用户名: 密码: 验证码:
纳米杂化结构的DNA控制自组装及功能DNA纳米机器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
DNA在纳米自组装研究中日益受到重视,这主要得益于其所具有的三个最主要特性:(1)DNA是一种可以自动化人工合成的天然纳米尺度材料:(2)现已积累了大量关于DNA操控,修饰和剪裁等分子生物学技术;(3)DNA具有可编程的碱基互补配对杂交与自组装的能力。本论文工作正是充分利用DNA的以上一些特性实现了纳米金和单壁碳纳米管之间的可控自组装,同时设计并构造了能行使接近实际操作功能的DNA纳米镊装置。具体来说,本博士论文主要进行了三方面的研究。
     (1)成功地在DNA缠绕的单壁碳纳米管上组装了能在水中稳定分散的纳米金/碳纳米管一维杂化阵列结构。这项工作巧妙地应用了DNA碱基与碳纳米管之间的非共价π-π相互作用(由杜邦研究及发展中心的Zheng等人先前建立)和巯基分子在金纳米粒子表面的键合能力,以DNA缠绕的单壁碳纳米管作为一种新型的自组装模板,构筑出金纳米粒子与碳纳米管之间的线性杂化阵列结构。得益于碳纳米管模板的良好刚性,我们得到的金纳米粒子一维线性阵列保持了优良的结构与形状,很好地克服了以软模板,如双螺旋DNA等,组装纳米粒子阵列时容易发生的自缠绕和自交联等问题。研究中通过琼脂糖凝胶电泳对组装产物进行了纯化和初步确认。所得纯化样品进一步通过原子力显微镜进行详细表征,得到了关于组装正确性和组装效率的直接证据。由于金纳米粒子和单壁碳纳米管优异的化学和结构稳定性以及丰富的物理和化学性质,这种新颖的线性纳米杂化阵列可望进一步用于新型生物传感器、纳米电子/光电子器件以及纳米催化等研究。
     (2)通过一种特殊的碱基配对模式,即Hoogsteen氢键稳定的DNA三螺旋结构,我们设计并构建了可模拟特定机械操作的DNA纳米机器——DNA纳米镊。优于以往构建的各种类似器件,我们得到的这种新型的纳米镊可以在纳米尺度上实现对特定目标物的识别、捕获、夹持和释放等一系列操作。我们应用非变性聚丙烯酰胺凝胶电泳结合荧光共振能量转移效应,对上述纳米镊的功能成功地进行了演示。本工作为将DNA纳米镊从纯粹概念的演示推进到开发接近实际功能的应用这一DNA纳米机器研究的长远目标迈出了重要的一步。接下来的研究将会尝试对该DNA分子镊进一步集成并利用现场成像技术对其操作过程进行直接监控。
     (3)利用一种非常简单易得的小分子,乙二胺,通过改变溶液的pH来调控乙二胺分子的质子化过程,从而对其与纳米粒子间的静电相互作用进行简单而有效的控制。基于此,我们分别实现了金纳米粒子和单壁碳纳米管在聚集和分散两种状态间的可逆切换。通过测量分散和聚集态的纳米金溶液在可见光区的特征吸收对这一过程进行了实时监测,利用透射电子显微镜,动态光散射以及凝胶电泳等方法对聚集和分散过程中纳米金的状态变化进行了表征。对于DNA缠绕修饰的单壁碳纳米管,我们采用离心加速沉降法直接观察其分散状态随pH控制而发生的变化。这种调控纳米粒子聚集-分散状态的方法无需对纳米粒子进行特殊的表面修饰,主要依赖于乙二胺分子的质子化过程和纳米粒子表面的电荷属性,因此是一种极其简单而且通用的方法。该体系的深入研究将为进一步构筑具备分子传感功能的智能纳米结构提供了一种非常便捷有效的新策略。
The main topic of this thesis is about the controllable assembly of inorganic nanostructures and supramolecular nanomachines using designed DNA sequences, which falls into the area of DNA nanotechnology.The appeal of DNA to nanoscience and nanotechnology is threefold:firstly,it is a naturally occurred nanoscale building block,which can be chemically manufactured on a solid phase DNA synthesizer with single base accuracy,and assembled in a salt-containing buffer through a simple heating-up and cooling-down cycle;secondly,well-developed chemistry and molecular biology tool-kits are readily available for operating,modifing,replicating, clipping and joining DNA molecules to further tailor their structures and functions; and thirdly,the base sequences in DNA can be easily encoded and exploited for programmed self-assembly,resulting in virtually any defined structures and patterns on the nanoscale in an extremely accurate and predictable way.
     This thesis tried to employ DNA as a supramolecule helper to facilitate the assembly of linear heteronanostructures between gold nanoparticles and single-walled carbon nanotubes in order to associate special and novel properties with designed hybrid nanosystems.We would also attempt to build a DNA structured nanomechnical device that can have some close-to-reality functions such as grabbing or releasing an object at will.Following are detailed descriptions of these results:
     Water-soluble gold nanoparticle(AuNP) linear arrays on single walled carbon nanotubes(SWNTs) were obtained via a DNA-assisted self-assembly process.This work took advantage of non-covalent interactions between DNA bases and single-walled carbon nanotubes(a technique established by Zheng et al.at Dupont Central Research and Development) to introduce multiple thiol groups on the surface of a SWNT,which then served well as a novel template for the assembly of linear gold nanoparticle arrays.The native rigidity of SWNTs made them especially suited as linear assembly templates and rendered the resulting gold nanoparticle linear arrays very good quality and free of any self-entanglements,which often happen to a softer template such as a DNA double helix.The as-formed AuNP-SWNT hybrids were isolated by agarose gel electrophoresis and their structures were validated through atomic force microscopy(AFM) imagings.Various control experiments were designed to further verify our proposed assembly scheme.The DNA-wrapped single-walled carbon nanotubes,as a new type of nanoscale building blocks for DNA directed material assembly,should also be usable for the assembly of various other nanomaterials with distinct properties.The next goal of our research is to seek possible applications of these hybrid nanostructures in bio-detections, nanoelectronics/photoelectronics and nano-catalyses.
