用户名: 密码: 验证码:
涡旋波流动特性及过程强化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文借助Dantec FlowMap500 DPIV系统,对不同结构槽道内的涡旋波流动时空特性进行了实验研究。基于计算流体动力学对多种结构参数的槽道在多种操作参数条件下所形成的涡旋波流场进行了数值计算。对涡旋波膜生物反应器中氧体积传质系数及模拟废水COD降解状况进行了实验研究。研究的主要内容和成果如下:
     (1)从涡旋波流场PIV实验测试和数值模拟两方面入手,分析了涡旋波流动与卡门涡街的异同,定量地分析了槽道结构参数(槽道高度、宽度、扩张角度、扩张比例、折流间距等)和操作参数(St、Re、三种入流形式等)对涡旋波的流动形式、涡量、剪切力等的影响,给出了由于旋涡的产生、发展和消失的变化过程导致槽道壁面区域和中心区域流体对流混合的加剧程度,找出了涡旋波流动引起过程强化的根本原因。
     (2)根据边界层理论,分析了涡旋波流场中旋涡产生发展的机理,得到如下结论:流场中第一个旋涡的产生是由于槽道截面突扩致使流体产生了逆压梯度,后续的旋涡是由于入流减速阶段流体产生了逆压梯度而造成的,最后一个旋涡是由于面向来流的槽道壁面阻止了流体的流动致使流体产生了逆压梯度而造成的。
     (3)利用涡旋波流动的特点,设计了废水处理涡旋波膜生物反应器实验装置。以清水为介质进行了冷模实验,并以人工合成废水进行了活性污泥降解实验。实验结果表明:膜生物反应器中涡旋波流动与稳态流动相比,氧传递系数k_Lα值的增幅范围为8.8%~107.7%,COD去除率从77%提高到97%,表明涡旋波流动对强化传质和反应过程具有明显的效果。正交试验直观分析和方差分析结果表明,Re对试验指标k_Lα和COD去除率影响最大。本文也分析了Re、跨膜压差TMP、通气量Q_G和折流间距l等参数对k_Lα和COD去除率的影响。实验具有较好的重复性。
     (4)在实验研究的基础上,建立了底物降解一级反应动力学模型:C=C_0exp(—K_1t)。在COD的降解过程中,HRT=4.5h,达到排放标准。本文也研究了不同入口COD浓度、不同Re、TMP和Q_G下COD降解特性,通过实验数据的回归分析,得出了模型参数C_0和K_1。
     本文对涡旋波流动特性进行的理论研究、实验测试分析和模拟计算,以及涡旋波流动对膜生物反应器的传质和反应过程强化的实验研究,为涡旋波流动的理论研究和实际应用奠定了基础。
It has been received much attention that the mass,momentum and heat transfer can be produced by unsteady flows in a channel during the past few decades because of their usages in chemical,biochemical and medical engineering.As the study of fluid mechanics has evolved from steady state investigations towards the reality of unsteady phenomena,it has become increasingly clear that instantaneous whole field non-intrusive flow measurement techniques are required.Vortex Wave Membrane Bioreactor(VWMBR) combines vortex wave flow with membrane aerated bioreactor for wastewater treatment,by which mass transfer is enhanced by the action of forced convective.Compared to traditional methods of enhancing mass transfer by using turbulent flow,the shearing stress and the power dissipation in VWMBR are rather lower.VWMBR increases survival rate of microorganism cells and can also solve some problems such as clogging and concentration polarization in the traditional MBR.The understanding of spatio-temporal characteristics of the fluid flow and the performance of the VWMBR are of great practical importance.
     To characterize the flow instability,digital particle image velocimetry(DPIV) (FlowMap500 from Dantec Inc.) is used to measure the near-instantaneous flow fields in 5 different channels with different structure respectively.To improve our understanding on the mixing processes,fluid flow in 2D asymmetric channels with different structure or different operating parameters are investigated via Computational Fluid Dynamics simulations.In this paper,performance of the VWMBR,such as volumetric oxygen transfer coefficient and the removal rates of COD,is investigated for artificial wastewater treatment.The main contributions of the study are included as follows:
     (1) System study shows that the flow regime is different from Karman Vortex Street. And quantitative analysis reveals the influence of geometric parameters(such as the channel height,width,transition angle,expand ratio,deflector distance) and operating parameters(St, Re,inlet velocity) on the size of vortex wave,the vorticity and the stress.The radical reason of mass transfer enhancement lies in the adequately convective mixture of the fluid particles in the central region and near the channel wall during vortices motions.
