用户名: 密码: 验证码:
水稻条纹病毒致病性分化与分子变异
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以灰飞虱为介体昆虫,将水稻条纹病毒(Rice stipe virus,RSV)23个代表分离物接种于水稻品种武育粳3号、合系39、花优63。根据株发病率,23个分离物的致病型可分为5个等级,分别为强致病型、次强致病型、中致病型、弱致病型、极弱致病型。致病分化表现在地理、株系及水稻品种等三个方面的差异。分析表明,不同分离物在发病率、发病时间、症状表现及对介体灰飞虱传毒影响上存在差异;以地理划分的云南自然种群和云南外自然种群在致病上存在明显的差异。云南自然种群以弱致病型为主,但间或有强致病型分离物;云南外自然种群存在强致病型分离物,属于混合致病群,致病型多样化。YBS07分离物在水稻品种上的发病时间、症状表现以及对灰飞虱传毒效率影响上的数据都接近或超过云南外分离物,是云南种群中隐藏的强致病型分离物。致病性结构与病害流行的关系提示病害防治要采取针对性措施。
     对8个致病性存在差异的代表分离物的遗传变异分析表明,基因组不同片段表现出不同的变异特征;云南分离物与云南外分离物在遗传关系上具有明显的差异;YBS07在遗传关系上介于云南分离物与云南外分离物间,但更靠近云南分离物。遗传多样性分析表明,致病性相对较弱的云南分离物对应的RdRp、NS3、SP、NSvc4等4个基因比云南外分离物受到更大的负选择压力。YBS07分离物在基因的多样性上介于云南分离物与云南外分离物间,但更靠近云南分离物。对RSV种群遗传距离分析表明,RSV中国种群可以划分为云南亚群、云南外亚群以及由云南亚群中分化出来的混合亚群等三个亚群;云南与云南外两个自然种群存在相互侵染现象。种群遗传多样性分析显示,RSV的7个基因受到强烈的负选择压力。在遗传多样性上: NS2>NS3>CP>NSvc2>SP>NSvc4>RdRp ;在保守性上:RdRp>NSvc4>SP>NSvc2>CP>NS3>NS2。对IR4遗传距离的分析也表明混合亚群及两个自然种群相互侵染现象的存在;RSV三种类型IR4的进化经历了两次分化与两次分离。
     序列分析显示,RSV基因组的末端非编码区域高度保守,差异主要存在于云南分离物与云南外分离物之间;末端序列能形成稳定的发夹结构。对RSV编码的7个蛋白氨基酸序列分析显示,RdRp蛋白存在跨膜区段、卷曲螺旋结构、以及短链脱氢还原酶家族信号等多个功能位点;NS2蛋白存在强烈的内部信号肽裂解位点;NSvc2存在N端信号肽、强烈的内部信号肽裂解位点,具有膜蛋白属性;NS3蛋白存在一段卷曲螺旋结构及多个功能位点,云南4个分离物C末端的疏水性明显强于YCX1以及云南外分离物;CP蛋白存在一段卷曲螺旋结构及多个功能位点;SP、NSvc4蛋白分别存在一个内部信号肽裂解位点、一个跨膜区段及多个功能位点。终止密码子分析表明,RSV偏爱使用UAG作为终止密码子;云南分离物与云南外分离物在终止密码子使用上存在差异。对基因间隔区分析表明,RNA2-4的基因间隔区存在正向重复序列、反向重复序列;IR3、IR4还存在明显的插入或缺失序列;IR2-4均能形成稳定的大发夹结构。
     测序鉴定RSV云南楚雄分离物一个重组RNA,即YCX07R,由RSV的RNA2的与RNA3重组而成。序列分析显示,YCX07R具有RSV基因组结构特征,其两个末端的序列互补。在正义链及反义链上均存在一个开放阅读框,分别编码YCX07R-5P及YCX07R-3P。分析推测重组系由RNA流产性复制引起或重组的两个片段通过重组点联结形成。
Tweenty-three isolates of Rice stripe virus (RSV) from Yunnan, Jiangsu, Shandong, Henan, and Anhui provinces were inoculated to rice varieties by landelphax striatellus.According to the morbidity, tweenty-three isolates could be divided into five grades, namely strong virus(sv), semi-strong virus(ss), middle strong virus(ms), weak virus(wv) and least weak virus(lw). Pathogenicity differentiation correlated with geographic distribution, strain differences and rice varieties. There were differences among isolates in the morbidity, time to exhibit disease, symptom and influences to landelphax striatellus’s transmission.Two nature populations, Yunnan(YN) and out of Yunnan(OY), showed obvious different pathogenicity too. Some strong virus screened, more weak virus composed the population YN.Pupulation OY had more strong virus than YN and belong to mixed and variant population of five grades. The isolate of YBS07 showed stong pathogenicity similar to OY in the time to exhibit disease, symptom and influences to landelphax striatellus’s transmission. The relationship between pathogenicity differentiation and epidemic of diseases suggested that specific measures should be taken in disease prevention and control.
