用户名: 密码: 验证码:
棉田管理信息的遥感提取研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
农田管理是农作的主要内容,其水平是农业生产力的集中表现,其效果直接影响农作物的产量、品质以及生产效益。因此,利用现代科学技术成果“武装”农田管理的各个环节是农业生产顺应社会需求与社会经济发展的必然要求和结果。
     卫星遥感技术是信息科学技术发展的璀璨结晶,作物的长势、产量、种植面积等方面是卫星遥感转入民用的重要应用领域,为农业主管单位快速和宏观的掌握生产信息提供了有效方式。随着作物遥感监测研究及应用的不断深入,遥感监测的内容已不仅仅停留在宏观结果的预报与总结上,更注重作物生产的局部环节,作物遥感监测领域正在孕育“细化监测内容,参与过程管理”的理念,使遥感的作物信息获取内容更为丰富,正适应作物农田管理信息化的时代需求。
     在生产需求调查的基础上,采用田间调查与参数测定、室内化学分析、遥感解译、数据估算与比较等方法,在棉花栽培专家知识、多时相遥感数据、农田背景数据等辅助数据支持下,从土壤质地、棉田保苗数、基于叶面积指数的棉花长势、棉田质量四个方面开展研究,主要研究内容、实施过程及结果如下:
     1)在研究区选择典型质地土壤,进行室内土壤高光谱测定和对应质地的LANDSAT-5多波段光谱提取,比较不同质地光谱反射特征,理清遥感可识别的土壤质地类型。测定了175个土壤样点的质地,分析LANDSAT-5波段反射率后,确定了不同质地土壤的最佳划分波段和划分阈值,对研究区的土壤质地进行了遥感解译和准确性检验,比较了三种土壤质地制图的特点。研究比较了主要质地土壤在棉花播种前后的土壤水、温变化特征以及棉花保苗数差异,分析了不同质地土壤对棉花萌发和破土出苗的影响,探索了影响土壤质地监测的遥感监测的理化基础,讨论得出研究区土壤质地解译的最佳时段。根据以上研究得出,不同质地类型土壤从近红外到中红外光谱反射率差异显著,可明显区分沙土-沙壤土、轻壤土-中壤土、重壤土-粘土三种质地类型土壤,因此在研究区可以使用LANDSAT-5遥感影像实现较高准确度解译,其中轻壤土-中壤土最易错分,重壤土-粘土分类准确度最高。在不同气候条件下土壤质地与土壤水分有稳定的关系,土壤水分状况的差异决定了土壤质地遥感监测的理化基础。在棉花播种前后的裸露棉田,不同质地土壤存在显著的水、温差异,严重影响棉花出苗,高空间分辨率土壤质地遥感解译结果能够指导棉花播种的空间时序。
     2)试验于2007年实地调查了13块棉田(630 hm2),获取了棉田生长密度、经纬度以及播种时间、出苗时间所组成的60个样区数据,每样区3个样点;从播种期到盛花期5个时相的遥感影像提取EVI和DEVI,样本等分为建模数据和模型检验数据;采取分播期和不分播期两种方式分别使用EVI和DEVI建立棉田生长密度估算模型,其决定系数经过显著水平检验后,进行模型估算准确性检验。在研究中,基于LANDSAT-5像元尺度,分析了棉田生长密度监测准确性的影响因子,并提出了改进方法,探索了减弱非棉苗背景空间差异的遥感指数,确立了棉田生长密度遥感监测的最佳时相。并将优势模型应用于2007年和2008年研究区域的棉田生长密度监测。
     根据以上研究得出,出苗时间和土壤等背景因素是影响监测棉田生长密度准确性的主要因素,分播期估算能显著提高棉田保苗数监测的准确性。DEVI可以使棉田留苗密度监测时间提前,现蕾期到开花期是棉田生长密度估算的最佳时段。
     3)于2006-2007年在新疆148团场18块标准条田开展定位试验,共获得255组不同长势棉花的叶面积指数,进行遥感数据预处理,提取棉花对应时间与样点的LANDSAT-5 NDVI、PVI和EVI植被指数,对两年数据进行统一分析,分别随机选择144组和111组数据进行叶面积指数的估算模型建立和检验,选择最佳估算模型进行叶面积指数的示例反演。为实现具有农学意义和农田管理实际意义的定量分级,总结了该区域栽培专家知识的叶面积指数知识,以2007年7月8日和2008年7月11日为例反演了研究区的叶面积指数并结合专家知识对棉花群体长势进行了定量分级。
     研究得出在棉花不同生长阶段选择合适的遥感植被指数有利于提高LAI估算准确度.结合棉花栽培专家LAI知识与叶面积指数遥感估算可以实现棉田长势定量分级,可为大尺度宏观管理和小尺度精细管理提供具有农学分类依据的棉花长势信息。
     4)将棉田质量状况划分为健康棉田、有障碍棉田和疑似有障碍棉田三类,健康棉田界定为棉花各时期生长均正常的区域,各时期棉花长势均处于不正常状态的区域界定为有障碍棉田,各时期棉花长势变异较大的区域界定为疑似有障碍棉田。不同长势的8块棉田作为定位观测区,使用棉花生长盛期多时相的LANDSAT-5各波段反射率数据,探索能较好区分不同长势棉花的波段,建立农田质量分类模型,并由此解译研究区的棉田质量,通过在定位点所测定的叶面积指数、土壤质地、土壤总盐含量验证分类结果,分析该区域棉花质量障碍的主要原因,提出应对不同土壤质量障碍的棉花栽培与耕作措施,指导该区域棉花高产与稳产。
     研究建立了棉花长势指标动态变化与棉田质量的关系,构建了多时相遥感数据诊断棉田质量的模型与程序,利用多时相遥感数据能够获取棉田质量信息。棉田质量诊断结果与地面调查测定相结合,能较好的分析棉田质量障碍的具体因素。
Field managerment is one of the main farming measurements, and its level expresses the production ability comprehensively, the effection of managing field directly influence the yield, qualification, and benefit of crops.Therefore, it is evident that every step of field managerments should be armed with the new achievement of science and technology to meet the society and economy. The agruclutral machine take part in the field management under the industrialization, the resultion was that it liberated man hands and feet, and improve the production efficiency. Under the informatization society, which improvement would field management take? Evidence is mounting that the answer might be the collection, dealing, and decision of field management information automaticly, it would liberate our eyes and ears extremely, it would also increase the depth and breadth of monitoring the crop and field information in face of temporal and spac.
     Satellite remote sensing technology is the shining pearl and fruit of information science and technology. Some contents became the main application including crop growth, yield, and planting area after the technology of satellite remote sensing was used among the people, it provide the high efficient methods to let the agriculture managing unit gasp the field management information quickly and comprehensively. Following the development of rerearch and practice of remote sensing in agriculture, the works don’t just stay in foretelling and concluding the macroscopical appearance, fortunately, some detail plots were payed attention to gradually, the conception, detailing the monior content and anticipate the process, was being breeded in the crop monitoring with remote sensing, and so the information acquainted by remote sensing would be more rich, which meet the informalization era in the field management.