     The next pursuit of this thesis was to build a pair of DNA nanomechanical tweezers that can be easily operated to recognize,capture,hold and release an object on demand.The most difficult part of this work was to find a suitable way for the very tiny tweezers to firmly hold an object between its two mechanical arms.We made use of a non-canonical base-pairing mode called Hoogsteen hydrogen bonding to fulfill this challenging requirement.The DNA molecular tweezers could then be operated to interact with a DNA structured object at lowered pH.The DNA object helically wrapped around the tweezers' arms and was then firmly held after the tweezers being zipped close.Opening the tweezers via a DNA strand-displacement process would then release the object to solution where the Hoogsteen bonding was much weakened at increased pH.A native polyacrylamide gel electrophoresis(PAGE) in combination with a fluorescent resonance energy transfer(FRET) technique was used to demonstrate the functioning of the catch and release cycles of the tweezers.Further research can be carried out to integrate the tiny tweezers into large DNA arrays that will allow us to monitor the functioning of this new device in real time with the help of modern imaging techniques,such as atomic force microscopy(AFM).
     We also tried to use a very simple molecule,ethylenediamine,to switch the electrostatic assembly and disassembly of gold nanoparticles and DNA-wrapped single-walled carbon nanotubes based on pH controlled protonation-deprotonation processes of ethylenediamine.We used optical absorbance and centrifugation-facilitated precipitation to monitor the above aggregation-dispersion cycles.Transmission electron microscopy(TEM),dynamic light scattering(DLS), and gel electrophoresis were also employed to further check the dispersion states of the gold nanoparticles before,during and after the cycling experiments.This strategy did not rely on any specific surface-modified chemical groups and should,with only slight modifications,be easily extended to other interesting systems.The most prominent and attractive feature of this method lied in the fact that it was an extremely simple,effective and general process as compared to other developed strategies for the same purpose in literature.
引文
[1]Steinmetz N F,Lin T,Lomonossoff G P,et al.Structure-Based Engineering of an Icosahedral Virus for Nanomedicine and Nanotechnology.In Viruses and Nanotechnology.2009,Vol.327,pp 23-58.
    [2]Matsuura N,Rowlands J A.Towards new functional nanostructures for medical imaging.Medical Physics.2008,35(10):4474-4487.
    [3]Iverson N,Plourde N,Chnari E,et al.Convergence of nanotechnology and cardiovascular medicine.Biodrugs.2008,22(1):1-10.
    [4]Hamoudeh M,Kamleh M A,Diab R,et al.Radionuclides delivery systems for nuclear imaging and radiotherapy of cancer.Advanced Drug Delivery Reviews.2008,60(12):1329-1346.
    [5]Sahoo S K,Parveen S,Panda J J.The present and future of nanotechnology in human health care.Nanomedicine-Nanotechnology Biology and Medicine.2007,3(1):20-31.
    [6]Nie S M,Xing Y,Kim G J,et al.Nanotechnology applications in cancer.Annual Review of Biomedical Engineering.2007,9:257-288.
    [7]Emerich D F,Thanos C G Targeted nanoparticle-based drug delivery and diagnosis.Journal of Drug Targeting.2007,15(3):163-183.
    [8]Groneberg D A,Giersig M,Welte T,et al.Nanoparticle-based diagnosis and therapy.Current Drug Targets.2006,7(6):643-648.
    [9]Farokhzad O C,Langer R.Nanomedicine:Developing smarter therapeutic and diagnostic modalities.Advanced Drug Delivery Reviews.2006,58(14):1456-1459.
    [10]Sonvico F,Dubernet C,Colombo P,et al.Metallic colloid nanotechnology,applications in diagnosis and therapeutics.Current Pharmaceutical Design.2005,11(16):2091-2105.
    [11]Seeman N C,Belcher A M.Emulating biology:Building nanostructures from the bottom up.Proceedings of the National Academy of Sciences of the United States of America.2002,99:6451-6455.
    [12]Seeman N C.Nucleic acid junctions and lattices.J.Theor.Biol.1982,99:237-247.
    [13]Chen J H,Seeman N C.Synthesis from DNA of a Molecule with the Connectivity of a Cube.Nature.1991,350(6319):631-633.
    [14]Fu T J,Seeman N C.DNA Double-Crossover Molecules.Biochemistry.1993,32(13):3211-3220.
    [15]Li X J,Yang X P,Qi J,et al.Antiparallel DNA double crossover molecules as components for nanoconstruction.Journal of the American Chemical Society.1996,118(26):6131-6140.
    [16]Lin C X,Liu Y,Rinker S,et al.DNA tile based self-assembly:Building complex nanoarchitectures.Chemphyschem.2006,7(8):1641-1647.
    [17]Mao C D,Sun W Q,Seeman N C.Designed two-dimensional DNA Holliday junction arrays visualized by atomic force microscopy.Journal of the American Chemical Society.1999,121(23):5437-5443.
    [18]Liu D,Wang M S,Deng Z X,et al.Tensegrity:Construction of rigid DNA triangles with flexible four-arm DNA junctions.Journal of the American Chemical Society.2004,126(8):2324-2325.
    [19]Sa-Ardyen P,Vologodskii A V,Seeman N C.The flexibility of DNA double crossover molecules.Biophysical Journal.2003,84(6):3829-3837.
    [20]Winfree E,Liu F R,Wenzler L A,et al.Design and self-assembly of two-dimensional DNA crystals.Nature.1998,394(6693):539-544.
    [21]Mao C.The emergence of complexity:Lessons from DNA.Plos Biology.2004,2(12):2036-2038.
    [22]Liu F R,Sha R J,Seeman N C.Modifying the surface features of two-dimensional DNA crystals.Journal of the American Chemical Society.1999,121(5):917-922.
    [23]Weiss P S.A conversation with Prof.Ned Seeman:Founder of DNA nanotechnology.Acs Nana 2008,2(6):1089-1096.
    [24]Malo J,Mitchell J C,Venien-Bryan C,et al.Engineering a 2D protein-DNA crystal.Angewandte Chemie-International Edition.2005,44(20):3057-3061.
    [25]Moghaddam M J,Taylor S,Gao M,et al.Highly efficient binding of DNA on the sidewalls and tips of carbon nanotubes using photochemistry.Nano Letters.2004,4(1):89-93.
    [26]He Y,Chen Y,Liu H P,et al.Self-assembly of hexagonal DNA two-dimensional(2D) arrays.Journal of the American Chemical Society.2005,127(35):12202-12203.
    [27]LaBean T H,Yan H,Kopatsch J,et al.Construction,analysis,ligation,and self-assembly of DNA triple crossover complexes.Journal of the American Chemical Society.2000,122(9):1848-1860.
    [28]Liu D,Park S H,Reif J H,et al.DNA nanotubes self-assembled from triple-crossover tiles as templates for conductive nanowires.Proceedings of the National Academy of Sciences of the United States of America.2004,101(3):717-722.
    [29]Reishus D,Shaw B,Brun Y,et al.Self-assembly of DNA double-double crossover complexes into high-density,doubly connected,planar structures.Journal of the American Chemical Society.2005,127(50):17590-17591.