     The genomes of eight representative isolates on pathogenicity were sequenced.Analysis of genetic variation showed that different fragment display different variant feature, that isolates of YN differed from isolates of OY in genetic relations obviously and that YBS07 isolate conducted genetic relations between YN and OY with trending to YN. Analysis of genetic diversity indicat that four weak isolates of YN were compressed by more negative selection pressure than the other four isolates of OY in RdRp、NS3、SP and NSvc4.The genetic diversity of YBS07 was between YN and OY with trending to YN.Analysis of population genetic distance display that the RSV population in china can divided into three subgroups,Yunnan subgroup,out of Yunnan subgroup, mixed subgroup originated from Yunnan group.There existed invasion between YN and OY. Analysis of population genetic diversity showed that seven genes of RSV were compressed strong negetive selection pressure with NS2>NS3>CP>NSvc2>SP>NSvc4>RdRp in genetic diversity and RdRp>NSvc4 >SP>NSvc2>CP>NS3>NS2 in conservation.The analysis of genetic diatance of IR4 also showed that there existed mixed subgroup and invasion between YN and OY.Three types of IR4 experienced two differentiations and two separations.
     Analysis of sequence showed that the terminal untrantion regions(UTR) of genome of RSV had hight conservation,with variation between YN an OY. The UTR could form stable hairpin structure.Analysis of amino acid sequence showed that RdRp had transmembrane segments, coiled coils and some protein functional sites such as short-chain dehydrogenases/reductases family signature.NS2 had a strong potential cleavage site of signal peptide.NSvc2 had an N-signal peptide, a strong potential cleavage site of signal peptide and the property of membrane protein. NS3 had a coiled coil, some protein functional sites, and a differences of C-terminal hydrophobicity between YN and OY.CP had a coiled coil and some protein functional sites. SP and NSvc4 both had a potential cleavage site of signal peptide,a transmembrane segment and somes protein functional sites.Analysis of stop codons indicated that RSV prefers to use UAG as the stop codon and there are differences on preference of stop codon between YN and OY. Analysis of sequence showed that IR2-4 had direct repeat fragments and inverted repeat fragments, those could formed stable hairpin structure. IR3 and IR4 even had obvious insert and missing sequences.
     A recombinant RNA of one isolate of Rice stripe virus(RSV) from Chuxiong(YCX07), Yunnan province, China, was sequenced. The RNA(YCX07R) was recombined from the 3' segments of RNA2 and RNA3 of RSV. The recombinant RNA uses ambisense coding strategy and encodes two proteins, namely YCX07R-5P and YCX07R-3P. The two proteins located on the 5' end of the plus and minus strand, respectively. This is similar to the four RNAs of RSV. It was discussed that the RNA was recombined from abortion replication or linked by two recombinant fragments through the recombinant site directly.
引文
1.丁新伦,谢荔岩,林奇英,吴祖建,谢联辉.2008.水稻条纹病毒胁迫下抗、感病水稻品种胼胝质的沉积.植物保护学报.第35(1):19-22.
    2.于群,魏太云,林含新,吴祖建,林奇英,谢联辉. 2000.我国水稻条纹病毒北京双桥(RSV-BSQ1)分离物RNA4片段序列分析.农业生物技术学报,8(3):225-228
    3.弓利英,夏立,马丽,刘松涛,海飞.沿黄稻区水稻条纹叶枯病的发生及防治技术.河南农业科学.2006. (7) : 64 - 65.
    4.马学文,陈思宏,于涌鑫,等. 2003年水稻条纹叶枯病大发生原因及其防治对策[J].中国农技推广,2003,(6):48-49
    5.王晓红,叶寅,王苏燕,田波,1997.水稻条纹叶枯病毒基因组含vRNA2 ORF片段的克隆、序列分析及其在原核中的表达.科学通报,42(4):438-441
    6.王辉. 2003.水稻条纹病毒NS3基因的分子变异及其抗血清的制备. [福建农林大学硕士学位论文],福州:福建农林大学.