     Based on the requirement discovery, in the research, many methods was used including field investigation and measurement, analysis indoor, interpretation with remote sensing, data estimation and comparision, and much assistant data was also used ,such as the expert knowledge of cotton planting, multi-temporal remote sensing data, field background information, and so on. The four content were researched including soil texture, existing plants of cotton, cotton growth condition based on LAI, and cotton field qualification, the detailed content, its analyzing precess, and the main conclusion as follows:
     1) In the research area, the spectrum with representative texture soil was measured, and the corresponding multi-band spectrum of LANDSAT-5 satellite was also distrilled, these reflections were analyzed to reveal the spectrum difference with different texture soil and make the classable texture type of soil with remote sensing clear. Furthermore, the 175 soil regions in the area were sampled, these textures were tested, and the multi-band reflections of the sample regions were schemed. As a result, the idea band and threshold value, recognizing the soil texture, was ascertained. In ters of the analyzing results above, the soil texture in the research area was interpreted, and the universal ways was used to check the interpretation accuracy. Three results of cartography methods implemented through plotting, GIS, and remote sensing were compared.
     water content, temperature, existing plants and their changes were analyzed, the soil attribute influencing physical basis of interpreting the soil texture was also analyzed, and the situation of cotton germination was analyzed because of the influence of soil texture. The research would conclude the optimal band interpreting the soil texture.
     For the soil with different texture, the spectral refection had the significant difference in the NIR and MIR, three type soil, sandy soil - silty loam, light loam– medium loam, and heavy loam– clay, could be devided. The interpretation accuracy of soil texture was high with LANDSAT-5 satellite, the probability is higher of dividing light loam– medium loam into other two types, and heavy loam– clay had high classification accuracy. Because of the strong relation between the soil texture and soil moisture, the difference of soil moisture is basis of recognizing the different texture soil. During about the planting time, the different texture soil influences the change of water, temperature, and decides the number of existing plants to some extent. The interpretation result of soil texuture with high space resolution could direct the cotton planting with suitable space order.
     2) In 2007, Sixty group sample data, consisting of the existing cotton-seedling density, longitude/latitude, sowing time, emergence time, were obtained through investigating the thirteen fields (630 hm2), and three sample dot data in every sample area were averaged. EVI and DEVI were retrieved up from the images of five times from sowing time to full-flowering. And then sixty group sample data were divided into two equal parts to establish and text models. The linear models were established by data of the middle sowing time and the all three sowing times on the basis of EVI and DEVI, respectively, and the model accuracy was tested by RMSE and REPE. At last, the existing cotton-seedling density at the country scale was retrieved by the best model. In the study, based on the Landsat-5 cell level, having analyzed the factors affecting the estimating accuracy, having explored vegetation indexes to clear up the space information difference of the non-cotton background, having ascertained the optimal time to monitoring the existing cotton-seedling density.