    [30]Ke Y G,Liu Y,Zhang J P,et al.A study of DNA tube formation mechanisms using 4-,8-,and 12-helix DNA nanostructures.Journal of the American Chemical Society.2006,128(13):4414-4421.
    [31]He Y,Mao C D.Balancing flexibility and stress in DNA nanostructures.Chemical Communications.2006,(9):968-969.
    [32]He Y,Tian Y,Chen Y,et al.Sequence symmetry as a tool for designing DNA nanostructures.Angewandte Chemie-International Edition.2005,44(41):6694-6696.
    [33]Liu H P,He Y,Ribbe A E,et al.Two-dimensional(2D) DNA crystals assembled from two DNA strands.Biomacromolecules.2005,6(6):2943-2945.
    [34]Lund K,Liu Y,Lindsay S,et al.Self-assembling a molecular pegboard.Journal of the American Chemical Society.2005,127(50):17606-17607.
    [35]Liu Y,Ke Y G,Yan H.Self-assembly of symmetric finite-size DNA nanoarrays.Journal of the American Chemical Society.2005,127(49):17140-17141.
    [36]Park S H,Pistol C,Ann S J,et al.Finite-size,fully addressable DNA tile lattices formed by hierarchical assembly procedures.Angewandte Chemie-International Edition.2006,45(5):735-739.
    [37]Yan H,Park S H,Finkelstein G,et al.DNA-templated self-assembly of protein arrays and highly conductive nanowires.Science.2003,301(5641):1882-1884.
    [38]Yan H,LaBean T H,Feng L P,et al.Directed nucleation assembly of DNA tile complexes for barcode-patterned lattices.Proceedings of the National Academy of Sciences of the United States of America.2003,100(14):8103-8108.
    [39]Ding B Q,Sha R J,Seeman N C.Pseudohexagonal 2D DNA crystals from double crossover cohesion.Journal of the American Chemical Society.2004,126(33):10230-10231.
    [40]Park S H,Barish R,Li H Y,et al.Three-helix bundle DNA tiles self-assemble into 2D lattice or 1D templates for silver nanowires.Nano Letters.2005,5(4):693-696.
    [41]Mathieu F,Liao S P,Kopatscht J,et al.Six-helix bundles designed from DNA.Nano Letters.2005,5(4):661-665.
    [42]Rothemund P W K.Folding DNA to create nanoscale shapes and patterns.Nature.2006,440(7082):297-302.
    [43]Ke Y G,Lindsay S,Chang Y,et al.Self-assembled water-soluble nucleic acid probe tiles for label-free RNA hybridization assays.Science.2008,319(5860):180-183.
    [44]Rothemund P W K,Papadakis N,Winfree E.Algorithmic self-assembly of DNA Sierpinski triangles.Plos Biology.2004,2(12):2041-2053.
    [45]Winfree E,Bekbolatov R In Proofreading tile sets:Error correction for algorithmic self-assembly,9th International Workshop on DNA Based Computers(DNA9),Madison,WI,Jun 01-03,2003;Chen,J.;Reif,J.,Eds.Madison,WI,2003;pp 126-144.
    [46]Goodman R P,Berry R M,Turberfield A J.The single-step synthesis of a DNA tetrahedron.Chemical Communications.2004,(12):1372-1373.
    [47]Shih W M,Quispe J D,Joyce G F.A 1.7-kilobase single-stranded DNA that folds into a nanoscale octahedron.Nature.2004,427(6975):618-621.
    [48]He Y,Ye T,Su M,et al.Hierarchical self-assembly of DNA into symmetric supramolecular polyhedra.Nature.2008,452(7184):198-U 141.
    [49]Rothemund P W K,Ekani-Nkodo A,Papadakis N,et al.Design and characterization of programmable DNA nanotubes.Journal of the American Chemical Society.2004,126(50):16344-16352.
    [50]Wei B,Mi Y L.A new triple crossover triangle(TXT) motif for DNA self-assembly.Biomacromolecules.2005,6(5):2528-2532.
    [51]Kiehl R A,Le J D,Musier-Forsyth K,et al In Patterning,templating,and self-assembly by nanocomponent hybridization to 2-D DNA scaffolding,231st National Meeting of the American-Chemical-Society,Atlanta,GA,Mar 26-30,2006;Atlanta,GA,2006;pp 59-COLL.
    [52]Sharma J,Chhabra R,Cheng A,et al.Control of Self-Assembly of DNA Tubules Through Integration of Gold Nanoparticles.Science.2009,323(5910):112-116.
    [53]Liu H P,Chen Y,He Y,et al.Approaching the limit:Can one DNA oligonucleotide assemble into large nanostructures? Angewandte Chemic-International Edition.2006,45(12):1942-1945.
    [54]LaBean T H,Li H Y.Constructing novel materials with DNA.Nano Today.2007,2(2):26-35.
    [55]Murphy C J,Arkin M R,Jenkins Y,et al.Long-Range Photoinduced Electron-Transfer through a DNA Helix.Science.1993,262(5136):1025-1029.
    [56]Arkin M R,Stemp E D A,Holmlin R E,et al.Rates of DNA-mediated electron transfer between metallointercalators.Science.1996,273(5274):475-480.
    [57]Beratan D N,Pdyadarshy S,Risser S M.DNA:Insulator or wire? Chemistry & Biology.1997,4(1):3-8.
    [58]Porath D,Bezryadin A,de Vries S,et al.Direct measurement of electrical transport through DNA molecules.Nature.2000,403(6770):635-638.
    [59]Braun E,Eichen Y,Sivan U,et al.DNA-templated assembly and electrode attachment of a conducting silver wire.Nature.1998,391(6669):775-778.
    [60]Kasumov A Y,Kociak M,Gueron S,et al.Proximity-induced superconductivity in DNA.Science.2001,291(5502):280-282.
    [61]Lee J,Horuk R,Rice G C,et al.Characterization of 2 High-Affinity Human Interleukin-8 Receptors.Journal of Biological Chemistry.1992,267(23):16283-16287.
    [62]Wettig S D,Li C Z,Long Y T,et al.M-DNA:a self-assembling molecular wire for nanoelectronics and biosensing.Analytical Sciences.2003,19(1):23-26.
    [63]Deng Z X,Mao C D.DNA-templated fabrication of 1D parallel and 2D crossed metallic nanowire arrays.Nano Letters.2003,3(11):1545-1548.
    [64]Richter J,Seidel R,Kirsch R,et al.Nanoscale palladium metallization of DNA.Advanced Materials.2000,12(7):507-510.
