Madabhushi R S.Separation of 4-color DNA sequencing extension products in noncovalently coated capillaries using low viscosity polymer solutions[J].Electrophoresis,1998,19:224-230
    Madabhushi R S,Menchen S M,Efcavitch J W,Grossman P D.Polymers for separation of biomolecules by capillary electrophoresis[J].US Patent No.5,567,292,1996.
    Madabhushi R S,Vainer M,Dolnik V,et al.Versatile low-viscosity sieving matrices for nondenaturing DNA separations using capillary array electrophoresis[J].Electrophoresis 1997,18:104-111
    Magnusdottir S,Viovy J L,Francois J.High resolution capillary electrophoretic separation of oligonucleotides in low-viscosity,hydrophobically end-capped polyethylene oxide with cubic order[J].Electrophoresis 1998,19:1699-1703.
    Mayer P,Slater G W,Drouin G.Theory of DNA sequencing using free-solution electrophoresis of protein-DNA complexes[J].Anal.Chem.1994,66:1777-1780
    McGregor D A,Yeung E S.Detection of DNA fragments separatedby capillary electrophoresis based on their native fluorescence inside a sheath flow[J].J.Chromatogr.1994,680:491-496.
    Menchen S,Johnson B,Winnik M A,Xu B.Flowable networks as DNA sequencing media in capillary columns[J].Electrophoresis 1996,17:1451-1459
    Mitnik L,Salome L,Viovy J L,Heller C.Systematic study of field and concentration effects in capillary electrophoresis of DNA in polymer solutions[J].J.Chromatogr.A 1995,710:309-321.
    Motsch S R,Kleemib M H,Schomburg G J.Production and application of capillaries field with agarose-gel for electrophoresis[J].High Resol.Chromatogr.1991,14:629-632
    Muthukumar M,Baumgrtner A.Effects of entropic barriers on polymer dynamics[J].Macromolecules 1989,22:1937-1941
    Muthukumar M,Baumgrtner A.Diffusion of a polymer chain in random media[J].Macromolecules 1989,22:1941-1946
    Neiman B,Grushka E,Lev O.Use of gold nanoparticles to enhance capillary electrophoresis[J].Anal.Chem.2001,73:5220-5227.
    Nelson M,Van Etten J L,Grabherr R.DNA sequencing of four bases using three lanes[J].Nucleic Acid Res.1992,20:1345-1348
    Nkodo A E.PhD Thesis,L' Universite Louis Pasteur,Strasbourg,France 2001
    Nkodo A E,Gamier J M,Tinland B,et al.Diffusion coefficientof DNA molecules during free solution electrophoresis[J].Electrophoresis 2001,22:2424-2432
    Nkodo A E,Tinland B.Simultaneous measurements of the electrophoretic mobility,diffusion coefficient and orientation of dsDNA during electrophoresis in polymer solutions[J].Electrophoresis 2002,23:2755-2765
    Noolandi J.A new concept for sequencing DNA by capillary electrophoresis[J].Electrophoresis 1992,13:394-395
    Noolandi J.A new concept for separating nucleic acids by electrophoresis in solution using hybrid synthetic end labelled-nucleic acid molecules[J].Electrophoresis 1993,14:680-681
    Ogston A G.The spaces in a uniform random suspersion of fibres[J].Trans.Faraday Soc.1958,54:1754-1757
    Pariat Y F,Berka J,Heiger D N,et al.Separation of DNA fragmens by capillary electrophoresis using replaceable linear polyacryamide matrices[J].J.Chromatogr.A 1993,652:57-66
    Pentoney S L,Konrad K D,Kaye W.A single-fluor approach to DNA sequence determination using high performance capillary electrophoresis[J].Electrophoresis 1992,13:467-474
    Pumera M,Wang J,Grushka E,Polsky R.Gold nanoparticle-enhanced microchip capillary electrophoresis[J].Anal.Chem.2001,73:5625-5628.