     (2) Quantitative analysis on mechanism of the vortices formation and motion based on boundary-layer theory indicates that the geneses of the vortices are different.The first and the last vortices are formed owing to the adverse pressure gradient caused by the channel enlargement and contraction in section,respectively.And the others were induced by the adverse pressure gradient attributed to inlet flow deceleration.
     (3) A set of experimental equipment of VWMBR in batch mode is established.The mass transfer experiments of water and wastewater are carded out for different channel structures. Results of synthesis wastewater treatment are evaluated by Chemical Oxygen Demand(COD) of influent and effluent.The comparison study of the k_La and COD removal rates shows that vortex wave can enhance convective mixing.The result of water experiment is consistent with that of wastewater treatment.Through orthogonal experiments,the factors affecting k_La and COD removal rates,such as Re,Tran-Membrane Pressure(TMP) and ventilation volumeQ_G were studied.The results showed that Re had strong effect on k_La and COD removal rates. The effects of four operation factors(Re,TMP,Q_G and deflector distance) on kLa and COD removal rates are investigated.The results show that the system is good for repetitiveness.
     (4) VWMBR can be treated as a batch continuous stirred tank reactor with the vortex wave flow regime.Based on the analysis of the laws of conservation of mass,the degradation is shown to follow a pseudo-first order reaction:C=C_0exp(-K_1t)。The water quality of the effluent could close to the national first discharge standard 100mg/L during experiment of 3h, and meet the standard after 4.5h.Using linear regressive analysis,approximate formulas are obtained which could be used to determine C_0 and K_1.
     This work presents quantitatively studies for the hydrodynamics and mass transfer characteristic of the vortex wave with low Reynolds number.It provides experimental and design foundation for further study and industrialization of the VWMBR.
引文
[1]郑洽馀,鲁钟琪主编.流体力学[M].北京:机械工业出版社.
    [2]吴望一.流体力学[M].第1版.北京:北京大学出版社,1982:205-207.
    [3]严宗毅.低雷诺数流理论[M].北京:北京大学出版社,2002.
    [4]李家春.低雷诺数流理论[J].力学与实践,2002,(04)
    [5]Sobey I J.Observation of waves during oscillatory channel flow[J].J Fluid Mech,1985,151(247):395-426.
    [6]姜任秋.热传导、质扩散与动量传递中的瞬态冲击效应[M].北京:科学出版社,第一版,1997.
    [7]童秉纲,张炳暄,崔尔杰.非定常流与涡运动[M].第1版.北京:国防工业出版社,1993:7-8.
    [8]童秉纲,尹协远,朱克勤.涡运动理论[M].第1版.合肥:中国科学技术大学出版社,1994:3-7.
    [9]陈佐一.振荡流体力学[M].北京:水利电力出版社,1988:3.
    [10]Fabiyi M E,Skelton R L.The application of oscillatory flow mixing to photocatalytic wet oxidation[J].Journal of Photochemistry and Photobiology A:Chemistry,1999,129:17-24.
    [11]孙文策.工程流体力学[M].大连:大连理工大学出版社,1995.
    [12]Bellhouse B J,Bellhouse F H,Curl C M,etal.A high efficiency membrane oxygenator and pulsatile pumping system and its application to animal trials [J].TASAIO,1973,19:77-79.
    [13]Sobey I J.Inviscid secondary motions in a tube of slowly varying ellipticity[J].Fluid Mech,1976,73:621-639.
    [14]Sobey I J.Laminar boundary-layer flow past a two-dimensional slot[J].Fluid Mech,1977,83:33-47.
    [15]Sobey I J.On flow through furrowed channels,Part I Calculated flow patterns[J]Fluid Mech,1980,96:1-26.