    [65]Patolsky F,Weizmann Y,Lioubashevski O,et al.Au-nanoparticle nanowires based on DNA and polylysine templates.Angewandte Chemic-International Edition.2002,41(13):2323-2327.
    [66]Ford W E,Harnack O,Yasuda A,et al.Platinated DNA as precursors to templated chains of metal nanoparticles.Advanced Materials.2001,13(23):1793-1797.
    [67]Keren K,Krueger M,Gilad R,et al.Sequence-specific molecular lithography on single DNA molecules.Science.2002,297(5578):72-75.
    [68]Deng Z X,Man C D.Molecular lithography with DNA nanostructures.Angewandte Chemie-Internationai Edition.2004,43(31):4068-4070.
    [69]Becerril H A,Woolley A T.DNA shadow nanolithography.Small.2007,3(9):1534-1538.
    [70]Li H Y,Park S H,Reif J H,et al.DNA-templated self-assembly of protein and nanoparticle linear arrays.Journal of the American Chemical Society.2004,126(2):418-419.
    [71]Beyer S,Nickels P,Simmel F C.Periodic DNA nanotemplates synthesized by rolling circle amplification.Nano Letters.2005,5(4):719-722.
    [72]Zhang J P,Liu Y,Ke Y G,et al.Periodic square-like gold nanoparticle arrays templated by self-assembled 2D DNA nanogrids on a surface.Nano Letters.2006,6(2):248-251.
    [73]Zheng J W,Constantinou P E,Micheel C,et al.Two-dimensional nanoparticle arrays show the organizational power of robust DNA motifs.Nano Letters.2006,6(7): 1502-1504.
    [74]Niemeyer C M,Ceyhan B.DNA-directed functionalization of colloidal gold with proteins.Angewandte Chemie-International Edition.2001,40(19):3685-3688.
    [75]Chhabra R,Sharma J,Ke Y G,et al.Spatially addressable multiprotein nanoarrays templated by aptamer-tagged DNA nanoarchitectures.Journal of the American Chemical Society.2007,129(34):10304-10305.
    [76]Cohen J D,Sadowski J P,Dervan P B.Addressing single molecules on DNA nanostructures.Angewandte Chemie-International Edition.2007,46(42):7956-7959.
    [77]Le J D,Pinto Y,Seeman N C,et al.DNA-templated self-assembly of metallic nanocomponent arrays on a surface.Nano Letters.2004,4(12):2343-2347.
    [78]Sharma J,Chhabra R,Liu Y,et al.DNA-templated self-assembly of two-dimensional and periodical gold nanoparticle arrays.Angewandte Chemie-International Edition.2006,45(5):730-735.
    [79]Deng Z X,Tian Y,Lee S H,et al.DNA-encoded self-assembly of gold nanoparticles into one-dimensional arrays.Angewandte Chemie-International Edition.2005,44(23):3582-3585.
    [80]Park S H,Yin P,Liu Y,et al.Programmable DNA self-assemblies for nanoscale organization of ligands and proteins.Nano Letters.2005,5(4):729-733.
    [81]Liu Y,Lin C X,Li H Y,et al.Protein nanoarrays-Aptamer-directed self-assembly of protein arrays on a DNA nanostructure.Angewandte Chemie-International Edition.2005,44(28):4333-4338.
    [82]Mirkin C A,Letsinger R L,Mucic R C,et al.A DNA-based method for rationally assembling nanoparticles into macroscopic materials.Nature.1996,382(6592):607-609.
    [83]Alivisatos A P,Johnsson K P,Peng X G,et al.Organization of‘nanocrystal molecules’ using DNA.Nature.1996,382(6592):609-611.
    [84]Rosi N L,Mirkin C A.Nanostructures in biodiagnostics.Chemical Reviews.2005,105(4):1547-1562.
    [85]Willner I,Patolsky F,Wasserman J.Photoelectrochemistry with controlled DNA-cross-linked CdS nanoparticle arrays.Angewandte Chemie-International Edition.2001,40(10):1861-1864.
    [86]Gerion D,Chen F Q,Kannan B,et al.Room-temperature single-nucleotide polymorphism and multiallele DNA detection using fluorescent nanocrystals and microarrays.Analytical Chemistry.2003,75(18):4766-4772.
    [87]Moller R,Powell R D,Hainfeld J F,et al.Enzymatic control of metal deposition as key step for a low-background electrical detection for DNA chips.Nano Letters.2005,5(7):1475-1482.
    [88]Nykypanchuk D,Maye M M,van der Lelie D,et al.DNA-guided crystallization of colloidal nanoparticles.Nature.2008,451(7178):549-552.
    [89]Fujibayashi K,Hariadi R,Park S H,et al.Toward reliable algorithmic self-assembly of DNA tiles:A fixed-width cellular automaton pattern.Nano Letters.2008,8(7):1791-1797.
    [90]Xin H J,Woolley A T.High-yield DNA-templated assembly of surfactant-wrapped carbon nanotubes.Nanotechnology.2005,16(10):2238-2241.
    [91]Hazani M,Hennrich F,Kappes M,et al.DNA-mediated self-assembly of carbon nanotube-based electronic devices.Chemical Physics Letters.2004,391(4-6):389-392.
    [92]Chen Y,Liu H P,Ye T,et al.DNA-directed assembly of single-wall carbon nanotubes.Journal of the American Chemical Society.2007,129(28):8696-8697.
    [93]Li Y L,Han X G,Deng Z X.Grafting single-walled carbon nanotubes with highly hybridizable DNA sequences:Potential building blocks for DNA-programmed material assembly.Angewandte Chemie-International Edition.2007,46(39):7481-7484.
    [94]Mao C D,Sun W Q,Shen Z Y,et al.A nanomechanical device based on the B-Z transition of DNA.Nature.1999,397(6715):144-146.
    [95]Yan H,Zhang X P,Shen Z Y,et al.A robust DNA mechanical device controlled by hybridization topology.Nature.2002,415(6867):62-65.
    [96]Zhong H,Seeman N C.RNA used to control a DNA rotary nanomachine.Nano Letters.2006,6(12):2899-2903.
    [97]Ding B,Seeman N C.Operation of a DNA robot arm inserted into a 2D DNA crystalline substrate.Science.2006,314(5805):1583-1585.
    [98]Liu D S,Balasubramanian S.A proton-fuelled DNA nanomachine.Angewandte Chemie-International Edition.2003,42(46):5734-5736.
    [99]Liedl T,Simmel F C.Switching the conformation of a DNA molecule with a chemical oscillator.Nano Letters.2005,5(10):1894-1898.