    Qin S,Qin D,Ford W T,et al.Polymer brushes on single-walled carbon nanorubes by atom transfer radical polymerization of n-butyl methacrylate[J].J.Am.Chem.Soc.2004,126:170-176.
    Relogioa P,Charreyrea M,Farinhab J P S,et al.Well-defined polymer precursors synthesized by RAFT polymerization of N,N-dimethylacrylamide/N-acryloxysuccinimide:random and block copolymers[J].Polymer 2004,45:8639-8649.
    Ren H,Karger A E,Oaks F,et al.Separating DNA sequencing fragments without a sieving matrix[J].Electrophoresis 1999,20:2501-2509
    Ren J,Fang Z.Separation of DNA fragments and single strand conformation polymorphism analysis in bare capillaries using poly(acrylamide-dimethylacrylamide)as a separation medium[J].J.Chromatogr.B 2001,761:139-145.
    Rodbard D,Chrambach A.Unified theory for gel electrophoresis and gel filtration[J].Proc.Natl.Acad.Sci.1970,65:970-977
    Rodbard D,Chrambach A.Estimation of molecular radius,free mobility,and valence using polyacrylamide gel electrophoresis[J].Anal.Biochem.1971,40:95-134
    Ruiz-Martinez M C,Berka J,Belenkii A,et al.DNA sequencing by capillary electrophoresis with replaceable linear polyacrylamide and laser-induced fluorescence detection[J].Anal.Chem.1993,65:2851-2858
    Salas-Solano O,Carrilho E,Kotler L,et al.Routine DNA sequencing of 1000 bases in less than one hour by capillary electrophoresis with replaceable linear polyacrylamide solutions[J].Anal.Chem.1998,70:3996-4003
    Sanders J C,Breadmore M C,Kwok Y C,et al.Hydroxypropyl cellulose as an adsorptive coating sieving matrix for DNA separations:artificial neural network optimization for microchip analysis[J].Anal.Chem.2003,75:986-994.
    Sartori A,Barbier V,Viovy J L.Sieving mechanisms in polymeric matrices[J].Electrophoresis 2003,24:421-440
    Sassi A P,Barron A,AlonsoAmigo M G,et al.Electrophoresis of DNA in novel thermoreversible matrices[J].Electrophoresis 1996,17:1460-1469
    Schmalzing D,Piggee C A,Foret F,et al.Characterization and performance of a neutral hydrophilic coating for the capillary electrophoretic separation of biopolymers[J].J.Chromatogr.1993,652:149-159
    Schwartz T,Francois J,Weill G.Dynamic dimensions in the polyacrylamide-water system[J].Polymer 1980,21:247-249.
    Schwartz H E,Ulfelder K,Sunzeri F J,et al.Analysis of DNA restricted fragments and polymerase chain reaction products towards detection of the AIDS(HIV-1)virus in blood[J].J.Chromatogr.1991,559:267-283.
