用户名: 密码: 验证码:
金属阳极/溶液界面过程、纳米结构和拉曼光谱电化学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属阳极/溶液界面过程呈现丰富而复杂的动力学行为,诸如依赖阳极电位的表面膜相的生成与演变、物种的表面吸脱附、金属络合反应、溶解与返沉积、气体析出、电化学振荡、表面纳米化等等。对纯金属与合金的阳极/溶液界面物理化学过程进行充分的研究,有助于揭示电极反应机理,理解界面过程,从而有可能更有效地控制电极反应方向或利用阳极过程构筑各种金属纳米材料。采用现场拉曼光谱电化学手段监测金属阳极/溶液界面的微区信息,配以时间分辨和电位调制,可同步获得电极表面物种的第一手信息,有助于从分子水平上深入认识电氧化界面动力学过程。
     本文利用现场拉曼光谱电化学成功研究了几种金属或合金体系的阳极电氧化过程,通过分析其电化学行为和现场光谱检测结果,为各种不同类型的电氧化机理给出了直接的证据和合理的解释。并在此基础上,选择控制合适的条件用于制备纳米材料,应用于表面增强拉曼散射(SERS)光谱分析或电化学催化过程。本学位论文主要内容分为以下几部分:
     1.简要介绍了现场拉曼光谱电化学技术,综述了金属/合金阳极电氧化和相关表面纳米结构的近期研究进展。
     2.利用现场电位调制拉曼光谱和时间分辨拉曼光谱详细研究了不同比例的Au-Sn合金在盐酸溶液中的阳极电氧化过程。包括处于不同电位区间的两种不同的去合金模式:一是在较低电位区间的经典去合金,Au-Sn合金中的Sn组分选择性溶出;二是在较高的电位下的“准去合金”,Au-Sn合金二种组分共同电溶出后,Au又通过随后的氧化—还原反应自动返沉积。同时,通过控制不同的电位条件利用经典去合金和准去合金可以简便地制备出不同形式的金纳米材料,如多孔金、金纳米粒子薄层和分散在溶液中的金溶胶。
     3.利用紫外可见吸收光谱和现场拉曼散射光谱分析了Pt-Ni合金在盐酸溶液中的阳极电氧化行为。结果表明,随电位逐渐升高,该合金可发生Ni的选择性溶解与Pt的共同溶解,发现并确认了Pt-Ni合金共溶解区涉及的电位加速化学置换反应现象。利用扫描电子显微镜—能谱(SEM-EDX)、原子力显微镜(AFM)和X—射线衍射(XRD)考察了特征电位下合金表面的形貌和成份演化,观察到应力腐蚀裂纹、选择性溶解产生的纳米多孔、共溶解形成的纳米多孔薄片状物等多种表面形貌结构,同时合金表面发生不同程度的Pt组分富积。所获得的纳米多孔材料对甲醇电氧化具有较高的电催化活性。
     4.首次利用电位调制的现场拉曼光谱对纯Pd和Au-Pd合金在含氯介质中的阳极电氧化行为进行了研究。随着电位的升高,纯Pd在盐酸溶液中表面氧化物种的特征拉曼峰依次呈现:Pd与Cl~-的络合溶解反应、二价和四价络合物种(PdCl_4~(2-)、PdCl_6~(2-))的转变、Cl~-的氧化和Cl_2气的析出、Cl_2与Pd的化学浸蚀反应都逐一得到澄清。纯Pd在KCl溶液中,表面可生成对应的络合物种的难溶钾盐膜层(K_2PdCl_4、K_2PdCl_6)。根据上述光谱电化学结果,得出了Pd在含氯介质中的阳极氧化反应机理。此外,进一步研究了Au-Pd合金在盐酸中的阳极电氧化行为,利用现场拉曼光谱成功监测了电极表面的多种氧化物种的产生过程,并利用SEM-EDX表征了合金在特征阳极电位下的形貌与成份变化,结果表明Au-Pd合金在盐酸中电氧化主要以共同溶解形式进行。
     5.将准去合金化机理发展成为一种制备SERS基底的新方法:以纯金属电极(Au)为基底,通过电化学方法阴极沉积获得Au|Sn层,再借助控制阳极电位共同电化学溶解和溶解物种间的氧化—还原反应构建表面金纳米粒子堆积层,获得了具有很好表面增强拉曼效应的电极材料。另外,在强酸环境中直接利用Sn(Ⅱ)还原HAuCl_4制备了纳米金溶胶。溶胶粒子表面存在Sn(Ⅱ)络合物保护,在除氧环境下能稳定存放数月。更有趣的是,空气中的氧可诱导该溶胶发生缓慢聚沉,进而自发组装获得了纳米金的有序超晶格结构,可作为一种长效的SERS活性基底材料。
     6.研究了Cu-Zn和Cu-Ni两种合金在不同介质中的新的非线性阳极电氧化行为。Cu-Zn合金在氢氧化钠溶液中,在不同的电位区间可发生两种不同类型的电位和电流振荡,分别对应于循环伏安图中的两个交叉环区域。并利用拉曼光谱初步推测了表面氧化物种的变化过程和可能的振荡机理。发现了Cu-Ni合金在硫酸溶液中的析氧区间可发生电位和电流振荡,与纯Ni的振荡有明显区别。
     7.首次报道了在碱性溶液介质中静止铂电极上碘化物电氧化时的电化学振荡行为,其中电极/溶液界面相变过程是振荡的关键。导电性较差的固相碘膜的生成构成该体系非线性过程的负反馈,这导致碘化物氧化减缓;氧气的析出构成相应的正反馈,氧气泡机械破坏了碘膜,同时也加速了对流传质,促进了碘膜相主要通过歧化反应而发生溶解。基于电化学控制实验和现场拉曼光谱证据,给出了涉及两种不同的界面相变和歧化反应的振荡机理。
There have been abundant information and complex dynamic behaviors present at the metal anode/solution interface,which depend on the anode potentials,such as formation and evolvement of surface film phases,surface adsorption and desorption,complexation,dissolution or re-deposition of metals,gas evolution,electrochemical oscillations, production of surface nanostructures and etc.Profound study on these interfacial characters of pure metal and alloy anodes/solution contributes to reveal of electrode reaction mechanism,to understand the interface process,consequently to direct the electrode reactions and to construct kinds of metal nanomaterials.In situ Raman spectroscopy has been used for inspecting the micro-zone at metal anode/solution interface.The first-hand information of the species present on electrode surface can be obtained by fitted with the time-resolved and potential-dependent spectra, which will be very helpful to deep recognize the interfacial dynamic of anodic processes at the molecular level.
     In this thesis,several anodic processes of metals and alloys have been investigated by in situ Raman spectroelectrochemistry.From the analysis of electrochemical behaviors and in situ spectral results,direct identification and reasonable explanations were provided for various types of electrooxidation mechanism.Meanwhile,nano-structured materials for surface-enhanced Raman spectroscopy and electrocatalysis have been fabricated by utilizing the anodic processes.The main contents are summarized as follows:
     1.The in situ Raman spectroelectrochemical technique has been briefly introduced.The recent research progress of the anodic electrooxidation for pure metals/alloys and correlative nanostructures have been reviewed.
     2.The electrochemical processes in dealloying of Au-Sn alloys with different ratios in an HCl solution have been first investigated in detail by means of in situ potential-dependent and time-resolved Raman spectra.Two dealloying modes were found occurring within different potential regions in the electrooxidation of Au-Sn alloys. One is the mode known as classical dealloying,where Sn is selectively dissolved;and the other a so-called quasi-dealloying mode found here,in which Au re-deposits automatically after simultaneous dissolution with Sn.Meanwhile,nanoporous gold,thin layers of gold nanoparticles stacked on the surface,and colloidal gold in the solution can be prepared from the Au-Sn alloys simply by an electrochemical control of potential.
     3.Investigation on the potential-dependent anodic oxidation of a Pt-Ni alloy electrode has been performed in an HCl solution.Spectroscopic information of UV-vis absorption and in situ Raman scattering shows that the alloy undergoes selective Ni dissolution and simultaneous Pt dissolution successively with the increase of the applied potential. The measurements of SEM-EDX,AFM and XRD at selected potentials reveal that Pt enrichment occurs in the alloy degradation accompanying diversiform morphological evolution such as cracks from stress corrosion,ultrafine pores by selective dissolution,and flaky nanoporous films involving simultaneous dissolution and potential accelerated replacement reaction between Ni in the alloy and dissolved PtCl_6~(2-).Moreover,the nanoporous films display high electrocatalytic activity toward the methanol oxidation.
     4.The surface oxidation processes of Pd and Au-Pd alloy electrode in chloride containing solutions have been investigated in detail by means of in situ potential-dependent Raman spectroscopy for the first time.In the HCl solution,characteristic Raman bands such as for the oxidative coordination of Pd with Cl~-,the transformation of soluble Pd(Ⅱ) to Pd(Ⅳ) complexes,the electrooxidation of Cl~- into Cl_2,and the redox between Cl_2 and Pd were all detected unambiguously during the potential ascending.While in the KCl solution,insoluble salt films of K_2PdCl_4 and K_2PdCl_6 were found on the electrode surface due to their poor solubility.A mechanism scheme is given on the basis of spectroelectrochemical results.Moreover,the electrooxidation of Au-Pd alloy in HCl solution has been further studied.Several species from anodic oxidation were detected by in situ Raman spectra,and the morphomogies at typical anodic potentials were also characterized. It can be concluded that the Au-Pd alloy electrooxidation follows simultaneous dissolution procedure in the HCl medium.
     5.The quasi-dealloying manner has been grafted onto a pure Au electrode to construct the SERS substrate conveniently.Firstly, electrodeposite a tin overlayer on the substrate as Au|Sn layer,and then co-dissolve the Sn overlayer with Au underneath by controlling the potential at the simultaneous dissolving region.A thin layer of gold nanoparticles(GNPs) sticking to the gold electrode surface can be obtained and it performs good surface Raman enhancement. Besides,we described the synthesis of Sn(Ⅱ) complex stabilized GNPs by Sn(Ⅱ) reduction of HAuCl_4 in high acid aqueous solution. This gold colloid was stable for months in oxygen-free surrounding. More interestingly,the GNPs in the colloid were futher assembled into uniform supperlattice by slow sedimentation,which was induced by the oxygen bit by bit.The supperlattice can be served as a long-lived acive SERS substrate.
     6.Nonliner behaviours for anodic electrooxidation of Cu-Zn and Cu-Ni alloy have been studied in different medium.Two different types of potential and current oscillations were found during the anodic electrooxidation of Cu-Zn alloy in NaOH solution,corresponding to the two crossing cycles in the cyclic voltammograms,respectively. With the help of Raman spectra,the oxide species on the alloy electrode were discussed and possible oscillatory mechanism was given.A new electrochemical oscillatory system was found for the electrodissolution of copper-nickel alloy in sulfuric acid in the region of oxygen evolution,which is different from the oscillatory system for pure Ni electrooxidation.