    7.刘玉彬,1989.灰飞虱传毒特性及“治虫防病”对策.云南农业科技,(3):10-13
    8.刘利华,吴祖建,林奇英,谢联辉. 2000.水稻条纹叶枯病细胞病理变化的观察.植物病理学报.30(4):306~311
    9.曲志才,沈大棱,徐亚南,谈家桢,Roger H. 1999.水稻条纹叶枯病毒基因产物在水稻和昆虫体内的Western印迹分析.遗传学报,26(5):512-517
    10.朱凤美,肖庆英,王法明. 1964.江南稻区新发生的几种稻病.植物保护.(3):1-5
    11.吴爱忠,赵艳,曲志才,沈大棱,潘重光,苏德明. 2001.水稻条叶枯病毒(RSV)的SP蛋白在介体灰飞虱内的亚细胞定位.科学通报,45(14):1183-1186
    12.张国鸣,王华弟,戴德江.浙江省水稻条纹叶枯病发生发展态势与防控对策措施.中国植保导刊. 2006.(7):20-21.
    13.李凡,杨金广,吴祖建,林奇英,陈海如,谢联辉.2006.水稻条纹病毒云南分离物CP基因克隆及序列比较分析.云南农业大学学报.21(1):148-51
    14.陈庆忠,柯文华,1986.水稻条纹叶枯病主要感染时期之推定及适期防治试验.台中区农业改良场研究简报,12:51-60
    15.陈声祥.1996.水稻病毒病发生现状及研究进展.浙江农业科学.(1):41-42
    16.周仲驹,林奇英,谢联辉. 1992.水稻条纹叶枯病的研究Ⅳ.病叶细胞的病理变化.福建农学院学报.21(2):157~162
    17.岸本良一.1972.稻ひまはが水病の生态.遗传.(12):34-40
    18.林含新,吴祖建,林奇英,谢联辉,1997b.水稻品种对水稻条纹病毒的抗性鉴定及其作用机制研究初报.植物病毒与病毒病防治(刘仪主编),中国农业科技出版社,北京: p188-192
    19.林含新,林奇英,谢联辉.1997a.水稻条纹病毒分子生物学研究进展.中国病毒学. 12(3):203-209
    20.林含新,魏太云,吴祖建,林奇英,谢联辉.2001.我国水稻条纹病毒一个强致病性分离物的RNA4序列测定与分析.微生物学报.41(1):25~30
    21.林含新,魏太云,吴祖建,林奇英,谢联辉.我国水稻条纹病毒7个分离物的致病性和化学特性比较.福建农业大学学报(自然科学版). 2002.31(2):164-167
    22.林奇田,林含新,吴祖建,林奇英,谢联辉,1998.水稻条纹病毒外壳蛋白和病害特异蛋白在寄主体内的积累.福建农业大学学报,27(3):322-326
    23.林奇英,谢联辉,周仲驹,谢莉妍,吴祖建.水稻条纹叶枯病的研究Ι:病害的分布和损失.福建农学院学报. 1990.19(4):421-425
    24.林奇英,谢联辉,周仲驹,谢莉妍,宋秀高,1991.水稻条纹叶枯病的研究Ⅱ.病害的症状和传播.福建农学院学报,20(1):24-28
    25.林莉,徐云,刘玉彬,包绍永,刑玉仙.1996.灰飞虱传播水稻条纹叶枯病毒的特性.植物保护学报,23(3):218-221
    26.范在丰,李怀方. 2003.植物病毒的分类与命名现状.植物病理学报,32(2):112-115.
    27.查向东,张部昌,黄蓓,刘兢,徐康森.2007.RNA病毒遗传重组研究进展.病毒学报.23(3):230-234
    28.祝春强,钱国华,陈会柱.安徽宣城市水稻条纹叶枯病发生现状及其防治.植物保护与粮食安全——第二十届全国植保信息交流暨农药械交流会论文集.2004.
    29.桑海旭,王井士,边应权,李运动,张振杰,刘志恒.辽宁省水稻条纹叶枯病严重发生的原因及防治对策.垦殖与稻作.2006(06):52-55
    30.高东明,李爱民,秦文胜.江、浙两省主要粳、糯稻品种对条纹叶枯病的抗性测定.浙江农业科学.1991.(2):96-98
    31.高苓昌,宋克勤,张洪瑞,杜本怀,朱其松.黄淮稻区水稻条纹叶枯病的发病特点与综合防治.山东农业科学.2006. (3):66-67.
    32.鹿连明;秦梅玲;王萍;兰汉红;牛晓庆;谢荔岩;吴祖建;谢联辉.2008.利用免疫共沉淀技术研究RSV CP、SP和NSvc4蛋白的互作.农业生物技术学报.16(5):891-897
    33.程兆榜,任春梅,周益军,范永坚,谢联辉.2008.水稻条纹病毒不同地区分离物的致病性研究.植物病理学报.38(2):126-131
    34.程兆榜,杨荣明,周益军.2002.江苏稻区水稻条纹叶枯病发生新规律.江苏农业科学.(1):39-41
    35.程兆榜,施文武,刘海建,陈思宏,陆莲芳,周益军,范永坚.2005.江苏和云南水稻条纹叶枯病流行差异分析.中国植物病理学会2005年学术年会暨植物病理学报创刊50周年纪念会论文摘要集:36-37.