    [100]Liedl T,Olapinski M,Simmel F C.A surface-bound DNA switch driven by a chemical oscillator.Angewandte Chemie-International Edition.2006,45(30):5007-5010.
    [101]Liu H J,Xu Y,Li F Y,et al.Light-driven conformational switch of i-motif DNA.Angewandte Chemie-International Edition.2007,46(14):2515-2517.
    [102]Shu W M,Liu D S,Watari M,et al.DNA molecular motor driven micromechanical cantilever arrays.Journal of the American Chemical Society.2005,127(48):17054-17060.
    [103]Liedl T,Sobey T L,Simmel F C.DNA-based nanodevices.Nano Today.2007,2(2):36-41.
    [104]Bath J,Turberfield A J.DNA nanomachines.Nature Nanotechnology.2007,2(5):275-284.
    [105]Shin J S,Pierce N A.A synthetic DNA walker for molecular transport.Journal of the American Chemical Society.2004,126(35):10834-10835.
    [106]Sherman W B,Seeman N C.A precisely controlled DNA biped walking device.Nano Letters.2004,4(7):1203-1207.
    [107]Tian Y,He Y,Chen Y,et al.Molecular devices-A DNAzyme that walks processively and autonomously along a one-dimensional track.Angewandte Chemie-International Edition.2005,44(28):4355-4358.
    [108]Bath J,Green S J,Turberfield A J.A free-running DNA motor powered by a nicking enzyme.Angewandte Chemie-International Edition.2005,44(28):4358-4361.
    [109]Yin P,Turberfield A J,Reif J H.Designs of autonomous unidirectional walking DNA devices.DNA Computing.2005,3384:410-425.
    [110]Yin P,Turberfield A J,Sahu S,et al.Design of an autonomous DNA nanomechanical device capable of universal computation and universal translational motion.DNA Computing.2005,3384:426-444.
    [111]Yin P,Yan H,Daniell X G,et al.A unidirectional DNA walker that moves autonomously along a track.Angewandte Chemie-International Edition.2004,43(37):4906-4911.
    [112]Yin P,Sahu S,Turberfield A J,et al.Design of autonomous DNA cellular automata.DNA Computing.2006,3892:399-416.
    [113]Benenson Y,Paz-Elizur T,Adar R,et al.Programmable and autonomous computing machine made of biomolecules.Nature.2001,414(6862):430-434.
    [114]Turberfield A J,Mitchell J C,Yurke B,et al.DNA fuel for free-running nanomachines.Physical Review Letters.2003,90(11).
    [115]Seelig G,Yurke B,Winfree E.Catalyzed relaxation of a metastable DNA fuel.Journal of the American Chemical Society.2006,128:12211-12220.
    [116]Green S J,Lubrich D,Turberfield A J.DNA hairpins:Fuel for autonomous DNA devices.Biophysical Journal.2006,91(8):2966-2975.
    [117]Dirks R M,Pierce N A.Triggered amplification by hybridization chain reaction.Proceedings of the National Academy of Sciences of the United States of America.2004, 101(43):15275-15278.
    [118]Omabegho T,Sha R,Seeman N C.A Bipedal DNA Brownian Motor with Coordinated Legs.Science.2009,324(5923):67-71.
    [119]Lubrich D,Bath J,Turberfield A J.Design and assembly of double-crossover linear arrays of micrometre length using rolling circle replication.Nanotechnology.2005,16(9):1574-1577.
    [120]Tian Y,Mao C D.Molecular gears:A pair of DNA circles continuously rolls against each other.Journal of the American Chemical Society.2004,126(37):11410-11411.
    [121]Yurke B,Turberfield A J,Mills A P,et al.A DNA-fuelled molecular machine made of DNA.Nature.2000,406(6796):605-608.
    [122]Simmel F C,Yurke B.Using DNA to construct and power a nanoactuator.Physical Review E.2001,63(4):041913.
    [123]Simmel F C,Yurke B.A DNA-based molecular device switchable between three distinct mechanical states.Applied Physics Letters.2002,80(5):883-885.
    [124]Brucale M,Zuccheri G,Samori B.The dynamic properties of an intramolecular transition from DNA duplex to cytosine-thymine motif triplex.Organic & Biomolecular Chemistry.2005,3(4):575-577.
    [125]Chen Y,Lee S H,Mao C.A DNA nanomachine based on a duplex-triplex transition.Angewandte Chemie-International Edition.2004,43(40):5335-5338.
    [126]Wang W X,Yang Y,Cheng E J,et al.A pH-driven,reconfigurable DNA nanotriangle.Chemical Communications.2009,(7):824-826.
    [127]Chen Y,Wang M S,Mao C D.An autonomous DNA nanomotor powered by a DNA enzyme.Angewandte Chemie-International Edition.2004,43(27):3554-3557.
    [128]Chen Y,Mao C D.Putting a brake on an autonomous DNA nanomotor.Journal of the American Chemical Society.2004,126(28):8626-8627.
    [129]Liang X G,Nishioka H,Takenaka N,et al.A DNA nanomachine powered by light irradiation.Chembiochem.2008,9(5):702-705.
    [130]Lubrich D,Lin J,Yan J.A contractile DNA machine.Angewandte Chemie-International Edition.2008,47(37):7026-7028.
    [131]Chhabra R,Sharma J,Liu Y,et al.Addressable molecular tweezers for DNA-templated coupling reactions.Nano Letters.2006,6(5):978-983.
    [132]Dittmer W U,Simmel F C.Transcriptional control of DNA-based nanomachines.Nano Letters.2004,4(4):689-691.
    [133]Dittmer W U,Kempter S,Radler J O,et al.Using gene regulation to program DNA-based molecular devices.Small.2005,1(7):709-712.
    [1]Seeman N C.DNA in a material world.Nature.2003,421(6921):427-431.
    [2]Mao C D,Sun W Q,Seeman N C.Designed two-dimensional DNA Holliday junction arrays visualized by atomic force microscopy.Journal of the American Chemical Society.1999,121(23):5437-5443.
    [3]Mao C D,LaBean T H,Reif J H,et al.Logical computation using algorithmic self-assembly of DNA triple-crossover molecules.Nature.2000,407(6803):493-496.
    [4]Liu D,Wang M S,Deng Z X,et al.Tensegrity:Construction of rigid DNA triangles with flexible four-arm DNA junctions.Journal of the American Chemical Society.2004,126(8):2324-2325.
    [5]Yan H,Park S H,Finkelstein G,et al.DNA-templatod self-assembly of protein arrays and highly conductive nanowires.Science.2003,301(5641):1882-1884.
    [6]Ding B Q,Sha R J,Seeman N C.Pseudohexagonal 2D DNA crystals from double crossover cohesion.Journal of the American Chemical Society.2004,126(33):10230-10231.