    Semenov A N,Duke T A J,Viovy J L.Gel eletrophoresis of DNA in moderate fields:the effect of fluctuations[J].Phys.Rev.E 1995,51:1520-1537
    Shi X,Hammond R W,Morris M D.DNA conformational dynamics in polymer solutions above and below the entanglement limit[J].Anal.Chem.1995,67:1132-1138
    Simd-Alfonso E,Gelfi C,Sebastiano R,et al.Novel acrylamido monomers with higher hydrophilicity and improved hydrolytic stability:I.Synthetic route and product characterization[J].Electrophoresis,1996,17:723-731
    Simo-Alfonso E,Gelf C,Sebastiano R,et al.Novel acrylamido monomers with higher hydrophilicity and improved hydrolytic stability:Ⅱ.Properties of N-acryloylaminopropanol[J],Electrophoresis,1996,17:732-737
    Slater G W,Noolandi J.New biased-reptation model for charged polymers.Phys.Rev.Lett.1985,55:1579-1585
    Slater G W,Noolandi J.On the reptation theory of gel elctrophoresis[J].Biopolymers 1986,25:431-454
    Slater G W,Rousseu J,Noolandi J,et al.Quantitative analysis of the three regimes of DNA electrophoresis in agarose gels[J].Biopolymers,1988,27:509-524
    Slater G W,Noolandi J.The biased reptation model of DNA gel electrophoresis:Mobility vs molecular size and gel concentration[J].Biopolymers 1989,28:1781-1791
    Slater G W,Steve G,Michel G G,et al.Theory of DNA electrophoresis(~1999-2002~(1/2))[J].Electrophoresis 2002,23:3791-3816
    Slater G W,Kenward M,McCormick L C,et al.The theory of DNA separation by capillary electrophoresis [J].Curr.Opin.Biotechnol.2003,14:58-64
    Song J M,Yeung E S.Optimization of DNA electrophoretic behavior in polyvinyl pyrrolidone)sieving matrix for DNA sequencing[J].Electrophoresis 2001,22:748-754
    Song L,Liang D,Kielescawa J,et al.DNA sequencing by capillary electrophoresis using copolymers of acrylamide and N,N-dimethyl-acrylamide[J].Electrophoresis 2001,22,729-736
    Song L,Liang D,Fang D,Chu B.Fast DNA sequencing up to 1000 bases by capillary electrophoresis using poly(N,N-dimethylacrylamide)as a separation medium[J].Electrophoresis 2001,22:1987-1996
    Song L,Liu T,Liang D,Fang D,Chu B.Separation of double stranded DNA fragments by capillary electrophoresis in interpenetrating networks of polyacrylamide and polyvinylpyrrolidone[J].Electrophoresis 2001,22:3688-3698
    Song L,Liang D,Chen Z,et al.DNA sequencing by capillary electrophoresis using mixtures of polyacrylamide and poly(N,N-dimethylacrylamide)[J].J.Chromatogr.A 2001,915:231-239
    Strege M,Lagu A.Separation of DNA restriction fragments by capillary electrophoresis using coated fused silica capillaries[J].Anal.Chem.1991,63:1233-1236.
    Sudor J,Barbier V,Thirot S,et al.New block-copolymer thermoassociating matrices for DNA sequencing:Effect of molecular structure on rheology and resolution[J].Electrophoresis.2001,22:720-728
    Sunada W,Blanch H.Microscopy of DNA in dilute polymer solutions[J].Biotechnol.Progr.1998,14:766-772
    Sunada W,Blanch H.A theory for the electrophoretic separation of DNA in polymer solutions[J].Electrophoresis 1998,19:3128-3136
    Tabuchi M,Katsuyama Y,Nogami K,et al.A design of nanosized PEGylated-latex mixed polymer solution for microchip electrophoresis[J].Lab Chip 2005,5:199-204
    Tabuchi M,Baba Y.Design for DNA separation medium using bacterial cellulose fibrils[J].Anal.Chem.2005,77:7090-7093
    Tanahashi T,Kawaguchi M,Honda T,Rakahashi A.Adsorption of Poly(N-Isopropylacrylamide)on Silica Surfaces[J].Macromolecules 1994,27:606-607
    Tian H,Landers J P.Hydroxyethylcellulose as an effective polymer network for DNA analysis in uncoated glass microchips:optimization and application to mutation detection via heteroduplex analysis[J].Anal.Biochem.2002,309:212-223.
    Todorov T I,de Carmejane O,Walter N G,et al.Capillary electrophoresis of RNA in dilute and semidilute polymer solutions[J].Electrophoresis 2001,22:2442-2447
    Tseng W L,Chang H T.A new strategy for optimizing sensitivity,speed,and resolution in capillary electrophoretic separation of DNA[J].Electrophoresis 2001,22:763-770
    Tseng W L,Huang M F,Huang Y F,Chang H T.Nanoparticle-filled capillary electrophoresis for the separation of long DNA molecules in the presence of hydrodynamic and electrokinetic forces[J].Electrophoresis 2005,26:3069-3075.