    36.蒋耀培,李建刚,谭秀芳,裴启忠.上海地区水稻条纹叶枯病的发生与防治技术初探.上海农业科技.2005.(5):37-38.
    37.谢式半钰,邱人璋.台湾水稻新病毒病—条纹叶枯病.植物保护会刊. 1969.11(4):175
    38.魏太云,2003d.水稻条纹病毒的基因组结构及其分子群体遗传. [博士学位论文],福州,福建农林大学植物病毒研究所
    39.魏太云,王辉,林含新,吴祖建,林奇英,谢联辉.2003a.我国水稻条纹病毒RNA3片段序列分析——纤细病毒属重配的又一证据.生物化学与生物物理学报.35(1);97-103
    40.魏太云,林含新,吴祖建,林奇英,谢联辉. 2003c.水稻条叶枯病毒NS2基因遗传多样性分析.中国生物化学与分子生物学报,19(5):600-605
    41.魏太云,林含新,吴祖建,林奇英,谢联辉.水稻条纹病毒RNA4基因间隔区的分子变异.病毒学报,2001,17(2): 144-149
    42.魏太云,林含新,吴祖建,林奇英,谢联辉.2003b.水稻条纹病毒RNA4基因间隔区序列分析——混合侵染基因组重组证据.微生物学报.第5期57~64.
    43.魏太云,林含新,吴祖建,林奇英,谢联辉.水稻条纹病毒两个分离物RNA4基因间隔区的序列比较.中国病毒学,2000,15(2): 156-162
    44.魏香,曾宪纲,周海梦.2004.蛋白质结构中卷曲螺旋的研究进展.中国生物化学与分子生物学报. 20 (5) :565-571
    45. Alejska M,Malinowska N, Urbanowicz A ,Figlerowicz M.2005.Two types of nonhomologous RNA recombination in brome mosaic virus[J].Acta Biochimica Polonica.52:833-844.
    46. Alexander B. Chetverin. 1997.Recombination in Bacteriophage Qβand Its Satellite RNAs: The in Vivo and in Vitro Studies. Seminars in Virology 8, 121–129
    47. Aquino VH, Moreli ML, Figueiredo LTM.2003.Analysis of Oropouche virus L protein amino acid sequence showed the presence of an additional conserved region that could harbour an important role for the polymerase activity. Arch Virol 148: 19–28
    48. Barbier P, Takahashi M, Nakamura I, Toriyama S and Ishihama A,1992. Solubilization and promoter analysis of RNA polymerase from rice stripe virus. Journal of Virology, 66: 6171-6174
    49. Baroth,M., Orlich,M., Thiel,H.J. and Becher,P,2000.Insertion of cellular NEDD8 coding sequences in a pestivirus. Virology, 278, 456–466
    50. Bruyere A ,Want roba M , Flasinski S , Dzianott A, Bujarski J. J.2000.Frequent homologous recombination events between molecules of one RNA component in a multipartite RNA virus[J]. Journal of Virology. 74(9):4214- 4219.
    51. Bujarski J J , Dzianott A M.1991.Generation and analysis of nonhomologous RNA-RNA recombinants in brome mosaic virus:sequence complementarities at crossover sites[J]. Journal of Virology.65(8):4153-4159.
    52. Bujarski J J.1999. Molecular basis of genetic variability in RNA virus. In Mandahar C L ed.. Molecular Biology of Plant Viruses. Boston: Kluwer Academic Publishers. p120-141.
    53. Burkhand P , Stetefeld J , Strelkov S V.2001.Coiled coils : a highly versatile protein folding motif . ,11(2) : 82-88
    54. Chetverin A B, Kopein D S, Chetverina H V, Demidenko A A,Ugarov V.I.2005.Viral RNA-directed RNA polymerases use diverse mechanisms to promote recombination between RNA molecules. The Journal of Biological Chemistry.,280 (10) :8748-8755.
    55. Chetverin A B.1999.The puzzle of RNA recombination[J].FEBS Lett.460:1-5.
    56. Chetverina H V , Demidenko A A , Ugarov V I.1997.Nonhomologous RNA recombination in a cell-free system:evidence for a t ransesterification mechanism guided by secondary structure [J].Cell.88(4):503-513.