    [7]Winfree E,Liu F R,Wenzler L A,et al.Design and self-assembly of two-dimensional DNA crystals.Nature.1998,394(6693):539-544.
    [8]Alivisatos A P,Johnsson K P,Peng X G,et al.Organization of 'nanocrystal molecules'using DNA.Nature.1996,382(6592):609-611.
    [9]Loweth C J,Caldwell W B,Peng X G,et al.DNA-based assembly of gold nanocrystals.Angewandte Chemie-International Edition.1999,38(12):1808-1812.
    [10]Fu A H,Micheel C M,Cha J,et al.Discrete nanostructures of quantum dots/Au with DNA.Journal of the American Chemical Society.2004,126(35):10832-10833.
    [11]Mirkin C A,Letsinger R L,Mucic R C,et al.A DNA-based method for rationally assembling nanoparticles into macroscopic materials.Nature.1996,382(6592):607-609.
    [12]Taton T A,Mirkin C A,Letsinger R L.Scanometric DNA array detection with nanoparticle probes.Science.2000,289(5485):1757-1760.
    [13]Le J D,Pinto Y,Seeman N C,et al.DNA-templated self-assembly of metallic nanocomponent arrays on a surface.Nano Letters.2004,4(12):2343-2347.
    [14]Li H Y,Park S H,Reif J H,et al.DNA-templated self-assembly of protein and nanoparticle linear arrays.Journal of the American Chemical Society.2004,126(2):418-419.
    [15]Niemeyer M,Power P P.Synthesis and solid-state structure of 2,6-Trip(2)C(6)H(3)T1 (Trip=2,4,6-iPr(3)C(6)H(2)):A monomelic arylthallium(Ⅰ) compound with a singly coordinated thallium atom.Angewandte Chemie-International Edition.1998,37(9):1277-1279.
    [16]Deng Z X,Tian Y,Lee S H,et al.DNA-encoded self-assembly of gold nanoparticles into one-dimensional arrays.Angewandte Chemie-International Edition.2005,44(23):3582-3585.
    [17]Zheng J W,Constantinou P E,Micheel C,et al.Two-dimensional nanoparticle arrays show the organizational power of robust DNA motifs.Nano Letters.2006,6(7):1502-1504.
    [18]Liu D,Park S H,Reif J H,et al.DNA nanotubes self-assembled from triple-crossover tiles as templates for conductive nanowires.Proceedings of the National Academy of Sciences of the United States of America.2004,101(3):717-722.
    [19]Mathieu F,Liao S P,Kopatscht J,et al.Six-helix bundles designed from DNA.Nano Letters.2005,5(4):661-665.
    [20]Sharma J,Chhabra R,Liu Y,et al.DNA-templated self-assembly of two-dimensional and periodical gold nanoparticle arrays.Angewandte Chemie-International Edition.2006,45(5):730-735.
    [21]Zhang J P,Liu Y,Ke Y G,et al.Periodic square-like gold nanoparticle arrays templated by self-assembled 2D DNA nanogrids on a surface.Nano Letters.2006,6(2):248-251.
    [22]Deng Z X,Mao C D.DNA-templated fabrication of 1D parallel and 2D crossed metallic nanowire arrays.Nano Letters.2003,3(11):1545-1548.
    [23]Bensimon A,Simon A,Chiflfaudel A,et al.Alignment and Sensitive Detection of DNA by a Moving Interface.Science.1994,265(5181):2096-2098.
    [24]Nakao H,Gad M,Sugiyama S,et al.Transfer-printing of highly aligned DNA nanowires.Journal of the American Chemical Society.2003,125(24):7162-7163.
    [25]Iijima S.Helical Microtubules of Graphitic Carbon.Nature.1991,354(6348):56-58.
    [26]Javey A,Guo J,Wang Q,et al.Ballistic carbon nanotube field-effect transistors.Nature.2003,424(6949):654-657.
    [27]Saito R,Dresselhaus G,Dresselhaus M S.Physical Properties of Carbon Nanotubes.London:Imperial College,1998.
    [28]Dyke C A,Tour J M.Unbundled and highly functionalized carbon nanotubes from aqueous reactions.Nano Letters.2003,3(9):1215-1218.
    [29]Tanaka K,Toda F.Solvent-free organic synthesis.Chemical Reviews.2000,100(3): 1025-1074.
    [30]O'Connell M J,Bachilo S M,Huffman C B,et al.Band gap fluorescence from individual single-walled carbon nanotubes.Science.2002,297(5581):593-596.
    [31]Islam M F,Rojas E,Bergey D M,et al.High weight fraction suffactant solubilization of single-wall carbon nanotubes in water.Nano Letters.2003,3(2):269-273.
    [32]Strano M S,Moore V C,Miller M K,et al.The role of surfactant adsorption during ultrasonication in the dispersion of single-walled carbon nanotubes.Journal of Nanoscience and Nanotechnology.2003,3(1-2):81-86.
    [33]Gotovac S,Hattod Y,Noguchi D,et al.Phenanthrene adsorption from solution on single wall carbon nanotubes.Journal of Physical Chemistry B.2006,110(33):16219-16224.
    [34]Strano M S.Nanocomposites:Polymer-wrapped nanotubes.Nature Materials.2006,5(6):433-434.
    [35]Zhang M,Yudasaka M,Miyawaki J,et al.Isolating single-wall carbon nanohoms as small aggregates through a dispersion method.Journal of Physical Chemistry B.2005,I09(47):22201-22204.
    [36]Nepal D,Sohn J I,Aicher W K,et al.Supramolecular conjugates of carbon nanotubes and DNA by a solid-state reaction.Biomacromolecules.2005,6(6):2919-2922.
    [37]Zheng M,Jagota A,Semke E D,et al.DNA-assisted dispersion and separation of carbon nanotubes.Nature Materials.2003,2(5):338-342.
    [38]Manohar S,Tang T,Jagota A.Structure of homopolymer DNA-CNT hybrids.Journal of Physical Chemistry C.2007,111(48):17835-17845.
    [39]Cathcart H,Quinn S,Nieolosi V,et al.Spontaneous debundling of single-walled carbon nanotubes in DNA-based dispersions.Journal of Physical Chemistry C.2007,111(1):66-74.
    [40]Zheng M,Jagota A,Strano M S,et al.Structure-based carbon nanotube sorting by sequence-dependent DNA assembly.Science.2003,302(5650):1545-1548.
    [41]Han X G,Li Y L,Deng Z X.DNA-wrapped single-walled carbon nanotubes as rigid templates for assembling linear gold nanoparticle arrays.Advanced Materials.2007,19(11):1518-1522.