     7.Oscillations have been first observed during iodide oxidation in an alkaline solution on a static platinum electrode,where phase transitions at the interface of electrode/solution are essential.The film formation of solid iodine acts as a negative nonlinear feedback slowing down the iodide oxidation due to its poor conductivity,and oxygen gas evolution as a positive nonlinear feedback by destroying the iodine film mechanically and by promoting its dissolution through convection mainly via disproportional reaction.Based on the results of electrochemical experiments and in situ Raman spectroscopy,a tentative mechanism is given concerning the interfacial phase transition and the disproportional reaction.
引文
[1]小泽昭弥.现代电化学.北京:化学工业出版社,1995.
    [2]T.Kuwana,R.K.Darlington,D.W.Leedy.Electrochemical studies using conducting glass indicator electrodes.Anal.Chem.,1964,36:2023-2025.
    [3]林仲华,叶思宇,黄明东等.电化学中的光学方法.北京:科学出版社,1990.
    [4]朱元保,谢青季,何双娥.光谱电化学的研究及应用.化学传感器,1991,11:1-15.
    [5]谢远武,董绍俊.光谱电化学方法-理论与应用.长春:吉林科学出版社,1993.
    [6]W.Kaim,A.Klein(Ed.).Spectroelectroehemistry.Royal Society of Chemistry,2008.
    [7]E.Smith,G.Dent(Ed.).Modern Raman Spectroscopy-A Practical Approach.John Wiley & Sons,Ltd,2005.
    [8]M.Fleischmann,P.J.Hendra,A.McQuillan.Raman spectra of pyfidine adsorbed at a silver electrode.Chem.Phys.Lett.,1974,26:163-166.
    [9]D.L.Jeanmaire,R.P.Van Duyne.Surface raman spectro- electrochemistry:Part Ⅰ.Heterocyclic,aromatic,and aliphatic amines adsorbed on the anodized silver electrode.J.Electroanal.Chem.,1977,84:1-20.
    [10]S.M.Nie,S.R.Emory.Probing single molecules and single nanoparticles by surface-enhanced Raman scattering.Science,1997,275:1102-1106.
    [11]K.Kneipp,Y.Wang,H.Kneipp.,et al.Single molecule detection using surface-enhanced Raman scattering(SERS).Phys.Rev.Lett.,1997,78:1667-1670.
    [12]K.Kneipp,H.Kneipp,I.Itzkan,et al.Ultrasensitive chemical analysis by Raman spectroscopy.Chem.Rev.,1999,99:2957-2975.
    [13]Z.Q.Tian,B.Ren,D.Y.Wu.Surface-enhanced Raman scattering:from noble to transition metals and from rough surfaces to ordered nanostructures.J.Phys.Chem.B,2002,106:9463-9483.
    [14]唐玉龙,郭周义.激光拉曼光谱技术在生物分子DNA研究中的应用和进展.激光生物学报,2004,13:386-393.
    [15]S.Stewart,P.M.Fredericks.Surface-enhanced Raman spectroscopy of amino acids adsorbed on an electrochemically prepared silver surface.Spectrochim. ActaA,1999,55:1641-1660.
    [16]D.J.Maxwell,J.R.Taylor,S.M.Nie.Self-assembled nanoparticle probes for recognition and detection of biomolecules.J.Am.Chem.Soc.,2002,124:9606-9612.
    [17]G.Braun,S.J.Lee,M.Dante,et al.Surface-enhanced Raman spectroscopy for DNA detection by nanoparticle assembly onto smooth metal films.J.Am.Chem.Sot.,2007,129:6378-6379.
    [18]A.J.Bonham,G.Braun,I.Pavei,et al.Detection of sequence-specific protein-DNA interactions via surface enhanced resonance Raman scattering.J.Am.Chem.Sot.,2007,129:14572-14573.
    [19]I.Pavel,E.McCamey,A.Elkhaled,et al.Label-free SERS detection of small proteins modified to act as bifunctional linkers.J.Phys.Chem.C,2008,112:4880-4883.
    [20]王敏,俞帆,隆泉.激光拉曼光谱在蛋白质构象研究中的应用和进展.激光生物学报,2007,16:516-520.
    [21]顾仁敖,蒋芸,曹佩根.非水体系的表面增强拉曼光谱研究.光散射学报,2006,17:323-328.
    [22]韦萍洁,非水体系中甲基咪唑及苯并咪唑吸附和成膜过程的拉曼光谱研究,苏州大学,2008.
    [23]田中群.表面增强拉曼光谱学中的纳米科学问题.中国基础科学,2001,3:4-10.
    [24]张孝芳,齐小花,邹明强等.表面增强拉曼光谱活性基底与纳米结构.2007,17:78-81.
    [25]周光明,黎司,虞丹尼.SERS中的活性基底.2006,20:65-70.
    [26]高书燕,张树霞,杨恕霞等.表面增强拉曼散射活性基底.2007,12:908-914.
    [27]常大虎,宗征军,陈林峰.一种新的拉曼散射.表面增强拉曼散射.2007,17:30-31
    [28]G.Xue,J.Dong.Stable silver substrate prepared by the nitric acid etching method for a surface-enhanced Raman scattering study.Anal.Chem.,1991,63:2393-2397.
    [29]P.Gao,D.Gosztola,L.W.Leung,et al.Surface enhanced Raman scattering at gold electrodes:Dependence on electrochemical pretreatment conditions and comparisons with silver.J.Electroanai.Chem.,1987,233:211-222.
    [30]D.D.Tuschel,J.E.Pemberton,J.E.Cook.SERS and SEM of roughened silver electrode surfaces formed by controlled oxidation-reduction in aqueous chloride media.Langmuir,1986,2:380-388.
    [31]M.Fleischmann,Z.Q.Tian,L.J.Li.Raman spectroscopy of adsorbates on thin film electrodes deposited on silver substrates.J.Electroanal.Chem.,1987,217:397-410.
    [32]G.Mengoli,M.M.Musiani,M.Fleischmann,et al.Enhanced Raman scattering from iron electrodes.Electrochim.Acta,1987,32:1239-1245.
    [33]L.W.H.Leung,M.J.Weaver.Extending surface-enhanced Raman spectroscopy to transition-metal surfaces:carbon monoxide adsorption and electrooxidation on platinum-and palladium-coated gold electrodes.J.Am.Chem.Soc.,1987,109:5113-5119.
    [34]L.W.H.Leung,M.J.Weaver.Adsorption and electrooxidation of carbon monoxide on rhodium-and ruthenium-coated gold electrodes as probed by surface-enhanced Raman spectroscopy.Langmuir,1988,4:1076-1083.
    [35]Z.Q.Tian,B.Ren,J.F.Li,et al.Expanding generality of surface-enhanced Raman spectroscopy with borrowing SERS activity strategy.Chem.Commun.,2007:3514-3534.
    [36]N.S.Lee,R.S.Sheng,M.D.Morris,et al.The active species in surface-enhanced Raman scattering of flavins on silver colloids.J.Am.Chem.Soc,1986,108:6179-6183.
    [37]J.Wang,R Zhang,T.J.He,et al.Surface-enhanced resonance Raman study on adsorption of cyanine dye onto silver chloride colloids.J.Phys.Chem.,1988,92:1942-1945.
    [38]K.Kneipp,H.Kneipp,I.Itzkan et al.Ultrasensitive Chemical Analysis by Raman Spectroscopy.Chem.Rev.,1999,99:2957-2976.
    [39]D.J.Maxwell,S.R.Emory,S.M.Nie.Nanostructured thin-film materials with surface-enhanced optical properties.Chem.Mater.,2001,13:1082-1088.
    [40]C.D.Tran.Subnanogram detection of dyes on filter paper by surface-enhanced Raman scattering spectrometry.Anal.Chem.,1984,56:824-826.
    [41]R.P.Van Duyne,J.P.Haushalter.Surface-enhanced Raman spectroscopy of adsorbates on semiconductor electrode surfaces:tris(bipyridine)ruthenium(Ⅱ)adsorbed on silver-modified n-gallium arsenide(100).J.Phys.Chem.,1983,87:2999-3003.
    [42]R.P.Van Duyne,J.P.Haushalter,M.Janik-Czachor,et al.Surface-enhanced resonance Raman spectroscopy of adsorbates on semiconductor electrode surfaces.2.In situ studies of transition metal(iron and ruthenium) complexes on silver/gallium arsenide and silver/silicon.J.Phys.Chem.,1985,89,4055-4061.
    [43]Q.Ye,J.X.Fang,L.Sun.Surface-enhanced Raman scattering from functionalized self-Assembled monolayers.2.Distance dependence of enhanced Raman scattering from an azobenzene terminal group.J.Phys.Chem.B,1997,101:8221-8224.
    [44]F.Ni,T.M.Cotton.Chemical procedure for preparing surface-enhanced Raman scattering active silver films.Anal.Chem.,1986,58:3159-3163.
    [45]T.M.Cotton,G.Kannen,D.Schumacher,et al.Raman spectra of silver coated graphite and glassy carbon electrodes.Appl.Surf.Sci.,1989,37,233-243.
    [46]S.O.Kucheyev,J.R.Hayes,J.Biener,et al.Surface-enhanced Raman scattering on nanoporous Au,Appl.Phys.Lett.,2006,89:053102.
    [47]L.H.Qian,X.Q.Yah,T.Fujita,et al.Surface enhanced Raman scattering of nanoporous gold:Smaller pore sizes stronger enhancements,Appl.Phys.Lett.,2007,90:153120.
    [48]赵冰,徐蔚青,阮伟东等.半导体纳米材料作为表面增强拉曼散射基底的研究进展.高等学校化学学报.2008,29:2591-2596.
    [49]L.G.Quagliano.Observation of molecules adsorbed on Ⅲ-Ⅴ semiconductor quantum dots by surface-enhanced Raman scattering.J.Am.Chem.Soc.,2004,126:7393-7398.
    [50]L.B.Yang,X.Jiang,W.D.Ruan,et al.Observation of enhanced Raman scattering for molecules adsorbed on TiO_2 nanoparticles:charge-transfer contribution.J.Phys.Chem.C,2008,112:20095-20098.
    [51]S.R.Emory,W.E.Haskins,S.M.Nie.Direct observation of size-dependent optical enhancement in single metal nanoparticles.J.Am.Chem.Soc.,1998,120:8099-8010.
    [52]C.L.Haynes,A.D.McFarland,R.P.Van Duyne.Surface-enhanced Raman spectroscopy.Anal.Chem.,2005,77:338A-346A.
    [53]G.Gouadec,P.Colomban.Raman Spectroscopy of nanomaterials:How spectra relate to disorder,particle size and mechanical properties.Prog.Cryst.Growth Charact.Mater.,2007,53:1-56.
    [54]D.Y.Wu,J.F.Li,B.Ren,et al.Electrochemical surface-enhanced Raman spectroscopy of nanostructures.Chem.Soc.Rev.,2008,37:1025-1041.
    [55]K.A.Willets,R.R Van Duyne.Localized Surface Plasmon Resonance Spectroscopy and Sensing.Annu.Rev.Phys.Chem.,2007,58:267-297.