    57. Chomchan P, Miranda GJ, Shirako Y, 2002. Detection of rice grassy stunt tenuivirus nonstructural proteins p2, p5 and p6 from infected rice plants and from viruliferous brown planthoppers. Archives of Virology, 147(12): 2291-2300
    58. Deleage G, Combet C, Blanchet C, Geourjon C.2001.Antheprot: An Integrated Protein Sequence Analysis Software With Client/server Capabilities.Comput Biol Med.31:259-67
    59. Domingo E, 2002. Quasispecies theory in virology. Journal of Virology, 76 (1): 463-465
    60. Domingo, E; Holland, JJ. 1997.RNA virus mutations and fitness for survival. Annu Rev Microbiol.51:151–78.
    61. Drake J W, Holland J J. 1999. Mutation rates among RNA viruses. Proc Natl Acad Sci USA, 96: 13910-13913.
    62. d'Souza S.E., Ginsberg M.H., Plow E.F.1991.Arginyl-glycyl-aspartic acid (RGD): a cell adhesion motif.Trends Biochem. Sci. 16:246-250.
    63. Eigen, M. Viral quasispecies. Sci Am. 1993;269(1):42–9.
    64. Figlerowicz M. 2000. Role of RNA structure in non-homologous recombination between genomic molecules of brome mosaic virus. Nucleic Acids Research, 28(8): 1714-1723.
    65. Fraile A, Alonso-Prados J L, Aranda M A, Bernal J J, Malpica J M, García-Arenal F. 1997. Genetic exchange by recombination or reassortment is infrequent in natural populations of a tripartite RNA plant virus. Journal of Virology, 71(2): 934-940.
    66. Frischmuth T, Engel M, Lauster S,Jeske H. 1997. Nucleotide sequence evidence for the occurrence of three distinct whitefly-transmitted, Sida-infecting bipartite geminiviruses in Central America. Journal of General Virology, 78:2675–2682.
    67. Garcia-Arenal F, Fraile A, Malpica JM. 2001. Variability and genetic structure of plant virus populations. Annual of Review of Phytopathology 39: 157-186
    68. Gast D, Riedle S, Kiefel H, Müerk?ster SS, Sch?fer H, Sch?fer MK, Altevogt P.2008.The RGD integrin binding site in human L1-CAM is important for nuclear signaling. Exp Cell Res.314(13):2411-8
    69. Grand R.J.A.1989.Acylation of viral and eukaryotic proteins. Biochem. J. 258:625-638
    70. Hayashi T, Usugi T, Nakano M and Ishikawa K. 1989. On the strains of rice stripe virus(1) An attempt to detect stranis by difference of molecular size of disease-specific proteins. Proceedings of the Association for Plant Protection of Kyushu. 35:1-2
    71. Hirst G K. 1962.Genetic recombination with Newcastle disease virus , polioviruses , and influenza [J ] . Cold Spring Harb Symp Quant Biol,27 :303-309
    72. Holland, JJ; De La Torre, JC; Steinhauer, DA. 1992.RNA virus populations as quasispecies. Curr Top Microbiol Immunol.176:1–20.
    73. Ishii M and Ono K. 1966. On strains of rice stripe virus. Annuals of the phytopathological society of Japan. 32: 83
    74. Iskikawa K, Omura T, Hibino H, 1989b. Morphological characteristics of rice stripe virus. Journal of General Virology, 70: 505-511
    75. Iskikawa K, Omura T, Tsuchizaki T, 1989a. association of double- and single-stranded RNAs with each four components of rice stripe virus. Annuals of the phytopathological society of Japan, 35(3):315-33
    76. Jornvall H, Persson B, Krook M, Atrian S, Gonzalez-Duarte R, Jeffery J, Ghosh D.1995. Short-chain dehydrogenases/reductases (SDR).Biochemistry.34(18):6003-13
    77. Kakutani T, Hayano Y, Hayashi T, Minobe Y, 1990. Ambisense segment 4 of rice stripe virus possible evolutionary relationship with phoeboviruses and uukuviruses (Buuyaviridae). Journal of General Virology, 72(2): 1427-1432
    78. Kakutani T, Hayashi T, Minobe Y, 1991. Ambisense segment 3 of rice stripe virus: the first instance of a virus containing two ambisense segments. Journal of General Virology, 72(2): 465-468
    79. Khatchikian D , Orlich M , Rot t R,1989.Increased viral pathogenicity after insertion of a 28S ribosomal RNA sequence into the haemagglutinin gene of an influenza virus. Nature ,340 (6229) :156-157.