    Ueno K,Yeung E S.Simultaneous monitoring of DNA fragments separated by electrophoresis in a multiplexed array of 100 capillaries[J].Anal.Chem.1994,66:1424-1431.
    Viovy J L,Duke T.DNA electrophoresis in polymer solutions:Ogston sieving,reptation and constraint release[J].Electrophoresis 1993,14:322-329
    Viovy J L,Heller C.In:Righetti P G,Capillary Electrophoresis:An Analytical Tool in Biotechnology Series,CRC Press,Boca Raton,FL 1996,pp.477-508
    Viovy J L.Electrophoresis of DNA and other polyelectrolytes:physical mechanisms [J].Rev.Mod.Phys.2000,72:813-872
    Viovy J L,Barbier V.Advanced polymers for DNA separation[J].Curr.Opin.Biotechnol.2003,14:51-57
    Wang,Q,Xu X,Dai L.A new quasi-interpenetrating network formed bypoly(N-acryloyl-tris-(hydroxymethyl)aminomethane and polyvinylpyrrolidone:Separation matrix for double-stranded DNA and single-stranded DNA fragments by capillary electrophoresis with UV detection[J].Electrophoresis 2006,27:1749-1757
    Wang Y,Liang D,Hao J,Fang D,Chu B.Separation of double-stranded DNA fragments by capillary electrophoresis using polyvinylpyrrolidone and poly(N,N-dimethylacrylamide)transient interpenetrating network[J].Electrophoresis 2002,23:1460-1466
    Wang Y,Liang D,Ying Q,Chu B.Quasi-interpenetrating network formed by polyacrylamide and po\y(N,N-dimethylacrylamide)used in high-performance DNA sequencing analysis by capillary electrophoresis[J].Electrophoresis 2005,26:126-136.
    Wang Z,Luo G,Chen J,et al.Carbon nanotubes as separation carrier in capillary electrophoresis[J].Electrophoresis 2003,24:4181-4188.
    Wei W,Yeung E S.DNA capillary electrophoresis in entangled dynamic polymers of surfactant molecules[J].Anal.Chem.2001,73:1776-1783
    Woolley A T,Mathies R A.Ultra-high-speed DNA sequencing using capillary electrophoresis chips[J].Anal.Chem.1995,67:3676-3680
    Wu C,Liu T,Chu B,et al.Characterization of the PEO-PPO-PEO Triblock Copolymer and Its Application as a Separation Medium in Capillary Electrophoresis[J].Macromolecules 1997,30:4574-4583
    Wu C,Liu T,Chu B.Viscosity-adjustable block copolymer for DNA separation by capillary electrophoresis[J].Electrophoresis 1998,19:231-241
    Xiong X,Ouyang J,Baeyens W R G,et al.Enhanced separation of purine and pyrimidine bases using carboxylic multiwalled carbon nanotubes as additive in capillary zone electrophoresis[J].Electrophoresis 2006,27:3243-3253.
    Xu F,Jabasini M,Baba Y.DNA separation by microchip electrophoresis using low-viscosity hydroxypropylmethylcellulose-50 solutions enhanced by polyhydroxy compounds[J].Electrophoresis 2002,23:3608-3614
    Xu F,Jabasini M,Liu S Q,et al.Reduced viscosity polymer matrices for microchip electrophoresis of double-stranded DNA[J].Analyst 2003,128:589-592
    Xu F,Baba Y.Polymer solutions and entropic-based systems for double-stranded DNA capillary electrophoresis and microchip electrophoresis[J].Electrophoresis,2004,25:2332-2345
    Xu Y,Li S F Y Carbon nanotube-enhanced separation of DNA fragments by a portable capillary electrophoresis system with contactless conductivity detectin[J].Electrophoresis 2006,27:4025-4028
    Yang R M,Wang Y M,Wang X G,et al.Synthesis of poly(4-vinylpyridine)and block copoly(4-vinylpyridine-b-styrene)by atom transfer radical polymerization using 5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazamacrocyclotetradecane as ligand[J].Eur.Polym.J.2003,39:2029-2033.