    [56]C.L.Haynes,R.R Van Duyne.Nanosphere lithography:A versatile nanofabrication tool for studies of size-dependent nanoparticle optics.J.Phys.Chem.B,2001,105:5599-5611.
    [57]S.Mahajan,M.Abdelsalam,Y.Sugawara,et al.Tuning plasmons on nano-structured substrates for NIR-SERS.Phys.Chem.Chem.Phys.,2007,9:104-109.
    [58]P.M.Tessier,O.D.Velev,A.T.Kalambur,et al.Assembly of gold nanostructured films templated by colloidal crystals and use in surface-enhanced Raman spectroscopy.J.Am.Chem.Soc,2000,122:9554-9555.
    [59]S.J.Lee,A.R.Morrill,M.Moskovits.Hot spots in silver nanowire bundles for surface-enhanced Raman spectroscopy.J.Am.Chem.Soc,2006,128:2200-2201.
    [60]J.L.Yao,G.P.Pan,K.H.Xue,et al.A complementary study of surface-enhanced Raman scattering and metal nanorod arrays.Pure Appl.Chem.2000,72:221-228.
    [61]G.Kartopu,M.Es-Souni,A.V.Sapelkin,et al.A novel SERS-active substrate system:Template-grown nanodot-film structures.Phys.Stat.Sol.(a),2006,203:R82-R84.
    [62]G.T.Duan,W.P.Cai,Y.Y.Luo,et al.Hierarchical surface rough ordered Au particle arrays and their surface enhanced Raman scattering.Appl.Phys.Lett.,2006,89:181918.
    [63]A.Tao,F.Kim,C.Hess,et al.Langmuir-Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy,Nano Lett.,2003,3:1229-1233.
    [64]A.R.Tao,J.X.Huang,P.D.Yang.Langmuir-Blodgettry of Nanocrystals and Nanowires.Ace.Chem.Res.,2008,41:1662-1673.
    [65]H.J.Chen,Y.L.Wang,J.Y.Qu,et al.Self-assembled silver nanoparticle monolayer on glassy carbon:an approach to SERS substrate.J.Raman Spectrosc,2007,38:1444-1448.
    [66]L.H.Lu,H.J.Zhang,G.Y.Sun,et al.Aggregation-based fabrication and assembly of roughened composite metallic nanoshells:application in surface-enhanced Raman scattering.Langmuir,2003,19:9490-9493.
    [67]L.H.Lu,G Y.Sun,H.J.Zhang.Fabrication of core-shell Au-Pt nanoparticle film and its potential application as catalysis and SERS substrate.J.Mater.Chem.,2004,14:1005-1009.
    [68]S.Park,P.X.Yang,P.Corredor,et al.Transition metal-Coated nanoparticle films:Vibrational characterization with surface-enhanced Raman scattering.J.Am.Chem.Soc.,2002:124,2428-2429.
    [69]R.G.Freeman,K.C.Grabar,et al.Self-assembled metal colloid monolayers:An approach to SERS substrates.Science,267:1629-1632.
    [70]G.Chumanov,K.Sokolov,B.W.Gregory,et al.Colloidal metal films as a substrate for surface-enhanced spectroscopy.J.Phys.Chem.,1995,99:9466-9471.
    [71]K.C.Grabar,R.G.Freeman,M.B.Hommer,et al.Preparation and Characterization of Au Colloid Monolayers.Anal.Chem.,1995,67:735-743.
    [72]N.Felidj,S.Lau Truong,J.Aubard,et al.Gold particle interaction in regular arrays probed by surface enhanced Raman scattering.J.Chem.Phys.,2004,120:7141-7146.
    [73]C.C.Wang.Surfaced-enhanced Raman sattering-active substrates prepared through a combination of argon plasma and electrochemical techniques.J.Phys.Chem.C,2008,112:5573-5578.
    [74]B.Pettinger,G Picardi,R.Schuster,et al.Surface enhanced Raman spectroscopy:towards single molecule spectroscopy.Electrochemistry,2000,68:942-949.
    [75]M.Fleischmann,P.J.Hendra,A.J.McQuillan.Raman spectra from electrode surfaces.J.Chem.Soc.-Chem.Commun.,1973,80-81.
    [76]J.S.Clarke,A.T.Kuhn,W.J.Orville-Thomas.Laser Raman spectroscopy as a tool for study of diffusion controlled electrochemical processes.J.Electroanal.Chem.,1974,54:253-262.
    [77]D.L.Jeanmaire,M.R.Suchanski,R.P.Van Duyne.Resonance Raman spectroelectrochemistry.I.Tetracyanoethylene anion radical.J.Am.Chem.Soc.,1975,97:1699-1707.
    [78]D.L.Jeanmaire,R.P.Van Duyne,A.P.Sloan.Resonance Raman spectroelectrochemistry:V.Intensity transients on the millisecond time scale following double potential step initiation of a diffusion controlled electrode reaction.J.Electroanal.Chem.,1975,66:235-247.
    [79]T.M.Cotton,R.P.Van Duyne.Resonance Raman spectroelectrochemistry of bacteriochlorophyⅡ and bacteriochlorophyⅡ cation radical.Biochem.Biophys.Res.Commun.,1978,82:424-433.
    [80]T.M.Cotton,K.D.Parks,R.P.Van Duyne.Resonance Raman spectra of bacteriochlorophyⅡ and its electrogenerated cation radical.Excitation of the soret bands by use of stimulated Raman scattering from hydrogen and deuterium.J.Am.Chem.Soc,1980,102:6399-6407.
    [81]M.R.Suchanski,R.P.Van Duyne.Resonance Raman spectroelectrochemistry.Ⅳ.The oxygen decay chemistry of the tetracyanoquinodimethane dianion.J.Am.Chem.Soc,1976,98:250-252.
    [82]D.L.Jeanmaire,R.P.Van Duyne.Resonance Raman spectroelectrochemistry.2.Scattering spectroscopy accompanying excitation of the lowest 2Blu excited state of the tetracyanoquinodimethane anion radical.J.Am.Chem.Soc.,1976,98:4029-4033.
    [83]R.P.Van Duyne,M.R.Suchanski,J.M.Lakovits,et al.,Resonance Raman spectroelectrochemistry.6.Ultraviolet laser excitation of the tetracyanoquinodimethane dianion.J.Am.Chem.Soc.,1979,101:2832-2837.
    [84]D.L.Jeanmaire,R.P.Van Duyne.Resonance Raman spectroelectrochemistry.3.Tunable dye laser excitation spectroscopy of the lowest 2Blu excited state of the tetracyanoquinodimethane anion radical.J.Am.Chem.Soc.,1976,98:4034-4039.
    [85]W.L.Wallace,C.D.Jaeger,A.J.Bard.In situ resonance Raman spectroscopic investigation of the tetrathiafulvalene-tetracyanoquinodimethan electrode surface.J.Am.Chem.Soc,1979,101:4840-4843.
    [86]R.J.Thibeau,C.W.Brown,A.Z.Goldfarb,et al.Raman and Infrared spectroscopy of aqueous corrosion films on lead in 0.1 M chloride solutions,J.Electrochem.Soc,1980,127:1702-1706.
    [87]E.S.Reid,R.P.Cooney,P.J.Hendra,et al.A Raman spectroscopic study of corrosion of lead electrodes in aqueous chloride media.J.Electroanal.Chem.,1977,80:405-408.
    [88]D.L.Jeanmaire,R.P.Van Duyne.Surface Raman spectroelectrochemistry:Part I.Heterocyclic,aromatic,and aliphatic amines adsorbed on the anodized silver electrode.J.Electroanal.Chem.,1977,84:1-20.
    [89]G.Hagen,B.Simic Glavaski,E.Yeager.The Raman spectrum of an adsorbed species on electrode surface.J.Electroanal.Chem.,1978,88:269-275.
    [90]M.Fujihira,T.Osa.Internal reflection resonance Raman spectroscopy for studies of adsorbed dye layers at electrode-solution interface.J.Am.Chem.Soc.,1976,98:7850-7851.
    [91]S.Z.Zou,Y.X.Chen,B.W.Mao,et al.SERS studies on electrodelelectrolyte interfacial water.I.Ion effects in the negative potential region.J.Electroanal.Chem.1997,424:19-42.
    [92]Y.X.Chen,S.Z.Zou,K.Q.Huang,et al.SERS studies of electrode/electrolyte inteffacial water part Ⅱ - librations of water correlated to hydrogen evolution reaction.J.Raman Spectrosc.,1998,29:749-756.
    [93]K.Kneipp,M.Moskovits,H.Kneipp(Ed.).Surface-enhanced Raman scattering physics and applications.Springer Berlin/Heidelberg,2006.
    [94]M.Fleischmann,J.Robinson,R.Waser.An electrochemical study of the adsorption of pyridine and chloride ions on smooth and roughened silver surfaces.J.Electroanal.Chem.,1981,117:257-266.
    [95]T.E.Furtak.Anomalously intense Raman scattering at the solid-electrolyte interface.Solid State Commun.,1978,28:903 -906.
    [96]M.Fleischmann,I.R.Hill,M.E.Pemble.Surface-enhanced Raman spectroscopy of ~(12)CN~- and ~(13)CN-adsorbed at silver electrodes.J.Electroanal.Chem.,1982,136:361-370.
    [97]田中群,任斌,佘春兴等.电化学原位拉曼光谱的应用及进展.电化学,1999,5:1-13.
    [98]田中群,任斌,吴德印等.激光拉曼光谱研究电化学界面的新进展.厦门大学学报,2001,40:434-447.
    [99]任斌,田中群.固体催化剂的研究方法,第十六章电化学催化中的激光拉曼光谱法(上).石油化工,2002,31:488-499.
    [100]任斌,李筱琴,谢泳等.共焦显微拉曼光谱在界面研究中的应用.光谱学与光谱分析,2000,20:548-651.
    [101]H.H.Strehbiow.Passivity of Metals.In:R.C.Alkire(Ed.).Advances in Electrochemical Science and Engineering,Weinheim:Wiley-VCH,2002.voi.8.pp.271-374.
    [102]杨熙珍,杨武.金属腐蚀电化学热力学电位-pH图及其应用.北京:化学工业出版社,1991.
    [103]R.F.Steigerwald,N.D.Greene.The anodic dissolution of binary alloys.J.Electrochem.Soc.,1962,109,1026-1034.
    [104]J.Erlebacher,M.J.Aziz,A.Karma,et al.Evolution of nanoporosity in dealloying.Nature,2001,410:450-453.
    [105]A.P.Pchelnikov,A.D.Sitnikov,et al.A study of the kinetics and mechanism of brass dezincification by radiotracer and electrochemical methods.Electrochim.Acta,1981,26:591-600.
    [106]S.Rambert,D.Landolt.Anodic dissolution of binary single phase alloys- Ⅰ.Surface composition changes on AgPd studied by Auger electron spectroscopy.Electrochim.Acta,1986,31:1421-1431.