    80. Kinsella E, Martin SG, Grolla A, Czub M, Feldmann H,Flick R.2004.Sequence determination of the Crimean-Congo hemorrhagic fever virus L segment. Virology 321: 23–28
    81. Kinsella E, Martin SG, Grolla A, Czub M, Feldmann H,Flick R.2004.Sequence determination of the Crimean-Congo hemorrhagic fever virus L segment. Virology.321: 23–28
    82. Kisimoto R. 1965. On the transovarial passage of the rice stripe virus through the small brown planthopper, Laodelphax striatelllus Fallen, in: Conference on Relationships between Arthropods and plant- Pathogenic Viruses. Suppl. Tokyo: 73-90
    83. Kiso A and Yamamoto T. 1973, Infection and symptom development in rice stripe disease with special referance to disease-specific protein other than virus. Review of PlantProtection Research, 6: 75-100
    84. Kiso A, Yamamoto T, 1973. Infection and symptom in rice stripe disease with special referance to disease-specific protein other than virus . Review of Plant Protection Research, 6:75-100
    85. Koganezawa H, 1977. Purification and properties of rice stripe virus. In: Symposium on Virus Diseases of Tropical Crops. Tropical Agriculture Research, 10: 151-154
    86. Koganezawa H, Doi Y, Yora K, 1975. Purification of rice stripe virus. Annuals of the phytopathological society of Japan, 41: 148-154
    87. Koichiro Tamura, Joel Dudley, Masatoshi Nei, and Sudhir Kumar.2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) Software Version 4.0.Molecular Biology and Evolution.24:1596-1599.
    88. Li ML, Rao P, Krug RM.2001.The active sites of the influenza cap-dependent endonuclease are on different polymerase subunits. EMBO J 20: 2078–2086
    89. Liang D, Ma X, Qu Z, Well B, Hull R. 2000. PVC2 of rice stripe tenuivirus is a component of fibrillar electron-opaque inclusion body. Abstracts of 19th American Society for Virology, Colorado, USA .7: W15-1
    90. Lin H X, Wei T Y, Wu Z J, Lin Q Y, Xie L H. 1999. Molecular variability in coat protein and disease-specific protein genes among isolates of rice stripe virus in China. Abstract for theⅪInternational Congress of Virology, Sydney, Australia. 8: 235-236.
    91. Lu L, Du Z, Qin M, Wang P, Lan H, Niu X, Jia D, Xie L, Lin Q, Xie L, Wu Z.2009.Pc4, a putative movement protein of Rice stripe virus, interacts with a type I DnaJ protein and a small Hsp of rice. Virus Genes.38(2):320-7.
    92. Lupas A , Miller S , Goldie K, Engel A M, Engel A , Baumeister W.1995.Model structure of the Ompαrod , a parallel four-stranded coiled coilfrom the hyperthermophilic eubacterium Thermotoga maritime. J Mol Biol. 248 : 180-189
    93. M. Takahashi1, C. Goto2, K. Ishikawa3, I. Matsuda1, S. Toriyama1, and K. Tsuchiya1.2003. Rice stripe virus 23.9K protein aggregates and forms inclusion bodies in cultured insect cells and virus-infected plant cells Arch Virol.148: 2167–2179
    94. Malpica J M,Fraile A, Morueno I, Obies C I, Drake J W, García-Arenal F. 2002. The rate and character of spontaneous mutation in an RNA virus. Genetics, 162: 1505-1511.
    95. Masuta C, Ueda S, Suzuki M, Uyeda I. 1998. Evolution of a quadripartite hybrid virus by interspecific exchange and recombination between replicase components of two related tripartite RNA viruses. Proceedings of the National Academy of Sciences of the United States of America, 95: 10487–10492.
    96. Melcher U. 2000. The‘30K’superfamily of viral movement proteins. Journal of GeneralVirology, 81(1): 257-266.
    97. Monera O D , Sonnichsen F D , Hicks L , Kay C M, Hodges R S.1996.The relative positions of alanine residues in the hydrophobic core control the formation of two-stranded or four-strandedα-helical coiled-coils.Protein Eng.9 : 353-363
    98. Murphy GA , Spedale EJ , Powell S T , Pillrs L , Schultz S C , Chen L. 2003.The sir4 C-terminal coiled coil is required for telomeric and mating type silencing in Saccharomyces cerevisiae. J Mol Biol , , 334 : 769-780
    99. Nagy P D , Ogiela C , Bujarski J J.1999.Mapping sequences active in homologous RNA recombination in brome mosaic virus:prediction of recombination hot spots[J].Virology. 254 : 92-104.
    100.Nagy P D , Simon A E.1997New insight s into the mechanisms of RNA recombination[J]. Virology.235(1) :1-9.
    101.Neidle E.L., Hartnett C., Ornston N.L., Bairoch A., Rekik M., Harayama S. 1992. Cis-diol dehydrogenases encoded by the TOL pWWO plasmid xylL gene and the Acinetobacter calcoaceticus chromosomal benD gene are members of the short-chain alcohol dehydrogenase superfamily.Eur.J.Biochem.204:113-120
    102.Olsthoorn R C L, Bruyere A, Dzianott A, Bujarski1 J J. 2002. RNA Recombination in Brome Mosaic Virus: Effects of Strand-Specific Stem-Loop Inserts. Journal of Virology, 76(24): 12654–12662.