    [16]Stephanoff K D,Sobey I J,Bellhouse B J.On flow through furrowed channels,Part 2Observed flow patterns[J].Fluid Mech,1980,96:27-32.
    [17]Sobey I J.Oscillatory flows at intermediate Strouhal number in asymmetric channels [J].Fluid Mech,1982,125:359-373.
    [18]Ralph M E.Oscillatory flows in wavy-walled tubes[J].Fluid Mech,1986,168:515-540.
    [19]Sobey I J.The occurrence of separation in oscillatory flow[J].Fluid Mech,1983,134:247-257.
    [20]Bertram C D.Two modes of instability in a thick-walled collapsible tube conveying a flow[J].Biomech,1982,15:223-224.
    [21]Bertram C D,Pedley T J.Steady and unsteady separation in an approximately two-dimensional indented channel[J].Fluid Mech,1983,130:315-345.
    [22]Bogdanova E V,Ryzhov 0 S.Free and induced oscillations in Poiseuille flow [J].Q J Mech Appl Maths,1983,36:271-287.
    [23]Stephanoff K D,Pedley T J,Lawrence C J,Secomb T W.Fluid flow along a channel with an asymmetric oscillating constriction [J].Nature,1983,305:692-695.
    [24]Pedley T J.Stephanoff K D.Flow along a channel with a time-dependent indentation in one wall:the generation of vorticity waves [J].Fluid Mech,1985,160:337-367.
    [25]Sobey I J.Dispersion caused by separation during oscillatory flow through a furrowed channel [J].Chem.Eng.Sci.,1985,40:2129-2134.
    [26]Smith F T.Flow through constricted or dilated pipes and channels:Partl [J].Q J Mech Apple Maths.1976,29:343-364.
    [27]Smith F T.Flow through constricted or dilated pipes and channels:Part2 [J].Q J Mech Apple Maths.1976,29:365-376.
    [28]Simth F T,Duck P.On the severe non-symmetric constriction,curving or cornering of channel flows [J].J.Fluid Mech,1980,98:727-753.
    [29]Ralph M E,Pedley T J.Flow in a channel with a moving indentation [J].J.Fluid Mech,1988,190:87-112.
    [30]Deblois B M,Sobey I J,Alan S.Characteristics of the vortex wave [J].J.Fluid Mech,1993,253:27-43.
    [31]Bellhouse B J,Lewis R W H.A high efficiency membrane separator for donor plasmapheresis [J].Trans.Am.Soc.Artificial Internal Organs.Bioseparation,1988,34:747-758.
    [32]Bellhouse B J,Sobey I J,Alani S,Deblois B M.Enhanced filtration using flat membranes and standing vortex waves [J].Bioseparation,1994,4:127-138.
    [33]Millward H R,Bellhouse B J,Sobey I J,Lewis R W H.Enhancement of plasma filtration using the concept of the vortex wave [J].J.Mem.Sci.1995,100:121-129.
    [34]Millward H R,Bellhouse B J,Sobey I J.The vortex wave membrane bioreactor:hydrodynamics and mass transfer [J].The Biochemical Engineering Journal,1996,62:175-181.
    [35]Sobey I J,Millward H R,Bellhouse B J.The vortex wave membrane bioreactor:hydrodynamics and mass transfer [J].Chemical Engineering,1996,62(3):175-181.
    [36]Hwu T H,Sobey I J,Bellhouse B J.Observation of concentration dispersion in unsteady deflected flows [J].Chemical Engineering,1996,51(13):3373-3390.
    [37]Hwu T H,Sobey I J.Bellhouse B J.Simulation of concentration dispersion in unsteady deflected flows [J].Chemical Engineering,1997,52(19):3233-3242.
    [38]Eaton J K,Johnston J P.Turbulent flow reattachment:An experimental study of the flow and structure behind a backward facing step [J].Report MD-39,1980,Thermo sciences Division,Department of Mechanical Engineering,Stanford University.
    [39]Lee I,Sung H J.Characteristics of wall pressure fluctuations in separated flows over a backward-facing step:Part I.Time-mean statistics and cross-spectral analyses [J].Exp.Fluids,2001,30:262-272.