    [107]S.Rambert,D.Landolt.Anodic dissolution of binary single phase alloys- Ⅱ.Behavior of CuPd,NiPd and AgAu in LiCl.Electrochim.Acta,1986,31:1433-1441.
    [108]T.Tsuru.Anodic dissolution mechanisms of metals and alloys.Mater.Sci.Eng.,1991,A146:1-14.
    [109]F.K.Grundwell.The anodic dissolution of 90%copper-10%nickel alloy in hydrochloric acid solutions.Electrochim.Acta,1991,36:2135-2141.
    [110]H.P.Lee,K.Nobe.Rotating ring-disk electrode studies of Cu-Ni alloy electrodissolution in acidic chloride solutions Ⅱ.95/5,90/10,and 70/30 Cu-Ni alloys.J.Elelctrochem.Soc.,1993,140:2483-2489.
    [111]S.M.Wilhem,N.Hackerman.Photoelectrochemical characterization of the passive films on iron and nickel.J.Electrochem.Soc.,1981,128:1668-1674.
    [112]Z.Szklarska-Smialowska,W.Kozlowski.Electrochemical and ellipsometric investigations of passive films on iron in borate solutions.J.Electrochem.Soc.,1984,131:499-505.
    [113]李定,郭津年,卢阿平等.电化学调制光谱在钝化膜研究中的初步应用.中国腐蚀与防护学报,1983,3:184-188.
    [114]林仲华,罗瑾,黄福民等.阳极氧化膜WO_3(Ⅱ)-电显色的介质效应1993,4:841-844.
    [115]黄宗卿.椭圆法在金属腐蚀研究中的应用.重庆大学学报,1980,5:72-88.
    [116]Y.T.Chin,B.D.Cahan.An cllipsometric spectroscopic study of the passive film on iron-potential and chloride ion dependence.J.Electrochem.Soc.,1992, 139:2432-2442.
    [117]J.J.Kester,T.E.Furtalc,A.J.Bevolo.Surface enhanced Raman scattering in corrosion science:benzotriazole on copper.J.Electrochem.Soc.,1982,129:1716-1719.
    [118]D.Thierry,C.Leygraf.Simultaneous Raman spectroscopy and electrochemical studies of corrosion inhibiting molecules on copper.J.Electrochem.Soc.,1985,132:1009-1014.
    [119]M.Fleischmann,I.R.Hill,G.Mengoli,et al.A comparative study of the efficiency of some organic inhibitors for the corrosion of copper in aqueous chloride media using electrochemical and surface enhanced Raman scattering techniques.Electrochim.Acta,1985,30:879-888.
    [120]M.M.Musiani,G.Mengoli,M.Fleischmann,et al.An electrochemical and SERS investigation of the influence of pH on the effectiveness of some corrosion inhibitors of copper.J.Electroanal.Chem.,1987,217:187-202.
    [121]林仲华,王逢春,田中群.2-氨基嘧啶对铜的缓蚀机理.物理化学学报,1992,8:87-93.
    [122]徐海波,余家康,董俊华.硫脲和尿素在银电极上吸附行为的电化学和SERS研究.腐蚀科学与防护技术,1997,9:302-307.
    [123]J.C.Rubim,J.D(u|¨)nnwald.Enhanced Raman scattering from passive films on silver-coated iron electrodes.J.Electroanal.Chem.,1989,258:327-344.
    [124]J.Gui,T.M.Devine.In situ vibrational spectra of the passive film on iron in buffered borate solution.Corr.Sci.,1991,32:1105-1124.
    [125]J.Gui,T.M.Devine.Obtaining surface-enhanced Raman spectra from the passive film on iron.J.Electrochem.Soc.,1991,138:1376-1384.
    [126]查英华,魏宝明,田中群等.表面增强拉曼光谱用于不锈钢缓蚀机理的研究.腐蚀科学与防护技术.1994,6:58-62.
    [127]查英华,魏宝明,田中群等.用表面增强拉曼光谱研究BMAT对不锈钢的缓蚀机理.电化学,1995,1:152-158.
    [128]X.M.Yang,D.A.Tryk,K.Hashimoto,et al.Examination of the photoreaction of p-Nitrobenzoic acid on electrochemically roughened silver sing surface-enhanced Raman imaging(SERI).J.Phys.Chem.B.,1998,102:4933-4943.
    [129]X.M.Yang,D.A.Tryk,K.Hashimoto,et al.Surface-enhanced Raman imaging (SERI) as a technique for imaging molecular monolayers with chemical selectivity under ambient conditions.J.Raman.Spectrosc.,1998,29:725-732.
    [130]D.Larroumet,D.Greenfield,R.Akid,et al.Raman spectroscopic studies of the corrosion of model iron electrodes in sodium chloride solution.J.Raman Spectrosc,2007,38:1577-1585.
    [131]N.Boucherit,A.Hugot-Le GofF.Localized corrosion processes in iron and steels studied by in situ Raman spectroscopy.Faraday Dicuss,1992,94:137-147.
    [132]D.Larroument,D.Greenfield,R.Akid,et al.Spectroscopic studies of the corrosion of model iron electrodes in carbonate and phosphate buffer solutions.J.Raman Spectrosc,2008,39:1740-1748.
    [133]H.Tanabe,T.Shibuya,N.Kobayashi,et al.In situ observation of preferential anodic dissolution of phosphorus compound in Fe-P alloys using Raman spectroscopy.ISIJ International,1997,3:278-282.
    [134]M.Odziemkowski,J.Flis,D.E.Irish.Raman spectral and electrochemical studies of surface film formation on iron and its alloys with carbon in Na_2CO_3/NaHCO_3 solution with reference to stress corrosion cracking.Electrochim Acta.1994,39:2225-2236.
    [135]S.Simard,M.Odziemkowski,D.E.Irish,et al.In situ micro-Raman spectroscopy to investigation pitting corrosion product of 1024 mild steel in phosphate and bicarbonate solutions containing chloride and sulfate ions.J.Appl.Electrochem.,2001,31:913-920.
    [136]C.T.Lee,M.S.Odziemkowshi,D.W.Shoesmith.An in situ Raman-Electrochemical investigation of carbon steel corrosion in Na_2CO_3/NaHCO_3,Na_2SO_4,and NaCl solutions.J.Electrochem.Soc,2006,153:B33-B41.
    [137]M.Reffass,R.Sabot,M.Jeannin,et al.Effects of NOV ions on localized corrosion of steel in NaHCO_3 + NaCl electrolytes.Electrochim.Acta.,2007,52:7599-7606.
    [138]B.H.Loo.In situ identification of halide complexes on gold electrode by surface-enhanced Raman spectroscopy.J.Phys.Chem.,1982,86:433-437.
    [139]B.Bozzini,A.Fanigliulo.An in situ spectroelectrochemical Raman investigation of Au electrodeposition and electrodissolution in KAu(CN)2 solution.J.Appl.Electrochem.,2002,32:1043-1048.
    [140]Z.L.Li,T.H.Wu,Z.J.Niu,et al.In situ Raman spectroscopic studies on the current oscillations during gold electrodissolution in HC1 solution.Electrochem.Commun.,2004,6:44-48.
    [141]A.G.Brolo,M.odziemkowski,J.Porter,et al.In situ micro Raman investigation of electrochemically formed halide and pseudohalide films on mercury electrodes.J.Raman Spectrosc,2002,33:136-141.
    [142]S.T.Mayer,R.H.Muller.An in situ raman spectroscopy study of the anodic oxidation of copper in alkaline media.J.Electrochem.Soc.,1992,139:426-434.
    [143]J.A.Calderon,O.R.Mattos,O.E.Barcia,et al.Electrodissolution of cobalt in carbonate bicarbonate media.Electrochim.Acta.,2002,47:4531-4541.
    [144]H.Y.H.Chan,S.Z.Zou,M.J.Weaver.Mechanistic differences between electrochemical and Gas-phase thermal oxidation of platinum-group transition metal as discerned by surface-enhanced Raman spectroscopy.J.Phys.Chem.B,1999,103:11141-11151.
    [145]S.Z.Zou,H.Y.H.Chan,C.T.Williams,et al.Formation and stability of oxide films on platinum-group metals in electrochemical and related environments as probed by surface-enhanced Raman spectroscopy:dependence on the chemical oxidant.Langmuir,2000,16:754-763.
    [146]H.Luo,S.Park,H.Y.H.Chan,et al.Surface oxidation of platinum-group transition metals in ambient gaseous environments:role of electrochemical versus chemical pathways.J.Phys.Chem.B,2000,104:8250-8258.
    [147]M.T.Reetz,W.Helbig,Size-selective synthesis of nanostructured transition metal clusters.J.Am.Chem.Soc.1994,116:7401-7402.
    [148]M.T.Reetz,M.Winter,R.Breinbauer,et al.Size-selective electrochemical preparation of surfactant-stabilized Pd-,Ni-and Pt/Pd colloids.Chem.Eur.J.,2001,7:1084-1094.
    [149]L.Rodriguez-Sachez,M.C.Blanco,M.A.Lopez-Quintela.Electrochemical synthesis of silver nanoparticles.J.Phys.Chem.B,2000,104:9683-9688.
    [150]B.S.Yin,H.Y.Ma,S.Y.Wang,et al.Electrochemical synthesis of silver nanoparticles under protection of Poly(N-vinylpyrrolidone).J.Phys.Chem.B.,2003,107:8898-8904.
    [151]C.J.Huang,P.H.Chiu,Y.H.Wang,et al.Electrochemically controlling the size of gold nanoparticles.J.Electrochem.Soc,2006,153:D193-D198.
    [152]D.H.Nagaraju,V.Lakshminarayanan.Electrochemical synthesis of thiol-monolayer-protected clusters of gold.Langmuir,2008,24:13855-13857.
    [153]Y.P.Deng,W.Huang,X.Chen,et al.Facile fabrication of nanoporous gold film electrodes.Electrochem.Commun.,2008,10:810-813.
    [154]Q.L.Zhao,Z.L.Zhang,B.H.Huang,et al.Facile preparation of low cytotoxicity fluorescent carbon nanocrystals by electrooxidation of graphite.Chem.Commun.,2008,5116-5118.
    [155]M.V.ten Kortenaar,Z.I.Kolar,F.D.Tichelaar.Formation of long-lived silver clusters in aqueous solution by anodic dispersion.J.Phys.Chem.B,1999,103:2054-2060.
    [156]B.J.Murray,Q.Li,J.T.Newberg,et al.Shape-and size-selective electrochemical synthesis of dispersed silver(I)oxide colloids.Nano.Lett.,2005,5(11):2319-2324.
    [157]D.P.Singh,N.R.Neti,A.S.K.Sinha,et al.Growth of different nanostructures of Cu_2O(nanothreads,nanowires,and nanocubes)by simple electrolysis based oxidation of copper.J.Phys.Chem.C,2007,111:1638-1645.
    [158]S.Sreekantan,L.R.Gee,Z.Lockman.Room temperature anodic deposition and shape control of one-dimensional nanostructured zinc oxide.J.Alloys Compd.,2009,Article in Press,doi:10.1016.