    [42]O'Connell M J,Boul P,Ericson L M,et al.Reversible water-solubilization of single-walled carbon nanotubes by polymer wrapping.Chemical Physics Letters.2001,342(3-4):265-271.
    [43]Bandyopadhyaya R,Nativ-Roth E,Regev O,et al.Stabilization of individual carbon nanotubes in aqueous solutions.Nano Letters.2002,2(1):25-28.
    [44]Zhao W,Gao Y,Brook M A,et al.Wrapping single-walled carbon nanotubes with long single-stranded DNA molecules produced by rolling circle amplification.Chemical Communications.2006,(34):3582-3584.
    [45]Liu Y,Liang P,Zhang H Y,et al.Cation-controlled aqueous dispersions of alginic-acid-wrapped multi-walled carbon nanotubes.Small.2006,2(7):874-878.
    [46]Dukovic G,Balaz M,Doak P,et al.Racemic single-walled carbon nanotubes exhibit circular diehroism when wrapped with DNA.Journal of the American Chemical Society.2006,128(28):9004-9005.
    [47]Jeynes J C G,Mendoza E,Chow D C S,et al.Generation of chemically unmodified pure single-walled carbon nanotubes by solubilizing with RNA and treatment with ribonuclease A.Advanced Materials.2006,18(12):1598-1602.
    [48]Zheng M,Rostovtsev V V.Photoinduced charge transfer mediated by DNA-wrapped carbon nanotubes.Journal of the American Chemical Society.2006,128(24):7702-7703.
    [49]Heller D A,Jeng E S,Yeung T K,et al.Optical detection of DNA conformational polymorphism on single-walled carbon nanotubes.Science.2006,311(5760):508-511.
    [50]Jeng E S,Moll A E,Roy A C,et al.Detection of DNA hybridization using the near-infrared band-gap fluorescence of single-walled carbon nanotubes.Nano Letters.2006,6(3):371-375.
    [51]Kim B,Sigmund W M.Functionalized multiwall carbon nanotube/gold nanoparticle composites.Langrnuir.2004,20(19):8239-8242.
    [52]Jiang K Y,Eitan A,Schadler L S,et al.Selective attachment of gold nanoparticies to nitrogen-doped carbon nanotubes.Nano Letters.2003,3(3):275-277.
    [53]Taft B J,Lazareck A D,Withey G D,et al.Site-specific assembly of DNA and appended cargo on arrayed carbon nanotubes.Journal of the American Chemical Society.2004,126(40):12750-12751.
    [54]Smorodin T,Beierlein U,Kotthaus J P.Contacting gold nanoparticles with carbon nanotubes by self-assembly.Nanotechnology.2005,16(8):1123-1125.
    [55]Yang W R,Moghaddam M J,Taylor S,et al.Single-walled carbon nanotubes with DNA recognition.Chemical Physics Letters.2007,443(4-6):169-172.
    [56]冯永成,董守安,唐春.一维金纳米线的自组装研究.贵金属.2007,28(4):1-5.
    [57]Frens G.Controlled Nucleation for the Regulation of the Particle Size in Monodisperse Gold Suspensions.Nature(London) Physical Science.1973,241:20-22.
    [58]Slot J W,Geuze H J.A new method of preparing gold probes for multipe-labeling cytochemistry.Eur.J.Cell Biol.1985,38:87-93.
    [59]Deng Z X,Mao C D.Molecular lithography with DNA nanostructures.Angewandte Chemie-International Edition.2004,43(31):4068-4070.
    [60]Chen Y,Liu H P,Ye T,et al.DNA-directed assembly of single-wall carbon nanotubes.Journal of the American Chemical Society.2007,129(28):8696-8697.
    [61]Li Y L,Han X G,Deng Z X.Grafting single-walled carbon nanotubes with highly hybridizable DNA sequences:Potential building blocks for DNA-programmed material assembly.Angewandte Chemie-International Edition.2007,46(39):7481-7484.
    [1]Bath J,Turberfield A J.DNA nanomachines.Nature Nanotechnology.2007,2(5):275-284.
    [2]Mao C D,Sun W Q,Shen Z Y,et al.A nanomechanical device based on the B-Z transition of DNA.Nature.1999,397(6715):144-146.
    [3]Yurke B,Turberfield A J,Mills A P,et al.A DNA-fuelled molecular machine made of DNA.Nature.2000,406(6796):605-608.
    [4]Sherman W B,Seeman N C.A precisely controlled DNA biped walking device.Nano Letters.2004,4(7):1203-1207.
    [5]Yan H,Zhang X P,Shen Z Y,et al.A robust DNA mechanical device controlled by hybridization topology.Nature.2002,415(6867):62-65.
    [6]Ding B,Seeman N C.Operation of a DNA robot arm inserted into a 2D DNA crystalline substrate.Science.2006,314(5805):1583-1585.
    [7]Liao S P,Seeman N C.Translation of DNA signals into polymer assembly instructions.Science.2004,306(5704):2072-2074.
    [8]Chen Y,Wang M S,Mao C D.An autonomous DNA nanomotor powered by a DNA enzyme.Angewandte Chemie-International Edition.2004,43(27):3554-3557.
    [9]Chhabra R,Sharma J,Liu Y,et al.Addressable molecular tweezers for DNA-templated coupling reactions.Nano Letters.2006,6(5):978-983.
    [10]Liu D S,Balasubramanian S.A proton-fuelled DNA nanomachine.Angewandte Chemic-International Edition.2003,42(46):5734-5736.
    [11]Liu H J,Xu Y,Li F Y,et al.Light-driven conformational switch of i-motif DNA.Angewandte Chemie-lntemational Edition.2007,46(14):2515-2517.
    [12]Shin J S,Pierce N A.A synthetic DNA walker for molecular transport.Journal of the American Chemical Society.2004,126(35):10834-10835.
    [13]Tian Y,He Y,Chert Y,et al.Molecular devices-A DNAzyme that walks processively and autonomously along a one-dimensional track.Angewandte Chemie-International Edition.2005,44(28):4355-4358.
    [14]Tian Y,Mao C D.Molecular gears:A pair of DNA circles continuously rolls against each other.Journal of the American Chemical Society.2004,126(37):11410-11411.
    [15]Winfree E,Liu F R,Wenzler L A,et al.Design and self-assembly of two-dimensional DNA crystals.Nature.1998,394(6693):539-544.
    [16]Yin P,Yan H,Daniell X G,et al.A unidirectional DNA walker that moves autonomously along a track.Angewandte Chemic-International Edition.2004,43(37):4906-4911.