    [40]Chun S J,Liu Y Z,Sung H J.Wall pressure fluctuations of a turbulent separated and reattaching flow affected by an unsteady wake[J].Exp.Fluids,2004,37:531-546.
    [41]马广云.应用PIV研究二维后台阶起动涡流动结构特性[J].航空学报,1996,17(3):257-264.
    [42]Stuer H,Gyr A,Kinzelbach W.Laminar separation on a forward facing step[J].Eur.J.Mech.B/Fluids,1999,18:675-692.
    [43]Abu-Mulaweh H I,Armaly B F,Chen T S.Measurement of laminar mixed convection flow over a horizontal forward-facing step[J].Thermophys Heat Trans,1993,(7):569-573.
    [44]Wang Y X,Gaster M.Effect of surface steps on boundary layer transition[J].Exp Fluids,2005,39:679-686.
    [45]Ravindran S S.Control of flow separation over a forward-facing step by model reduction [J].Comput.Methods Appl.Mech.Engrg.,2002,191:4599-4617.
    [46]Panigrahi P K,Achroder A,Kompenhans J.PIV investigation of flow behind surface mounted permeable ribs[J].Exp.Fluids,2006,40:277-300.
    [47]Islam M S,Haga K,Kaminaga Met al..Experimental analysis of turbulent flow structure in a fully developed rib-roughened rectangular channel with PIV[J].Exp.Fluids,2002,33:296-306.
    [48]Wilhelm D,Kleiser L.Application of a spectral element method to two-dimensional forward-facing step flow[J].J.Sci.Comput.,2002,17:619-627.
    [49]Abu-Mulaweh H.I..Turbulent mixed convection flow over a forward-facing step-the effect of step heights[J].Int.J.Thermal Sci.,2005,44:155-162.
    [50]Chung Y M,Tucker P G.Assessment of periodic flow assumption for unsteady heat transfer in grooved channels[J].Trans.ASME.J.Heat Transfer,2004,126:1044-1047.
    [51]杨祖清.流动显示技术[M].第1版.北京:国防工业出版社,2002.
    [52]盛森芝,徐月亭,袁辉靖.近十年来流动测量技术的新进展[J].力学与实践,2002,24(5):1-14.
    [53]W.梅尔兹科奇.流动显示[M].第1版.北京:科学工业出版社,1991:42-43.
    [54]戴吕晖等编.流体流动测量[M].北京:航空出版社,1991.
    [55]盛森芝,沈熊,舒玮.流速测量技术[hI].北京:北京大学出版社,1987.
    [56]范杰川.流动显示与测量[M].机械工业出版社,1997,296-333.
    [57]中国人民解放军总装备部.流动显示技术[M].北京.国防工业出版社,2002.
    [58]Grant I,Smith G H.Modern developments in Particle image velocimetry[J].Optics and Lasers in Engineering,1988(9):245-264.
    [59]Westeiweel J.Fundamentals of digital particle image velocimetry[J].Measurement Science and Tecnnology,1997,8(12):1370-1392.
    [60]Funes-Gallanzi M.High accuracy measurement of unsteady flows using digital particle image velocimetry[J].1998,30:349-359.
    [61]孙鹤泉,康海贵,李广伟.PIV的原理与应用[J].水道港口,2002,23(1):42-45.
    [62]康琦,申功新.全场流速技术进展[J].力学进展,1997,27(1):106-121.
    [63]Adrian R J.Particle-imaging techniques for experimental fluid mechanics[J].Annual Review of Fluid Mechanics,1991,23:261-304.
    [64]Dudderar T D,Meynart R,SimPkins PG.Full-field laser metrology for fluid velocity measurement[J].Optics and Lasers in Engineering,1988,9:163-199.
    [65]Okamoto K,Hassan Y A,Sehlnidl W D.A New Tracking Algorithm for Particle Image Velocimetry[J].Experiments in Fluids,1995,19:342-347.
    [66]Mulder M著,李琳译.膜技术基本原理[M].第二版.北京:清华大学出版社,1997.