    [159]S.L.Feng,Y.W.Tang,T.Xiao.Anodization,precursor route to flowerlike patterns composed of nanoporous tin oxide nanostrips on tin substrate.J.Phys.Chem.C,2009,113:4809-4813.
    [160]E.Hosono,S.Fujihara,H.Imai,et al.Fabrication of highly porous and micropatterned SnO_2 films by oxygen bubbles generated on the anode electrode.Chem.Commun.,2005,2609-2611.
    [161]K.Lee,Y.Tang,M.Ouyang.Self-Ordered,Controlled structure nanoporous membranes using constant current anodization.Nano Lett.,2008,8:4624-4629.
    [162]S.Singh,W.R.T.Barden,P.Kruse.Nanopatterning of transition metal surfaces via electrochemical dimple array formation.ACS Nano,2008,2:2453-2464.
    [163]W.Wei,J.M.Macak,P.Schmuki.High aspect ratio ordered nanoporous Ta_2O_5 films by anodization of Ta.Electrochem.Commun.,2008,10:428-432.
    [164]W.Lee,R.Scholz,U.Gosele.A continuous process for structurally well-defined Al_2O_3 nanotubes based on pulse anodization of aluminum.Nano Lett.,2008,8:2155-2160.
    [165]Y.Shin,S.Lee.Self-organized regular arrays of anodic TiO_2 nanotubes.Nano Lett.,2008,8:3171-3173.
    [166]W.C.Wu,X.L.Wang,D.A.Wang,et al.Alumina nanowire forests via unconventional anodization and super-repellency plus low adhesion to diverse liquids.Chem.Commun.,2009,1043-1045.
    [167]J.Erlebacher,in:J.A.Schwarz,C.I.Contescu,K.Putyera(Ed.).Dekker Encyclopedia of Nanoscience and Nanotechnology,Marcel Dekker Inc.,New York,2004,p.893-901.
    [168]A.J.Forty.Corrosion micromorphology of noble metal alloys and depletion gilding.Nature,1979,282:597-598.
    [169]Y.Ding,J.Erlebacher.Nanoporous metals with controlled multimodal pore size distribution.J.Am.Chem.Soc,2003,125:7772-7773.
    [170]S.Cattarin,D.Kramer,A.Lui,et al.Preparation and characterization of gold nanostructures of controlled dimension by electrochemical techniques.J.Am.Chem.Soc,2007,111:12643-12649.
    [171]Y.Ding,Y.J.Kim,J.Erlebacher.Nanoporous gold leaf:“ancient technology”/advanced material.Adv.Mater,2007,16:1897-1900.
    [172]J.D.Fritz,H.W.Pickering.Selective anodic dissolution of Cu-Au alloys:TEM and current transient study.J.Electrochem.Soc,138:3209-3218.
    [173]F.L.Jia,C.F.Yu,K.J.Deng,et al.Nanoporous metal(Cu,Ag,Au)films with high surface area:General fabrication and preliminary electrochemical performance.J.Phys.Chem.C,2007,111:8424-8431.
    [174]H.Dong,X.D.Cao.Nanoporous Ggold thin film:fabrication,structure evolution,and electrocatalytic activity.J.Phys.Chem.C,2009,113:603-609.
    [175]H.W.Pickering,Y.S.Kim.De-alloying at elevated temperatures and at 298 K-similarities and differences.Corros.Sci,1982,22:621-635.
    [176]Y.S.Kim,H.W.Pickering.Kinetics of chlorination of Co and Co-10 at.pct Pt alloy by reaction with HC1 gas.Metall.Trans,1982,13B:349-356.
    [177]M.C.Simmonds,H.Kheyrandish,J.S.Colligon,et al.The observation of a threshold in the de-alloying of sputter deposited Pt_xAl_(1-x)alloy thin films.Corros.Sci,1998,40:43-48.
    [178]J.C.Thorp,K.Sieradzki,L.Tang,et al.Formation of nanoporous noble metal thin films by electrochemical dealloying of Pt_xSi_(1-x).Appl.Phys.Lett,2006,88:033110.
    [179]H.J.Jin,D.Kramer,Y.Ivanisenko,et al.Macroscopically strong nanoporous Pt prepared by dealloying.Adv.Eng.Mater.2007,9:849-854.
    [180]J.F.Huang,I.W.Sun.Formation of nanoporous platinum by selective anodic dissolution of PtZn surface alloy in a lewis acidic zinc chloride-l-ethyl-3-methylimidazolium chloride ionic liquid.Chem.Mater.,2004,16:1929-1931.
    [181]D.V.Pugh,A.Dursun,S.G Corcoran.Electrochemical and morphological characterization of Pt-Cu dealloying.J.Electrochem.Soc,2005,152:B455-B459.
    [182]D.V.Pugh,A.Dursun,S.G Corcoran.Formation of nanoporous platinum by selective dissolution of Cu from Cu_(0.75)Pt_(0.25).J-Mater.Res.,2003,18:216-221.
    [183]S.Koh,P.Strasser.Electrocatalysis on bimetallic surfaces:modifying catalytic reactivity for oxygen reduction by voltammetric surface dealloying.J.Am.Chem.Soc,2007,129:12624-12625.
    [184]P.Mani,R.Srivastava,P.Strasser.Dealloyed Pt-Cu core-shell nanoparticle electrocatalysis for use in PEM fuel cell cathodes.J.Phys.Chem.C,2008,112:2770-2778.
    [185]H.W.Pickering,C.J.Wagner.Electrolytic Dissolution of Binary Alloys Containing a Noble Metal.J.Electrochem.Soc,1967,114:698-706.
    [186]M.J.Pryor,K.K Giam.The Effect of Arsenic on the Dealloying of a-Brass.J.Electrochem.Soc,1982,129:2157-2163.
    [187]A.J.Smith,T.Iran,M.S.Wainwright.Kinetics and mechanism ofthepreparationof Raney copper.J.Appl.Electrochem.,1999,29:1085-1094.
    [188]M.J.Pryor,J.C.Fister.The mechanism of dealloying of copper solid solutions and intermetallic phases.J.Electrochem.Soc,1984,131:1230-1235.
    [189]J.R.Hayes,A.M.Hodge,J.Biener,et al.Monolithic nanoporous copper by dealloying Mn-Cu.J.Mater.Res.,2006,21:2611-2616.
    [190]H.B.Lu,Y.Li,F.H.Wang.Synthesis of porous copper from nanocrystalline two-phase Cu-Zr film by dealloying.Scripta Mater.,2007,56:165-168.
    [191]S.Rambert,D.Landolt.Anodic dissolution of binary single phase alloys-I.surface composition changes on AgPd studied by auger electron spectroscopy.Electrochim.Acta,1986,31:1421-1431.
    [192]S.Rambert,D.Landolt.Anodic dissoluton of binary single phase alloys—Ⅱ.behavior of CuPd,NiPd and AgAu in LiCl.Electrochim.Acta,1986,31:1433-1441.
    [193]J.Gniewek,J.Pezy,B.G Baker,et al.The effect of noble metal additions upon the corrosion of copper:an auger-spectroscopic study.J.Electrochem.Soc.,1978,125:17-23.
    [194]M.Hakamada,M.Mabuchi.Fabrication of nanoporous palladium by dealloying and its thermal coarsening.J.Alloys Compd.,2009,Article in Press,doi:10.1016.
    [195]L.Sun,C.L.Chien,P.C.Searson.Fabrication of Nanoporous Nickel by Electrochemical Dealloying.Chem.Mater.,2004,16:3125-3129.
    [196]T.Fukumizu,F.Kotani,A.Yoshida,A.Katagiri.Electrochemical Formation of Porous Nickel in Zinc Chloride-Alkali Chloride Melts.J.Electrochem.Soc.,2006,153:C629-C633.
    [197]J.I.Gardiaz(?)bal,J.R.Galvele.Selective Dissolution of Cd-Mg Alloys I.static samples.J.Electrochem.Soc.,1980,127:255-258.
    [198]F.H.Yeh,C.C.Tai,J.F.Huang,et al.Formation of porous silver by electrochemical alloying/dealloying in a water-insensitive zinc chloride-l-ethyl-3-methyl imidazolium chloride ionic liquid.J.Phys.Chem.B,2006,110:5215-5222.
    [199]J.Snyder,P.Asanithi,A.B.Dalton,et al.Stabilized Nanoporous Metals by Dealloying Ternary Alloy Precursors.Adv.Mater.,2008,9999:1-4.
    [200]J.Yu,Y.Ding,C.X.Xu,et al.Nanoporous metals by dealloying multicomponent metallic glasses.Chem.Mater.,2008,20:4548-4550.
    [201]J.Jayaraj,B.J.Park,D.H.Kim,et al.Nanometer-sized porous Ti-based metallic glass.Scripta Materialia,2006,55:1063-1066.
    [202]D.Mukherji,R.M(u|¨)ller,R.Gilles,et al.Nanocrystalline NisAl-typeintermetallic phase powderfrom Ni-base superalloys.Nanotechnology,2004,15:648-657.
    [203]D.Mukherji,G Pigozzi,F.Schmitz,et al.Nano-structured materials produced from simple metallic alloys by phase separation.Nanotechnology,2005,16:2176-2187.
    [204]A.W.Hassel,A.J.Smith,S.Milenkovic.Nanostructures from directionally solidified NiAl-W eutectic alloys.Electrochimica Acta,2006,52:1799-1804.
    [205]Y.Ding,M.W.Chen,J.Erlebacher.Metallic Mesoporous Nanocomposites for Electrocatalysis.J.Am.Chem.Soc,2004,126:6876-6877.
    [206]H.M.Yin,C.Q.Zhou,C.X.Xu,et al.Aerobic oxidation of d-glucose on support-free nanoporous gold.J.Phy.Chem.C,2008,112:9673-9678.
    [207]J.T.Zhang,P.P.Liu,H.Y.Ma,et al.Nanostructured porous gold for methanol electro-oxidation.J.Phys.Chem.C,2007,111:10382-10388.
    [208]M.D.Rintoul,S.Torquato,C.Yeong,et al.Structure and transport properties of a porous magnetic gel via x-ray microtomography.Phys.Rev.E,1996,54:2663-2669.
    [209]M.J.Tierney,H.-O.L.Kim.Electrochemical gas sensor with extremely fast response times.Anal.Chem.,1993,65:3435-3440.
    [210]G Th.Fechner.ZUr Elektrochemie-1.Uber Umkehrungen der Polaritat in der einfachen Kette.Schwigg J.fur Chemie und Physik,1828,53:129-151.
    [211]J.L.Hudson,T.T.Tsotsis.Electrochemical reaction dynamics:A review.Chem.Eng.Sci.,1994,49:1493-1572.
    [212]T.Z.Fahidy,Z.H.Gu,Recent advances in the study of the dynamics of electrode processes.In:R.E.White,J.O.Bockris,B.E.Conway(Ed.).Modern aspects of electrochemistry.New York:Plenum,1995.vol.27.p.383-409.