    103.Parry D A D , Mareka L N , Steinert PM, Smith TA. 2002.A role for the 1A and L1 rod domain segments in head domain organization and function of intermediate filaments : structural analysis of trichocyte leratin. J Struct Biol. 137 : 97-108
    104.Persson B, Krook M, Jornvall H.1991.Characteristics of short-chain alcohol dehydrogenases and related enzymes. Eur. J. Biochem. 200:537-543
    105.Qu Z, Liang D, Harper G, Hull R. 1997. Comparison of sequences of RNAs 3 and 4 of rice stripe virus from China with those of Japanese isolates. Virus Genes, 15(2): 99-103
    106.Ramirez BC, Haenni A L. 1994. Molecular biology of tenuiviruses: a remarkable group of plant viruses. Journal of General Virology, 75(1): 467-475
    107.Ramirez BC, Haenni AL, 1994. Molecular biology of tenuiviruses: a remarkable group of plant viruses. Journal of General Virology, 75(1): 467-475
    108.Ramos P L, Guevara-González R G, Peral R, Ascencio-Iba?ez J T, Polston J E, Arg?ello-Astorga G R, Vega-Arregín J C , Rivera-Bustamante R F. 2003. Tomato mottle Taino virus pseudorecombines with PYMV but not with ToMoV: Implications for the delimitation of cis- and trans-acting replication specificity determinants. Archives of Virology, 148: 1697–1712
    109.Roossinck MJ. 1997. Mechanisms of plant virus evolution. Annual of Review of Phytopathology. 35: 191-209
    110.Ruoslahti E, Pierschbacher M.D.1986.Arg-Gly-Asp: a versatile cell recognition signal.Cell 44:517-518
    111.Salinas CN, Anseth KS.2008. The influence of the RGD peptide motif and its contextual presentation in PEG gels on human mesenchymal stem cell viability. J Tissue Eng Regen Med.2(5):296-304
    112.Schneider WL, Roossinck MJ. 2000. Evolutionarily related Sindbis-like plant viruses maintain different levels of population diversity in a common host. Journal of Virology. 74 (7): 3130-3134
    113.Schneider WL, Roossinck MJ. 2001. Genetic diversity in RNA virus quasispecies is controlled by host-virus interactions. Journal of Virology. 75(14): 6566-6571
    114.Shinkai A, 1962. Studies on insect transmissions of rice virus disease in Japan. The Bulletin Institute of Agriculture Science, Series C, 14: 1-112
    115.Shinkai A, 1966. Transmissions of rice black-streaked dwarf, rice stripe and cereal northern mosaic viruses by Unkanldes Sapporonus Matsmura. Annuals of the phytopathological society of Japan, 32: 17
    116.Shinkai A. 1985. Present situation of rice stripe disease. Plant Protection(Japan). 11: 503-507
    117.Sonja A D , Richard A K, Detlef M, Jürgen E , Andrei T A.1999.Contributions of the ionization states of acidic residues to the stability of the coiled coil domain of matrilin21. FEBS Lett.,446 :75-80
    118.Stewart MG, Banerjee N. 1999. Mechanisms of arthropod transmission of plant and animal viruses. Microbiology and Molecular Biology Reviews, 63(1): 128-148
    119.Takahashi M, Goto C, Matsuda I, Toriyama S, 1999. Expression of rice stripe virus 22.8k protein in insect cells. Annuals of phytopathological society of Japan, 65(3): 337
    120.Takahashi M, Toriyama S, Hamamatst C, Ishihama, 1993. Nucleotide sequence and possible ambisense coding strategy of rice stripe virus RNA segment 2. Journal of General Virology, 74(4): 769-733
    121.Takahashi M, Toriyama S, Kikuchi Y, Hayakawa T and Ishihama A, 1990. Complementarity between the 5'- and 3'-terminal sequences of rice stripe virus RNAs. Journal of General virology, 71: 2817-2821
    122.Takahashi M, Toriyama S. 1996. Detection of the 22.8k protein encoded by RNA2 of rice stripe virus in infected plant. Annuals of phytopathological society of Japan, 62(3): 340
    123.Tang Y, Ghirlanda G, Vaidehi N , Kua J , Mainz D T , Goddard WA ,De Grado WF, Tirrell D A.2001.Stabilization of coiled coil peptide domains by introduction of trifluoroleucine.Biochemistry .40 : 2790-2796
    124.Tolskaya E A , Romanova L I , Blinov V M , Viktorova EG, Sinyakov AN, Kolesnikova MS, Agol VI.1987.Studies on the recombination between RNA genomes of poliovirus : the primary st ructure and nonrandom distribution of crossover regions in the genomes of intertypic poliovirus recombinants [J].Virology,161(1):54-61.