    [67]VisvanathanC,AimRB,ParameshwaranK.Membrane separation bioreactors for wastewater reatment[J].Critical Reviewsin Enironmental Science and Technology,2000,30(1):1-48.
    [68]任建新.膜分离技术及其应用[M].北京:化学工业出版社.第一版,2003.
    [69]王学松.膜分离技术及其应用[M].北京:科学出版社,1994.
    [70]J A Dietrich.Membrane technology comes of age[J].Pollut.Eng.,1995,27(7):20-25.
    [71]李春杰,顾国维.膜生物反应器的研究进展[J].污染防治技术,1999,12(1):51-54.
    [72]R J Clarke,D J.Kane Optical detection of membrane dipole potential:avoidance of fluidity and dye-induced effects[J].Biochimica et Biophysica Acta(BBA) -Biomembranes,1997,1323(2):223-239.
    [73]顾国维,何义亮.膜生物反应器一在污水处理中的研究和应用[M].北京:化学工业出版社,2002.
    [74]Stephenson T.Types of membrane bioreactors for wastewater treatment -Anintroduction [C].Proceedings of the 1st International Meeting on Membrane Bioreactors for Wastewater Treatment,Cranfield University,Cranfild,UK,1997.
    [75]Stephenson T,JuddS,Jefferson B,et.al.Membrane bioreactors for wastewater treatment[M].London:IWA Publishing,2000.59-111.
    [76]斯蒂芬森(Stephenson T.)等著;张树国等译.膜生物反应器污水处理技术[M].北京:化学工业出版社,2003.4.
    [77]Yasumoto Magara et al.Advanced membrane technology for application to water treatment [J].Wat.Sci.Tech.,1998,37(10):91-99.
    [78]吕炳南,陈志强.污水生物处理新技术[M].哈尔滨:哈尔滨工业大学出版社,2005.2.
    [79]魏源送,郑祥,刘俊新.国外膜生物反应器在污水处理中的研究进展[J].工业水处理23(1):1-7.
    [80]刘雨,赵庆良.生物膜法污水处理技术[M].北京:中国建筑工业出版社,2000.
    [81]魏源送,郑祥,刘俊新.国外膜生物反应器在污水处理中的研究进展[J].工业水处理,2003,23:1-7.
    [82]Schaffer R B,Ludzack F Y,Ettinger M B.Sewage treatment by oxygenation through permeable plastic films[J].Wat Pollut Contr Fed.1960,32(9):939-941.
    [83]Yasuda H,Lamaz E C E.Transfer of gas to dissolved oxygen in water via porous and nonporous polymer membrane[J].Appl Polym Sci.1972,16:595-601.
    [84]Cote P,Bersillon J L,Faup G.Bubble-free aeration using membranes:Process analysis [J].Wat Pollut Contr Fed.1988,60(11):1986-1992.
    [85]Cote P,Bersillon J L,Huyard A.Bubble-free aeration using membranes:Mass transfer analysis.Journal of Membrane Science[J].1989,47(1-2):91-106.
    [86]Shigeyuki Uemiya,Noboru Sato,Hiroshi Ando,et al.Steam reforming of methane in a hydrogen-permeable membrane reactor[J].Applied Catalysis,1990,67(1):223-230.
    [87]Hirasa O,Ichijo H,Yamauchi A.Preparation of new support for immobilization of activated sludge[J].Ferm Bioeng.1991,71(5):376-378.
    [88]Yeh S J,Jenkins C R.Pure oxygen fixed film reactor[J].Journal of Environmental Engineering.1978,104(4):611-623.
    [89]Vick Roy T B,Blanch H W,Wilke C R.Microbial hollow fiber bioreactors[J].Trends of biotechnology.1983,1(4):135-139.
    [90]Yamagiwa K,Ohkawa A,Hirasa O.Simultaneous organic removal and nitrification by biofilm formed on oxygen enrichment membrane[J].Chem Eng Jpn.1994,27(5):638-643.
    [91]Yamagiwa K,Yoshida M Iet al.A new oxygen supply method for simultaneous organic carbon removal and nitrification by a one-stage biofilm process[J].Water Science and Technology.1998,37(4-5):117-124.