    [213]M.T.M.Koper.Oscillations and complex dynamical bifurcations in electrochemical systems.In:I.Prigogine,S.A.Rice(Ed.).Advances in chemical physics.New York:Wiley,1996.vol.92.p.161-298.
    [214]K.Krischer.Principles of temporal and spatial pattern formation in electrochemical systems.In:R.E.White,J.O.Bockris,B.E.Conway(Ed.).Modern aspects of electrochemistry.New York:Plenum,1999.vol.32.p.1-142.
    [215]雷惊雷,蔡生民,杨迈之等.电化学振荡研究概况.北京大学学报,2001,37:880-888.
    [216]K.Krischer.Nonlinear dynamics in electrochemical systems.In:R.C.Alkire,D.M.Kolb(Ed.).Advances in electrochemical science and engineering.Weinheim:Wiley-VCH,2003.vol.8.p.89-208.
    [217]M.T.M.Koper.Stability study and categorization of electrochemical Oscillations by Impedance Spectroscopy.J.Electroanal.Chem.,1996,409:175-182.
    [218]P.Strasser,M.Eiswirth,M.T.M.Koper.Mechanistic classification of electrochemical oscillators-an operational experimental strategy.J.Electroanal.Chem.,1999,478:50-66.
    [219]Z.L.Li,Y.Yu,H.Liao,et al.A universal topology in nonlinear electrochemical systems.Chem.Lett.,2000,29:330-331.
    [220]Z.L.Li,B.Ren,Z.J.Niu,et al.On the criteria of instability for electrochemical systems.Chin.J.Chem.,2002,20:657-662.
    [221]Z.L.Li,B.Ren,X.M.Xiao,et al.Further insight into the origin of potential oscillations during the iodate reduction in alkaline solution with mass transfer.J.Phys.Chem.A,2002,106:6570-6573.
    [222]W.Huang,Z.L.Li,Y.D.Peng,et al.Oscillatory electrocatalytic oxidation of methanol on an Ni(OH)_2 film electrode.J.Solid State Electrochem.,2005,9:284-289.
    [223]W.Huang,Z.L.Li,Y.D.Peng,et al.Transition of oscillatory mechanism for methanol electro-oxidation on nano-structured nickel hydroxide film(NNHF)electrode.Chem.Commun.,2004:1380-1381.
    [224]Z.L.Li,Z.J.Niu,T.H.Wu,et al.In situ monitoring of potential oscillations in the reduction of IO_3~-by electrochemical quartz crystal microbalance.Electrochem.Commun.,2003,5:297-300.
    [225]Z.L.Li,J.L.Cai,S.M.Zhou.Potential oscillations during the reduction of Fe(CN)_6~(3-)ions with convection feedback.J.Electroanal.Chem.,1997,432:111-116.
    [226]Z.L.Li,Q.H.Yuan,B.Ren,et al.A new experimental method to distinguish two different mechanisms for a category of oscillators involving mass transfer.Electrochem.Commun.,2001,3:654-658.
    [227]J.L.Hudson,M.R.Bassett.Oscillatory electrodissolution of metals.Chem.Eng.,1991,7:109-170.
    [228]K.Fukami,S.Nakanishi,H.Yamasaki,et al.General mechanism for the synchronization of electrochemical oscillations and self-organized dendrite electrodeposition of metals with ordered 2D and 3D Microstructures.J.Phys.Chem.C,2007,111:1150-1160.
    [229]M.Clarke,J.A.Bernie.Abnormal high throwing power and cathode passivity in acid tin plating baths.Electrochim.Acta,1967,12:205-212.
    [230]R.De Levie,A.A.Husovsky.On the negative faradic admittance in the region of the polarographic minimum of In(Ⅲ)in aqueous NaSCN.J.Electroanal.Chem.,1969,22:29-48.
    [231]F.W.Schlitter,G Eichkorn,H.Fischer.Rhythmisch lamellares Kristallwachstum bei der elektrolytischen Kupfera bscheidung.Electrochim.Acta,1958,13:2063-2075.
    [232]H.Jehring,U.Kuerschner.Electrochemical oscillations in the inhibition of copper deposition at the mercury electrode.J.Electroanal.Chem.,1977,75:799-808.
    [233]R.Saliba,C.Mingotaud,F.Argoul,et al.Spontaneous oscillations in gold Electrodeposition.Electrochem.Commun.,2002,4:629-632.
    [234]A.Franczak,J.Matysik,M.Korolcauk.Investigations on the current oscillations during the electrolytic reduction of dichromates in acetic solutions.J.Electroanal.Chem.,1980,107:189-192.
    [235]I.N.Karnaukhov,A.I.Karasevskii,N.D.Ivanova,et al.Self-organization phenomena in polyvalent metal electroreduction processes:Experiment and theory.J.Electroanal.Chem.,1990,288:35-44.
    [236]M.E.De Almerdi Lima,J.Bouteillon,J.P.Diard.Study of the electrochemical reduction of PbCfe on a liquid Pb electrode in NaCl-KCl melt.J.Appl.Electrochem.,1992,22:577-580.
    [237]K.Norio,N.Hiroyuki,S.Naoyuki.Potential oscillations during the electrocrystallization of cadmium from alkaline cyanide solutions under galvanostatic conditions.J.Electroanal.Chem.,1998,252:371-381.
    [238]I.Bakos,G Horinyi.Galvanostatic potential oscillations during the electrodeposition of rhenium.J.Electroanal.Chem.,1994,375:387-390.
    [239]I.Kristev,M.Nikolova,I.Nakada.Spiral structures in electrodeposited silver-antimony alloys.Electrochim.Acta,1989,34:1219-1223.
    [240]G Mattsson,L.NyholmL,M.Peter.Electrocrystallization,stripping and photoelectrochemical properties of HgSe/Se films on mercury electrodes.J.Electroanal.Chem.,1993,347:303-326.
    [241]A.Survila,Z.Mockus,R.JuSkenas.Current oscillations observed during codeposition of copper and tin from sulfate solutions containing Laprol 2402C.Electrochim.Acta,1998,43:909-917.
    [242]H.D.D(o|¨)rfler,E.M(u|¨)ller.The analysis of current oscillations on the basis of retardation of electrode processes by different surfactants.J.Electroanal.Chem.,1982,135:37-53
    [243]S.Nakanishi,T.Nagai,K.Fukami,et al.Oscillatory Electrodeposition of Metal Films at Liquid/Liquid Interfaces Induced by the Large Surface Energy of Growing Deposits.Langmuir,2008,24:2564-2568.
    [244]G.Horanyi,G.Inzelt,E.M.Rizmayer.Radiotracer study of the adsorption of urea on platinized platinum electrodes in the presence of different ions and organic compounds.J.Electroanal.Chem.,1979,98:105-117.
    [245]M.Hachkar,M.Choy de Martinez,A.Rakotondrainibe.Oscillating electrocatalytic systems:Part Ⅱ.“In situ” UV-visible reflectance spectroscopic investigation of formaldehyde oxidation on rhodium in alkaline medium.J.Electroanal.Chem.,1991,302:173-189.
    [246]Y.Honda,M.B.Song,M.Ito.Current oscillations during the oxidation of formic acid on Pt(100)as studied by in situ time-resolved infrared reflection absorption spectroscopy.Chem.Phys.Lett.,1997,273:141-146.
    [247]S.L.Chen,M.Schell.A comparison of multistability in the electrocatalyzed oxidations of methanol and ethanol in acid and alkaline solutions.J.Electroanal.Chem.,1999,478:108-117.
    [248]T.J.Schmidt,B.N.Grgur,N.M.Markovic.Oscillatory behavior in the electrochemical oxidation of formic acid on Pt(100):Rotation and temperature effects.J.Electroanal.Chem.,2001,500:36-43.
    [249]H.Okamoto,M.Kikuchia,Y.Mukouyama.Effect of chloride ions on potential oscillation generated by formic acid oxidation.J.Electroanal.Chem.2008,622:1-9.
    [250]J.Lee,C.Eickes,M.Eiswirth,et al.Electrochemical oscillations in the methanol oxidation on Pt.Electrochim.Acta,2002,47:2297-2301.
    [251]B.E.Kumara Swamy,C.Vannoy,J.Maye,et al.Potential oscillations in formic acid oxidation in electrolyte mixtures Efficiency and stability.J.Electroanal.Chem.,2009,625:69-74..
    [252]T.Matsuda,H.Hommura,Y.Mukouyama,et al.New current and potential oscillations for reduction reactions on platinum electrodes in acid solutions containing high concentration hydrogen peroxide.J.Electrochem.Soc.,1997,144:1988-1994.
    [253]S.Nakanishi,Y.Mukouyama,K.Karasumi,et al.Appearance of an oscillation through the autocatalytic mechanism by control of the atomic-level structure of electrode surfaces in electrochemical H_2O_2 reduction at Pt electrodes.J.Phys.Chem.B,2000,104:4181-4188.
    [254]Y.Mukouyama,S.Nakanishi,T.Chiba,et al.Mechanisms of two electrochemical oscillations of different types,observed for H_2O_2 reduction on a Pt Electrode in the presence of a small amount of halide ions.J.Phys.Chem.B,2001,105:7246-7253.
    [255]N.A.Hampson,R.Piercy.Note of oscillation of potential observed during the reduction of the nitrate ion at solid indium.J.Electroanal.Chem.,1973,45:326-329.
    [256]G.Hordnyi,E.M.Rizmayer.Role of adsorption phenomena in the electrocatalytic reduction of nitric acid at a platinized platinum electrode.J.Electroanal.Chem.,1982,140:347-366.
    [257]E.V.Radkov,L.G Ljutov.Oscillations during electrolysis of alkaline iodide + iodate solutions.J.Electroanal.Chem.,1988,241:349-351.
    [258]A.Olexovi,L.Treindl.Electrochemical oscillations on the stationary mercury electrode in bromate solutions.Electrochim.Acta,1990,35:1095-1098.
    [259]H.Varela,K.Krischer.Nonlinear phenomena during electrochemical oxidation of hydrogen on platinum electrodes.Catalysis Today,2001,70:411-425.
    [260]A.C.Chen,B.Miller.Potential oscillations during the electrocatalytic oxidation of sulfide on a microstructured Ti/Ta_2O_5-IrO_2 electrode.J.Phys.Chem.B,2004,108:2245-2251.
    [261]H.Tributsch,T.Sakata,T.Kawai.Photoinduced layer phenomenon caused by iodine formation in MoSe_2:electrolyte(iodide)junctions.Electrochim.Acta,1981,26:21-31.
    [262]R.L.Van Meirhaeghe,F.Cardon,W.P.Gomes.Photocurrent oscillations at the n-GaAs/electrolyte interface.Electrochim.Acta,1979,24:1047-1049.
    [263]O.Nast,S.Rauscher,H.Jungblut.Micromorphology changes of silicon oxide on Si(111)during current oscillations:A comparative in situ AFM and FTIR study.J.Electroanal.Chem.,1998,442:169-174.
    [264]H.J.Lewerenz.Spatial and temporal oscillation at Si(111)electrodes in aqueous fluoride-containing.J.Phys.Chem.B,1997,101(14):2421-2425.