    [17]Erben C M,Goodman R P,Turberfield A J.Single-molecule protein encapsulation in a rigid DNA cage.Angewandte Chemic-International Edition.2006,45(44):7414-7417.
    [18]Chen J H,Seeman N C.Synthesis from DNA of a Molecule with the Connectivity of a Cube.Nature.1991,350(6319):631-633.
    [19]Shim B S,Chen W,Doty C,et al.Smart Electronic Yarns and Wearable Fabrics for Human Biomonitoting made by Carbon Nanotube Coating with Polyelectrolytes.Nano Letters.2008,8(12):4151-4157.
    [20]Mao C D.Molecular motors-DNA gets a little cagey.Nature Nanotechnology.2008,3(2):75-76.
    [21]Shih W M,Quispe J D,Joyce G E A 1.7-kilobase single-stranded DNA that folds into a nanoscale octahedron.Nature.2004,427(6975):618-621.
    [22]Wei B,Cheng I,Luo K Q,et al.Capture and release of protein by a reversible DNA-induced sol-gel transition system.Angewandte Chemic-International Edition.2008,47(2):331-333.
    [23]Vasquez K M,Glazer P M.Triplex-forming oligonucleotides:principles and applications.Quarterly Reviews of Biophysics.2002,35(1):89-107.
    [24]Chen Y,Mao C D.Putting a brake on an autonomous DNA nanomotor.Journal of the American Chemical Society.2004,126(28):13240-13241.
    [25]Slayer L,Haugland R P.ENERGY TRANSFER:A SPECTROSCOPIC RULER.Proc.Natl.Acad.Sci.U.S.A.1967,58:719-726.
    [26]Gartner Z J,Liu D R.The generality of DNA-templated synthesis as a basis for evolving non-natural small molecules.Journal of the American Chemical Society.2001,123(28):6961-6963.
    [27]Simmei F C.Towards biomedical applications for nucleic acid nanodevices.Nanomedicine.2007,2(6):817-830.
    [1]Shim B S,Chen W,Doty C,et al.Smart Electronic Yams and Wearable Fabrics for Human Biomonitoring made by Carbon Nanotube Coating with Polyelectrolytes.Nano Letters.2008,8(12):4151-4157.
    [2]江雷,冯琳.仿生智能纳米界面材料.北京:化学工业出版社,2007.
    [3]Stayton P S,Shimoboji T,Long C,et al.Control of Protein-Ligand Recognition Using a Stimuli-Responsive Polymer.Nature.1995,378(6556):472-474.
    [4]Mantovani G,Ladmiral V,Tao L,et al.One-pot tandem living radical polymedsation-Huisgens cycloaddition process("click") catalysed by N-alkyl-2-pyridylmethanimine/Cu(Ⅰ)Br complexes.Chemical Communications.2005,(16):2089-2091.
    [5]Valkama S,Kosonen H,Ruokolainen J,et al.Self-assembled polymeric solid films with temperature-induced large and reversible photonic-bandgap switching.Nature Materials.2004,3(12):872-876.
    [6]Shiraishi Y,Tokitoh Y,Nishimura G,et al.A molecular switch with pH-controlled absolutely switchable dual-mode fluorescence.Organic Letters.2005,7(13):2611-2614.
    [7]Cheng K W,Lai C C,Chiang P T,et al.Reading the operation of an acid/base-controllable molecular switch by naked eye.Chemical Communications.2006,(27):2854-2856.
    [8]Chen Y,Lee S H,Mao C.A DNA nanomachine based on a duplex-triplex transition.Angewandte Chernie-International Edition.2004,43(40):5335-5338.
    [9]Liedl T,Olapinski M,Simmel F C.A surface-bound DNA switch driven by a chemical oscillator.Angewandte Chemic-International Edition.2006,45(30):5007-5010.
    [10]Liu D S,Balasubramanian S.A proton-fuelled DNA nanomachine.Angewandte Chemie-International Edition.2003,42(46):5734-5736.
    [11]Liu H J,Xu Y,Li F Y,et al.Light-driven conformational switch of i-motif DNA.Angewandte Chemic-International Edition.2007,46(14):2515-2517.
    [12]Kurin-Csorgei K,Epstein I R,Orban M.Systematic design of chemical oscillators using complexation and precipitation equilibria.Nature.2005,433(7022):139-142.
    [13]Garrett R H,Grisham C M.In Biochemistry.Orlando:Harcourt,1999,pp 677-692.
    [14]Li G T,Wang T Y,Bhosale S,et al.Completely reversible aggregation of nanoparticles by varying the pH.Colloid and Polymer Science.2003,281(11):1099-1103.
    [15]Simard J,Briggs C,Boal A K,et al.Formation and pH-controlled assembly of amphiphilic gold nanoparticles.Chemical Communications.2000,(19):1943-1944.
    [16]Grunlan J C,Liu L,Kim Y S.Tunable single-walled carbon nanotube mierostructure in the liquid and solid states using poly(acrylic acid).Nano Letters.2006,6(5):911-915.
    [17]Liu Y,Liang P,Zhang H Y,et al.Cation-controlled aqueous dispersions of alginic-acid-wrapped multi-walled carbon nanotubes.Small.2006,2(7):874-878.
    [18]Sharma J,Chhabra R,Yan H,et al.pH-driven conformational switch of "i-motif' DNA for the reversible assembly of gold nanoperticles.Chemical Communications.2007,(5):477-479.
    [19]Frens G.Controlled Nucleation for the Regulation of the Particle Size in Monodisperse Gold Suspensions.Nature(London) Physical Science.1973,241:20-22.
    [20]Slot J W,Geuze H J.A new method of preparing gold probes for multipe-labeling cytochemistry.Eur.J.Cell Biol.1985,38:87-93.
    [21]Loweth C J,Caldwell W B,Peng X G,et al.DNA-based assembly of gold nanocrystals.Angewandte Chemic-International Edition.1999,38(12):1808-1812.
    [22]Zanchet D,Micheel C M,Parak W J,et al.Electrophoretic isolation of discrete Au nanocrystal/DNA conjugates.Nano Letters.2001,1(1):32-35.
    [23]Zheng M,Jagota A,Strano M S,et al.Structure-based carbon nanotube sorting by sequence-dependent DNA assembly.Science.2003,302(5650):1545-1548.
    [24]Zheng M,Jagota A,Semke E D,et al.DNA-assisted dispersion and separation of carbon nanotubes.Nature Materials.2003,2(5):338-342.
    [25]Dean J A.In Lange's Handbook of Chemistry.15th ed.;McGraw-Hill,1998,p p.8.46.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700