    [92]Hibiya K,Terada A,Tsuneda Set al.Simultaneous nitrification and denitrification by controlling vertical and horizontal microenviroment in a membrane-aerated biofilm reactor[J].Journal of 8iotechnology.2003,100(1):23-32.
    [93]Satoh H,Ono H,Rulin Bet al.Macroscale and microscale analyses of nitrification and denitrification in biofilms attached on membrane aerated biofilm reactors[J].Water Research.2004,38(6):1633-1641.
    [94]Cole A C,Semens M J,LaPara T M.Stratification of activity and bacterial community structure in biofilms grown on membranes transferring oxygen[J].Appl Enviro Microbiol,2004,70(4):1982-1989.
    [95]LaPara T M,Cole A C,Shanahan J W et al.The effects of organic carbon,ammoniacal-nitrogen,and oxygen partial pressure on the stratification of membrane-afeared biofilms[J].Journal of Industrial Microbiology and Biotechnology,2006,33(4):315-323.
    [96]许振良.膜法水处理技术[M].北京:化学工业出版社,2001.5.
    [97]Kennedy T J,Merson R L,McCoy 8 J.Improving permeation flux by pulsed reverse osmosis [J].Chem.Eng.Sci.1974,29(9):1927-1931.
    [98]Bauser H,et al.Interfacial effects with microfiltration tubes [J].Membrane Digest,1972,1:71-102.
    [99]Jaffrin M Y,Ding L H,Laurent M J.Kinetics of concentration-polarization formation in crossflow filtration of plasma from blood:experimental results [J],J.Mem.Sci.,1992,7(3):267-275.
    [100]Gupta B B,Blanpain P,Jaffrin M Y.Permeate flux enhancement by pressure and flow pulsations in microfiltration with mineral membranes [J].J.Mem.Sci.1992,70(2-3):257-266.
    [101]Rodgers V.G.J.,Sparks R.E.Effects of solution properties on polarization redevelopment and flux in pressure pulsed ultrafiltration [J].J.Mem.Sci.1993,78,(1-2):163-180.
    [102]Spiazzi E,Lenoir J,Grangeon A.A new generator of unsteady-state flow regime in tubular membranes as an anti-fouling technique:A hydrodynamic approach [J].J.Mem.Sci.,1993,80(1-2):49-57.
    [103]Murase J.High speed microfiltration using a rotating cylindrical ceramic membrane,Int [J].Chem.Eng.1991,31(2):370-376.
    [104]杨柳,陈文梅等.旋转动态膜分离技术的研究与应用进展[J].流体机械,1999,27(9):29-33.
    [105]Kronker K H et al.Improved dynamic filtration of microbial suspensions [J].Bio.Tech.,1987,5:921-926.
    [106]Jeffree M A,et al.Gellayer limited microfiltration rates can be increased by vortex mixing,Clin Exp [J].Dias.Aphasics,1981,5:373-380.
    [107]Winzeler H B,Belfort G.Enhanced performance for pressure-driven membrane processes.The argument for fluid instability [J].Mem.Sci.,1993,80:35-47.
    [108]Millward H R,et al.Screw-thread flow promotes an experimental study of ultrafiltration and Microfiltration performance [J].Mem.Sci.,1995,106:269-279.
    [109]Kroner K H,Nissinen V.Dynamic filtration of microbial suspensions using an axially rotating filter [J].J.Mem.Sci.,1988,36:85-100.
    [110]Brewster E,Chung K Y,Belfort G.Dean vortices with wall flux in a curved channel membrane system:1.A new approach to membrane module design [J].J.Mem.Sci.,1993,81(1-2):127-137.
    [111]Mackley M R,Sherman N E.Cross-flow filtration with and without cake formation [J].Chem.Eng.Sci.,1994,49(2):171-178.
    [112]Adrian R J.Scattering particle characteristics and their effect on pulsed laser measurements of fluid flow:speckle velocimetry vs.particle image velocimetry [J].Appl.Opt.1984,23:1690-1691.