    [265]M.Iseki,M.Ikematsu,Y.Sugiyama.A new type of current oscillation in polypyrrole membranes produced by electrochemical potential control.J.Electroanal.Chem.,1995,386(1-2):253-256.
    [266]G.Neher,P.Ludwig,T.Helmut.Mixed-mode-oscillations,self-similarity,and time-transient chaotic behavior in the(photo-)electrochemical system p-CuInSe_2/H_2O_2.J.Phys.Chem.,1995,99:17763-17771.
    [267]R.Larter.Oscillations and spatial nonuniformities in membranes.Chem.Rev.,1990,90(2):355-381.
    [268]K.Arai,S.Fukuyama,F.Kusu.Role of a surfactant in the electrical potential oscillation across a liquid membrane.Electrochim.Acta,1995,40(15):2913-2920.
    [269]徐群杰,邓薰南.电沉积CulnSe_2上H_2O_2阴极还原时的电化学振荡.化学学报,1995,53:1076-1081.
    [270]贺占博,阎喜龙,聂玉敏等.新型液膜振荡器.物理化学学报,1999,4(4):370-374.
    [271]D.Sazou,M.Pagitsas.Non-linear dynamics of the passivity breakdown of iron in acidic solutions.Chaos Soliton.Fract.2003,17:505-522.
    [272]F.M.Abd El Wahab,M.G.A.Khedr,H.A.El Shayeb.Electrochemical behavior of iron-chrome alloys in relation to pitting corrosion.J.Mater.Sci.,1982,17:3401-3408.
    [273]M.R.F.Hurtado,P.T.A.Sumodju,A.V.Benedetti,Electrochemical studies with copper-based alloys.J.Electrochem.Soc.,1993,140:1567-1571.
    [274]W.Wilhelmsen,T.Arnesen,O.Hasvold,et ai.The electrochemical behavior of Al-In alloys in alkaline electrolytes.Electrochim.Acta,1991,36:79-85.
    [275]D.T.Bowlin,A.Scheeline,A.J.Pearlstein.Current oscillations in potentiostatic electro-oxidation of aluminum in phosphoric and sulfuric acids.Electrochim.Acta,1998,43:417-421.
    [276]T.J.Ming,N.X.Xu.The galvanostatic potential oscillations of mild steel in 93%sulfuric acid.Corros.Sci.,1993,34:915-920.
    [277]J.J.Podesta,R.C.V.Piatti,A.J.Arvia.Current oscillations in austenitic stainless steel induced by the presence of chloride ions.Corros.Sci.,1982,22:193-204.
    [278]石绍渊,吴金平,刘婧等.碳钢/H_3PO_4/Pt体系电流振荡现象研究.电化学,2001,7:302-309.
    [279]罗韦因,小仓兴太郎,中山雅晴.硫酸溶液中SUS304不锈钢旋转圆盘电极电流振荡现象的研究.中国腐蚀与防护学报,1998,18:155-160.
    [280]W.Lou,K.Ogura.Current oscillations observed on a stainless,steel,electrode,in sulfuric acid solutions with and without chromic acid.Electrochim.Acta,1995,40:667-672.
    [281]吴金平,石绍渊,林安等.碳钢阳极电溶解过程的电化学振荡现象.武汉大学学报(理学版),2001,47:402-406.
    [282]C.X.Xu,J.X.Su,X.H Xu,et al.Low temperature CO oxidation over unsupported nanoporous gold.J.Am.Chem.Soc.,2007,129:42-43.
    [283]H.J.Qiu,C.X.Xu,X.R.Huang,et al.Adsorption of laccase on the surface of nanoporous gold and the direct electron transfer between them.J.Phys.Chem.C,2008,112:14781-14785.
    [284]H.M.Yin,C.Q.Zhou,C.X.Xu,et al.Aerobic oxidation of d-Glucose on support-free nanoporous gold.J.Phys.Chem.C,2008,112:9673-9678.
    [285]H.J.Qiu,C.X.Xu,X.R.Huang,et al.Immobilization of laccase on nanoporous gold:Comparative studies on the immobilization strategies and the particle size effects.J.Phys.Chem.C,2009,113:2521-2525.
    [286]S.Chen,K.Kimura.Synthesis and characterization of carboxylate-modified gold nanoparticle powders dispersible in water.Langmuir,1999,15:1075-1082.
    [287]M.-C.Daniel,D.Astruc.Gold Nanoparticles:Assembly,Supramolecular Chemistry,Quantum-Size-Related Properties,and Applications toward Biology,Catalysis,and Nanotechnology.Chem.Rev.,2004,104:293-346.
    [288]M.E.Straumanis,M.Dutta.The divalency of tin ions formed during anodic dissolution and the behavior of the tin anode.Inorg.Chem.,1966,5:992-995.
    [289]Y.P.Chu,S.Chen,J.F.Zheng,et al.Elimination of oxidation and decomposition by SnCl_2 in the SERS study of pyridoxine on a roughened Au electrode.J.Raman Spectrosc,2009,40:229-233.
    [290]K.Sieradzki,N.Dimitrov,D.Movrin,et al.The dealloying critical potential.J.Electrochem.Soc,2002,149:B370-B377.
    [291]A.Dursun,D.V.Pugh,S.G.Corcoran.Probing the dealloying critical potential,morphological characterization and steady-state current behavior.J.Electrochem.Soc,2005,152:B65-B72.
    [292]B.W.Parks,J.D.Fritz,H.W.Pickering.The difference in the electrochemical behavior of the ordered and disordered phases of Cu_3Au.Scripta Metall.,1989,23:951-956.
    [293]L.D.Burke,M.E.G.Lyons,in:R.E.White,J.O'M.Bockris,B.E.Conway(Ed.),Modern Aspects of Electrochemistry,No.18,Plenum Press,New York,1986,Ch.4,p.169-248.
    [294]I.M.Cheremisina,E.V.Sobolev,G.D.Malchikov.Stretching vibrations of metal-ligand bonds in some platinum(Ⅱ)and platinum(Ⅳ)complexes.Zhurnal Strukrurnoi Khirnii,1974,15:443-449.
    [295]I.Kanesaka,T.Matsuda,Y.Morioka.Raman intensity of K_2MCl_6(M=Pt or Sn) by the modified many-body model.J.Raman Spectrosc,1995,26:239-242.
    [296]Y.Li,X.L.Zhang,R.Qiu,et al.Chemical synthesis and silica encapsulation of NiPt nanopaticles.J.Phys.Chem.C,2007,111:10747-10750.
    [297]K.-W.Park,J.-H.Choi,B.-K.Kwon,et al.Chemical and electronic effects of Ni in Pt/Ni and Pt/Ru/Ni alloy nanoparticles in methanol electrooxidation.J.Phys.Chem.B,2002,106:1869-1877.
    [298]K.-W.Park,J.-H.Choi,Y.-E.Sung.Structural,ehemical,and electronic properties of Pt/Ni thin film electrodes for methanol electrooxidation.J.Phys.Chem.B,2003,107:5851-5856.
    [299]M.Grde(?),L M.ukaszewski,G.Jerkiewicz,et al.Electrochemical behaviour of palladium electrode:Oxidation,electrodissolution and ionic adsorption.Electrochim.Acta,2008,53:7583-7598.
    [300]K.Gossner,E.Mizera.The anodic behavior of Pd electrodes in 1 M H_2SO_4.J.Electranal.Chem.,1981,125:347-358.
    [301]L.D.Burke,M.B.C.Roche.An electrochemical investigation of monolayer and multilayer oxide films on palladium in aqueous media.J.Electroanal.Chem.,1985,186:139-154.
    [302]L.D.Burke,J.K.Casey.An examination of the electrochemical behavior in acid.J.Electrochem.Soc.,1993,140:1284-1291.
    [303]L.D.Burke,J.K.Casey.An examination of the electrochemical behavior in base.J.Electrochem.Soc.,1993,140:1292-1298.
    [304]L.D.Burke,D.T.Buckley.Anomalous oxidation reactions at noble metal surfaces at low potentials.J.Electrochem.Soc,1996,143:845-854.
    [305]C.C.Hu,T.C.Wen.Voltammetric investigation of palladium oxides I.Their formation reduction in NaOH.Electrochim.Acta,1995,40:495-503.
    [306]C.C.Hu,T.C.Wen.Voltammetric investigation of palladium oxides Ⅱ.Their formation reduction behaviour during glucose oxidation in NaOH.Electrochim.Acta,1994,39:2763-2771.
    [307]C.C.Hu,T.C.Wen.Voltammetric investigation of palladium oxides HI Effects of hydration and pH on the electrocatalytic properties of Pd(Ⅳ)/Pd(Ⅱ)and the reduction behaviour of palladous oxide.Electrochim.Acta,1996,41:1505-1514.
    [308]J.F.Llopis,J.M.Gamboa,L.Victori.Radiochemical study of the anodic behavior of palladium.Electrochim.Acta,1972,17:2225-2230.
    [309]K.S.Kim,A.F.Gossmann,N.Winograd.X-Ray photoelectron spectroccopic studies of palladium oxides and the palladium-oxygen electrode.Anal.Chem.,1974,46:197-200.
    [310]M.Peuchert.XPS study on surface and bulk palladium oxide,its thermal stability,and a comparison with other noble metal oxides.J.Phys.Chem.,1985,89:2481-2486.
    [311]V.Chausse,P.Regull,L.Victori.Formation of a higher palladium in the oxygen evolution potential range.J.Electroanal.Chem.,1987,238:115-128.
    [312]A.E.Bolzan,J.O.Zerbino,E.Macchi,et al.Ellipsometry and electron diffraction study of anodically formed Pd oxide layers.Thin Solid films,1993,233:77-81.
    [313]V.I.Birss,V.H.Beck,A.J.Zhang,et al.Properties of thin,hydrous Pd oxide films.J.Electroanal.Chem.,1997,429:175-184.
    [314]V.I.Birss,S.C.Thomas,A.J.Zhang.Electrochemical and transmission electron microscopic characterization of metal oxide films.Electrochim.Acta,1995,40:1551-1560.
    [315]V.I.Birss,M.Chan,T.Phan,et al.An electrochemical study of the composition of thin,compact Pd oxide films.J.Chem.Soc.Faraday Trans.,1996,92:4041-4047.
    [316]M.Grde(?),J.Kotowski,A.Czerwinski.The study of electrochemical palladium behavior using the quartz crystal microbalance Ⅱ.Basic solutions.J.Solid State Electrochem.,2000,4:273-278.
    [317]K.Juodkazis,J.Juodkazyte,B.Sebeka,et al.Anodic dissolution of palladium in sulfuric acid:An electrochemical quartz crystal microbalance study.Russ.J.Electrochem.,2003,39:954-959.
    [318]A.J.Zhang,V.I.Birss,P.Vanysek.Impedance characterization of thin electrochemically formed palladium oxide films.J.Electroanal.Chem.,1994,378:63-76.
    [319]J.A.Harrison,T.A.Whitfield.The dissolution of palladium in various electrolytes.Electrochim.Acta,1983,28:1229-1236.