    Zhang J Z,Fang Y,Hou J Y,et al.Use of non-cross-linked polyacrylamide for four-color DNA sequencing by capillary electrophoresis separation of fragments up to 640 bases in length in two hours[J].Anal.Chem.1995,67:4589-4593.
    Zhang J,Wang Y,Liang D,et al.Association behavior of PDMA-g-PMMA in mixed solvents and its application as a DNA separation medium[J].Macromolecules 2005,38:1936-1943
    Zhang P,Ren J C.Study of polydimethylacrylamide-and polydiethylacrylamide-adsorbed coatings on fused silica capillaries and their application in genetic analysis[J],Anal.Chim.Acta 2004,507:179-184
    Zhang W L,Wang Y M,DNA Sequencing by capillary electrophoresis using quasi-interpenetrating network formed by polyacrylamide and poly (N-hydroxymethylacrylamide)[J].Chin.Chem.Lett.2006,17:1061-1064
    Zhao B,Brittain W J.Polymer brushes:surface-immobilized macromolecules [J].Prog.Polym.Sci.2000,25:677-710.
    Zhou D,Wang Y M,Zhang W L,et al.Novel quasi-interpenetrating network/gold nanoparticles composite matrices for DNA sequencing by CE[J],Electrophoresis 2007,28:1072-1080.
    Zhou D,Wang Y M,Yang R M,et al.Effects of novel quasi-interpenetrating network/gold nanoparticles composite matrices on DNA sequencing performances by CE[J].Electrophoresis 2007,28:2998-3007.
    Zhou H,Miller A W,Sosic Z,et al.DNA sequencing up to 1300 bases in two hours by capillary electrophoresis with mixed re-placeable linear polyacrylamide solutions[J].Anal.Chem.2000,72:1045-1052.
    Zhu J,Zhu X L,Cheng Z P,et al.J.Reversible addition-fragmentation chain-transfer polymerization of octadecyl acrylate[J].Macromol.Sci.,Part A:Pure Appl.Chem.2003,40: 963-975.
    Zhu M,Hansen D L,Burd S,Gannon F.Factors affecting free zone electrophoresis and isoelectric focusing in capillary electrophoresis[J].J.Chromatogr.1989,480:311-319
    Zhu M Q,Wang L Q,Exarhos G J,et al.Thermosensitive gold nanoparticles[J].J.Am.Chem.Soc.2004,126,2656-2657.
    Zimm B H.Lakes-straits model of field-inversion gel-electrophoresis of DNA[J].J.Chem.Phys.1991,94:2187-2206
    陈义.毛细管电泳技术及应用[M].北京:化学工业出版社,2006,106-149.
    丁晓萍,廖杰,刘晓达等.无胶筛分毛细管电泳分析几百个碱基对核酸的条件优化[J].色谱,1998,06:25-28.
    林炳承.毛细管电泳导论[M].北京:科学出版社,1996,121-125.
    秦向东,裴静,沈建红,王学琳.毛细管电泳与DNA序列分析[J].现代仪器,2001,6:9-12
    王前,许旭.用于毛细管电泳DNA分离的合成聚合物[J].化学进展,2003,15:275-287
    王园朝,熊音,曾昭睿,程介克,沈萍.无胶筛分毛细管电泳分离盐生盐杆菌DNA片段[J].色谱,2001,19,439-442
    余胜兵,周平,胡继明.无胶筛分毛细管电泳分离DNA片段的现状与展望[J].生物技术通讯,2004,15:523-526
    张文龙.用于毛细管电泳分离DNA及蛋白质的准互穿聚合物网络的合成与表征[D]:[硕士].合肥:中国科学技术大学.2006
    周琼,陈缵光,莫金垣,夏笔军.毛细管电泳在DNA测序中的应用[J].现代医学仪器与应用,2002,14:18-20

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700