    [113]Adrian R J.Multi-point optical measurements of simultaneous vectors in unsteady flows-a review [J].Int.J.Heat and Fluid Flow,1986,7(2):127-145.
    [114]Adrian R J.Double exposure,multiple-field particle image velocimetry for turbulent probability density[J].Optics and Lasers in Engineering,1988,9(3-4):211-228.
    [115]Adrian R J.Review of particle image velocimetry research presented at the symposium on optical methods in flow and particle diagnostics[J].Optics and Lasers in Engineering,1988,9(3-4):317-319.
    [116]Keane R D,Adrian R J.Optimization of particle image velocimeters[J].Part Ⅰ:double pulsed systems.Measure Science Technology.1990,1(11):1202-1215.
    [117]Keane R D,Adrian R J.Theory of cross correlation analysis of PIV image[J].Applied Science Research,1992,49:191-215.
    [118]Delnoij E,Westerweel J,Deen N G,etc.Ensemble correlation PIV applied to bubble plumes rising in a bubble column[J].Chem.Eng.Sci.,1999,54(21):5159-5171.
    [119]王灿星,林建忠,山本富士夫.二维PIV图像处理算法[J].2001,16(4):399-404.
    [120]Meling A.Tracer particles and seeding for particles image velocimetry[J].Measurement Science and Technology,1997,8(12):1406-1416.
    [121]段俐,康琦.PIV技术的粒子图像处理方法[J].北京航空航天大学学报,2000,26(1):79-82.
    [122]王灿星,林建忠,山本富士夫.二维PIV图像处理算法[J].水动力学研究与进展,2001,16(4):399-404.
    [123]孙鹤泉,康海贵.DPIV流场测试技术中的数据处理[J].大连理大学学报,2000,40(3):364-367
    [124]孙鹤泉,康海贵,李广伟.基于图像互相关的PIV技术及其频域实现[J].中国海洋平台,2002,17(6):1-4
    [125]冯骞,汪翙,薛朝霞.剪切作用对活性污泥沉降性能的影响[J].环境科学与技术,2008,31(2):20-24.
    [126]王超,郑晓英.剪切应力对好氧颗粒污泥形态结构和微生物活性的影响机制研究[J].环境科学,2008,29(8):2235-2241.
    [127]X.Ni,J.A.Cosgrove,A.D.Arnott,et al.On the measurement of strain rate in an oscillatory baffled column using particle imagse velocimetry[J].Chem.Eng.Sci.,2000,55(16):3195-3208.
    [128]Gottero M,Onorato M,Low speed streak and internal shear layer motions in a turbulent boundary layer.Eur[J].Mech.B Fluids 2000,19:23-36
    [129]陶文铨.数值传热学[M].第2版.西安:西安交通大学出版社,2001:305-314
    [130]S V帕坦卡.传热与流体流动的数值方法[M].第1版.合肥:安徽科学技术出版社,1984:14-16
    [131]Chiang T P,Tony W H Sheu,Fang CC.Numerical investigation of vortical evolution in a backward-facing step expansion flow[J].Applied Mathematical Modelling,1999,23:915-932.
    [132]陆金甫,关治.偏微分方程数值解法[M].第1版.北京:清华大学出版社,1987:4-7
    [133]俞俊棠,唐孝宣.生物工艺学[M].上海:华东化工学院出版社,1992.315.
    [134]张元兴,许学书.生物反应器工程[M].上海:华东理工大学出版社,2001.10.
    [135]王岁楼,熊卫生.生化工程[M].北京:中国医药科技出版社,2002.
    [136]李亚新.活性污泥法理论与技术[M].北京:中国建筑工业出版社,第一版,2007.
    [137]王宝贞,姜安玺.水污染控制工程[M].北京:高等教育出版社,1996.
    [138]吴婉娥,葛红光,张克峰.废水生物处理技术[M].北京:化学工业出版社,2003.1.
    [139]国家环境保护总局《水和废水监测分析方法》编委会.水和废水监测分析方法[M].第四版.北京:中国环境科学出版社,2002.12.
    [140]李云雁,胡传荣.试验设计与数据处理[M].北京:化学工业出版社,2005.2.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700