    [320]J.Genesca,L.Victori.The Electrodissolution Kinetics of Palladium.Platinum Metals Rev.,1986,30:80-83.
    [321]J.Genesca,R.Duran.The effect of Cl~-on the kinetics of the anodic dissolution of Pd in H_2SO_4 solutions.Electrochim.Acta,1987,32:541-544.
    [322]M.W.Breiter.Dissolution and adsorption of hydrogen at smooth Pd wires at potentials of the alpha phase in sulfuric acid solution J.Electroanal.Chem.,1977,81:275-284.
    [323]C.C.Hu,T.C.Wen.Voltammetric investigation of hydrogen sorption/desorption at/within oxide-derived Pd electrodes in NaOH and H_2SO_4.J.Electrochem.Soc,1994,141:2996-3001.
    [324]P.L.Goggin,J.Mink.Vibrational spectra of square-planar tatrahalogeno-gold(Ⅲ),-palladium-(Ⅱ),and-platinum(Ⅱ)anions in solution.J.Chem.Soc.Dalton Trans.,1974,1479-1483.
    [325]M.Debeau,H.Poulet.Analyse vibrationnelle de complexes hexahalog(?)n(?)s(?)l'(?)tat cristallis(?).Spectrochim.Acta,1969,25A:1553-1562.
    [326]R.Woods.Electrolytic co-deposisited palladium-gold electrodes:effect of potential cycles on surface properties.Electrochim.Acta,1969,14:632-635.
    [327]K.Gossner,E.Mizera.The anodic oxidation of gold + palladium alloys.J.Electroanal.Chem.,1982,140:47-56.
    [328]M.Lukaszewski,A.Czerwinski.Electrochemical behavior of palladium-gold alloys.Electrochim.Acta,2003,48:2435-2445.
    [329]A.M.Michaels,J.Jiang,L.Brus.Ag nanocrystal junctions as the site for surface-enhanced Raman scattering of single rhodamine 6G molecules.J.Phys.Chem.B,2000,104:11965-11971.
    [330]H.X.Xu,E.J.Bjerneld,M.K(a|¨)ll,et al.Spectroscopy of single Hemoglobin molecules by surface enhanced Raman scattering.Phys.Rev.Lett.,1999,83:4357-4360.
    [331]J.S.Gao,Z.Q.Tian.Surface enhanced Raman scattering of pyridine at copper electrodes excited with a 514.5 nm line.Chem.Phys.Lett.,1996,262:151-154.
    [332]E.S.Hedges.Periodic phenomena at anodes of copper and silver.J.Chem.Soc.,1926,1533-1546.
    [333]E.S.Hedges.An enquiry into the cause of periodic phenomena in electrolysis.J.Chem.Soc.,1929,1028-1038.
    [334]H.Lai,H.R.Thirsk.The anodic behaviour of copper in neutral and alkaline chloride solutions.J.Chem.Soc,1953,2638-2644.
    [335]Z.H.Gu,J.Chen,T.Z.Fahidy.The oscillatory behavior of anodic copper dissolution into a NaCl/KSCN electrolyte.Electrochim.Acta,1992,37:2637-2644.
    [336]Z.H.Gu,A.Olivier,T.Z.Fahidy.The effect of magnetic fields on the anodic dissolution of copper in NaCl-KSCN electrolytes.Electrochim.Acta,1990,35:933-943.
    [337]Z.H.Gu,S.J.Xia,T.Z.Fahidy.Comparison of dynamic behaviorour of the anodic dissolution of copper in aqueous chloride and bromide solutions.Electrochim.Acta,1996,41:2045-2054.
    [338]Q.Z.Cui,H.D.Dewald.Current oscillations in anodic electrodissolution of copper in lithium-ion battery electrolyte.Electrochim.Acta,2005,50:2423-2429.
    [339]H.D.Dewald,P.Parmananda,R.W.Rollins.Periodic current oscillations in the anodic dissolution of copper in acetate buffer.J.Electroanal.Chem.,1991,306:297-300.
    [340]F.N.Albahadily,M.Schell.An experimental investigation of periodic and chaotic electrochemical oscillations in the anodic dissolution of copper in phosphoric acid.J.Chem.Phys.,1988,88:4312-4319.
    [341]L.T.Tsitsopoulos,T.T.Tsotsis,I.A.Webster.An ellipsometric investigation of reaction rate oscillations during the electrochemical anodization of Cu in H_3PO_4solutions:Some preliminary results.Surf.Sci.,1987,191:225-238.
    [342]李学良,束志恒,朱云贵.磷酸溶液中铜阳极溶解的电流混沌振荡行为.合肥工业大学学报,2001,4:482-485.
    [343]L.T.Tsitsopoulos,I.A.Webster,T.T.Tsotsis.Reaction rate oscillations during the electrochemical anodization of Cu in H_3PO_4 solutions.XPS and SEM studies.Surf.Sci.,1989,220:391-406.
    [344]I.Z.Kiss,V.Gaspar,L.Nyikos.Controlling electrochemical chaos in the copper-phosphoric acid system.J.Phys.Chem.A,1997,101:8668-8674
    [345]A.L.Kawczy(?)ski,M.Przasnyski,B.Baranowski.Chaotic and periodic current oscillations at constant voltage conditions in the system Cu(s)/CuSO_4 + H_2SO_4(aq)/Cu(s).J.Electroanal.Chem.,1984,179:285-288.
    [346]J.B.He,D.Y.Lu,G.P.Jin.Potential dependence of cuprous/cupric duplex film growth on copper electrode in alkaline media.Appl.Surf.Sci.,2006,253:689-697.
    [347]何建波,李学良,林建新.铜在浓碱溶液中的阳极钝化膜.中国有色金属学报,1997,7:45-49.
    [348]何建波,林建新.铜在碱性溶液中阳极过程的研究.高等学校化学学报, 1996,17:290-293.
    [349]M.N.Hull,J.E.Ellison,J.E.Toni.The anodic behavior of zinc electrodes in potassium hydroxide electrolytes.J.Electrochem.Soc.,1970,117:192-195.
    [350]M.N.Hull,J.E.Toni.Formation and reduction of films on amalgamated and non-amalgamated zinc electrodes in alkaline solutions.Trans.Faraday Soc.,1971,67:1125-1136.
    [351]M.C.H.McKubre,D.D.Macdonald.The dissolution and passivation of zinc in concentrated aqueous hydroxide.J.Electrochem.Soc.,198 l,128:524-530.
    [352]E.Frackowiak,M.Kiciak.Application of the rotating disk electrode for the investigation of polycrystalline zinc in concentrated alkaline solutions with admixture of polyethylene glycol.Electrochim.Acta,1988,33:441-443.
    [353]T.P.Hoar,J.A.S.Mowat.Mechanism of Electropolishing.Nature,1950,165:64-65.
    [354]B.Li,O.Vittori.(?)tude des courants p(?)riodiques observes Iors de la dissolution (?)lectrochimique du nickel en presence d'ions iodure et chlorure en milieu aqueux.Can.J.Chem.,1988,66:1525-1528.
    [355]崔海涛,陈慎豪,赵世勇.氯离子诱导的镍在硝酸溶液中的电流振荡.山东大学学报,2002,37:149-152.
    [356]O.Lev,A.Wolffberg,L.M.Sheintuch,et al.Bifurcations to periodic and chaotic motions in anodic nickel dissolution.Chem.Eng.Sci.,1988,43:1339-1353.
    [357]O.Lev,M.Scheintuch,H.Yamitsky,et al.Spatial current distribution during Ni anodic dissolution in sulfuric acid.Chem.Eng.Sci.,1990,45:839-847.
    [358]O.Lev,A.Wolffberg,L.M.Pismen,et al.The structure of complex behaviors in anodic Ni dissolution.J.Phys.Chem.,1989,93:1661 - 1666.
    [359]F.Berthier,J.P.Diard,B.L.Gorrec,et al.Study of the forced Ni|1M H_2SO_4oscillator.J.Electroanal.Chem.,2004,572:267-281.
    [360]J.Osterwald,H.G.Feller.Periodic phenomena at a nickel electrode in sulfuric acid.J.Electrochem.Soc.,1960,107:473-474.
    [361]D.Haim,O.Lev,L.M.Pismen.Modelling spatiotemporal patterns in anodic nickel dissolution.Chem.Eng.Sci.,1992,47:3907-3913.
    [362]M.R.F.Hurtado,P.T.A.Sumodjo,A.V.Benedetti.Electrochemical studies with copper-based alloys.Open circuit potential oscillations in alkaline media.J.Electrochem.Sot.,1993,140:1567-1571.
    [363]R.A.Osteryoung,F.C.Anson.Behavior of the iodide-iodine couple at platinum electrodes.Anal.Chem.,1964,36:975-980.
    [364]A.T.Hubbard,R.A.Osteryoung,F.C.Anson.Further study of the iodide-iodine couple at platinum electrodes by thin layer electrochemistry.Anal.Chem.,1966,38:692-697.
    [365]R.F.Lane,A.T.Hubbard.Electrochemistry of chemisorbed molecules.Ⅲ.Determination of the oxidation state of halides chemisorbed on platinum.Reactivity and catalytic properties of adsorbed species.J.Phys.Chem.,1975,79:808-815.
    [366]T.Bejerano,E.Gileadi.Formation of thick layers of iodine during the anodic oxidation of iodide on a RDE Part I.The precipitation-dissolution mechanism.J.Eletroanal.Chem.,1977,82:209-220.
    [367]T.Bejerano,E.Gileadi.Formation of thick layers of iodine during the anodic oxidation of iodide on a RDE.J.Eletrochem.Soc,1977,124:1720-1723.
    [368]S.Swathirajan,S.Brucheustein.Ring-disk electrode studies of the formation,growth and transformation.J.Electroanal.Chem.,1980,112:25-38.
    [369]S.Swathirajan,S.Brucheustein.The anodic behavior of iodide at platinum in the presence of an iodine film under potentiostatic steady-state and hydrodynamic modulation conditions.J.Electroanal.Chem.,1983,143:167-178.
    [370]X.Liao,K.Tanno,F.Kurosawa.Rotating-disc electrode studies of the anodic oxidation of iodide in concentrated iodine + iodide solutions.J.Electroanal.Chem.,1988,239:149-159.
    [371]H.Tributsch,T.Sakata,T.Kawai.Photoinduced layer phenomenon caused by iodine formation in MoSe_2 electrolyte(iodide)junctions.Electrochim.Acta,1981,26:21-31.
    [372]L.Ma,J.E.Vitt.Current sscillations during iodide oxidation at a gold rotating disk electrode.J.Electrochem.Soc.,1999,146:4152-4157.
    [373]J.E.Vitt,L.Ma,D.C.Johnson.Rotating ring-disk study of the oscillating electrochemical reaction of iodide at gold.J.Electroanal.Chem.,2000,492:70-73.
    [374]Y.A.Yaraliyev.Oxidation of iodide ions by means of cyclic voltammetry.Electrochim.Acta,1984,29:1213-1214.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700