    125.Toriyama S, 1983. Rice stripe virus. CMI/ABB. Description of plant viruses. 269: 15
    126.Toriyama S, 1986a. Rice stripe virus: prototype of a new group of viruses that replicated in plants and insects. Microbilogical Sciences, 3: 347-351
    127.Toriyama S, 1986b. An RNA-dependent RNA polymerase associated with the filamentous nuleoproteins of rice stripe virus. Journal of General Virology,67: 1247-1255
    128.Toriyama S, Takahashi M, Sano Y and Shimizu T, 1994. Nucleotide sequence of RNA1, the largest genomic segment of rice stripe virus, the prototype of the tenuiviruses. Journal of General Virology, 75: 3569-3579
    129.Towler D.A., Gordon J.I., Adams S.P., Glaser L.1988. The biology and enzymology of eukaryotic protein acylation. Annu.Rev.Biochem.57:69-99
    130.Uyeda I, Ando Y, Murao K, Kimura I.1995.High resolution genome typing and genomic reassortment events of rice dwarf Phytoreovirus. Virology.Oct 1;212(2):724-7.
    131.van Knippenber I, Goldbach R, Kormelink R.2005.Tomato spotted wilt virus S-segment mRNAs have overlapping 3'ends containing a predicted stem-loop structure and conserved sequence motif. Virus Res 110:124–131
    132.van Regenmortel MHV, Fauquet CM, Bishop DHL, Carstens EB, Estes MK, Lemon SM, Maniloff J, Mayo MA, McGeoch DJ, Pringle CR, and Wickner RB (eds) , 2000. Virus taxonomy, Classification and nomenclature of viruses, Seventh report of the international committee on taxonomy of viruses, San Diego, San Francisco, New York, Boston, London, Sydney, Tokyo: Academic Press
    133.Vignuzzi M ,Stone JK, Arnold JJ, Cameron CE, Andino R.2006. Quasispecies diversity determines pathogenesis through cooperative interactions in a viral population. Nature.19; 439(7074): 344–348
    134.Villarroya A, Juan E, Egestad B, Jornvall H.1989. The primary structure of alcohol dehydrogenase from Drosophila lebanonensis. Extensive variation within insect 'short-chain' alcohol dehydrogenase lacking zinc. Eur J Biochem.180(1):191-7
    135.Wei T Y, Yang JG, Liao FL, Gao FL, Lu LM,Zhang XT, Li F, Wu ZJ, Lin QY, Xie LH.Genetic diversity and population structure of rice stipe virus in China.Journal of General Virology. 2009 90(4):1025-34
    136.William L Schneider and Marilyn J Roossinck.2001. Genetic diversity in RNA virusquasispecies is controlled by host-virus interactions. Journal of Virology, p. 6566–6571
    137.Xiong R, Wu J, Zhou Y, Zhou X.2008. Identification of a movement protein of the tenuivirus rice stripe virus. Journal of Virology.82(24):12304-11
    138.Xiong R, Wu J, Zhou Y, Zhou X.2009. Characterization and subcellular localization of an RNA silencing suppressor encoded by Rice stripe tenuivirus. Virology.2009.387(1):29-40.
    139.Yea CH, Lee B, Kim H, Kim SU, El-Said WA, Min J, Oh BK, Choi JW.2008. The immobilization of animal cells using the cysteine-modified RGD oligopeptide. Ultramicroscopy.108(10):1144-7
    140.Zhang H M, Yang J.,. Sun H R,. Xin X,. Wang H D, Chen J P, Adam M. J. 2007.Genomic analysis of rice stripe virus Zhejiang isolate shows the presence of an OTU-like domain in the RNA1 protein and a novel sequence motif conserved within the intergenic regions of ambisense segments of tenuiviruses. Arch Virol 152: 1917–1923
    141.Zhang S, Li , Wang X, Zhou G.2007. Transmission of Rice stripe virus acquired from frozen infected leaves by the small brown planthopper (Laodelphax striatellus Fallen) Journal of Virological Methods 146 (2007) 359–362
    142.Zhu Y, Hayajawa T, Toriyama S, 1992. Compete nucleotide sequence of RNA4 of rice stripe virus isolate T and comparison with anther isolate and with maize stripe virus. Journal of General Virology, 73: 1309-1312
    143.Zhu Y, Hayakawa T, Toriyama S, Takahashi M, 1991. Complete nucleotide sequence of RNA3 of rice stripe virus: an ambisense coding strategy. Journal of General Virology, 72: 763-767.
    144.Zon A , Mossink M H , Schoester M, Scheffer G L , Scheper A J ,Sonneveld P , Wiemer E A C.2002.Structural domains of vault proteins : a role for the coiled coil domain in vault assembly. Biochem Biophys Res Commun. 291:535-541.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700