     Emergence time and soil background were the main factors influencing the accuracy of estimating the existing plants, and the estimation of dividing into the different time stages could obviously improve the accuracy. DEVI could raise the estimation in the ealy stage of cotton growing and advace the estimation time. The optimal time estimating the existing plants was from bud stage to flowering stage.
     3) The experiment was carried out in 2006-2007 in Xinjiang, and the eighteen cotton fields were validated as the standard observation station, 255 group data of LAI and NDVI, PVI, EVI from LANDSAT-5 were obtained, and 144 and 111 group data were used to establish the estimation models and test the accuracy of models, respectively. In the research, the estimation levels of three vegetation indexes were compared, and the expert knowledge of LAI was concuded. LAI on the about 70th day from the emergence time were retrieved by the optimal model at the regional scale, the cotton population growth was classified by the right of the 18 person-time expert knowledge of the classic LAI. To complish the qualified classification with the signifance of agriculture and field management, the method was researched through combining the remote sensing with agricultural knowledge. the two years in 2007 and 2008 was demonstrated to retrieve the LAI and classify the cotton growth.
     The index relation is expressed between LAI and NDVI, PVI, and EVI, and the saturation phenomena were evident when vegetation index estimate LAI. It was idea that the suitable vegetation index was chosen to improve the estimation of LAI at the different stages. The qualitative classification would be achieved through combining the expert knowledge and the retrieved result with remote sensing, which could provide the data support with the clear agronomy significance for the growing monitor of cotton.
     4) The cotton field quality conditions were divided into the three styles of the healthy cotton field, handicapped cotton field and suspected cotton field with handicap. The healthy cotton field was defined as the normal growing in the whole stage, the handicapped cotton field was defined as the unnormal growing in the whole stage, and the others was divided into the suspected area with handicap. Eighty cotton fields were used as the sample regions, multi-temporal remote sensing data was used to explore the optimal band and establish the model for classifying the cotton qualification. And then, the main factors, causing the cotton handicap, were proprosed through analyzing the LAI, soil texture, total salty, and exsiting plants. At last, the measurements improving the soil qualification were raised to direct complish the high and steady yield in the region.
     Multi-teporal remote sensing data had the prominent action to research the field qualification, the relation was discovered between the dynamic growth condition of cotton and cotton field qualification, and the model and process were estimated to diagnose the cotton qualification with multi-temporal data. Through the diagnosing result of cotton qualification, investigation and measurement in the field, the delailed facors leading to cotton field handicap chould be found out efficiently.
引文
1.安战士.土壤质量评级指数和障碍因子综合评价初探.土壤通报, 1987, (5): 195 - 199.
    2.柏军华.基于LAI的棉花产量近地遥感模型研究(硕士论文).石河子大学, 2005.
    3.柏军华,李少昆,王克如,隋学艳,陈兵.基于近地高光谱棉花生物量遥感估算模型.作物学报, 2007, 33(2): 311 - 316.
    4.柏军华,李少昆,王克如,王方永,陈兵,初振东.棉花产量遥感预测的L-Y模型构建.作物学报, 2006, 32(6): 840 - 844.
    5.柏军华,李少昆,王克如,张小均,肖春华,隋学艳.棉花叶面积指数冠层反射率光谱响应及其反演.中国农业科学, 2007, 40(1): 63 - 69.
    6.柏军华,李少昆,李静,王克如,谢瑞芝,高世菊,陈兵,王方永,刘国庆,谭海珍.基于多时相棉花长势遥感的棉田质量诊断.中国农业科学, 2008, 41(4): 1003 - 1011.
    7.柏军华,王克如,初振东,陈兵,李少昆.叶面积测定方法的比较研究.石河子大学学报(自然科学版), 2005, 23(2): 216 - 218.
    8.柏军华,李少昆,吴洪永,王克如,谢瑞芝,高世菊,陈兵.基于LANDSAT-5像元尺度的棉田生长密度遥感监测初步研究.中国农业科学, 2009, 42(4): 1197– 1206.
    9.陈怀亮,关文雅,邹春辉,尚红敏. GIS支持下的复杂地形区冬小麦长势遥感监测方法.气象, 1998, 24(8): 21 - 25.
    10.曹红霞,康绍忠,武海霞.同一质地(重壤土)土壤水分特征曲线的研究.西北农林科技大学学报(自然科学版), 2002, 30(1): 9 - 12.
    11.陈明亮,吕国安.江汉平原林业用地土壤质量模糊综合评价.华中农业大学学报, 1990, 9(3): 250 - 257.
    12.陈怀亮,冯定原,邹春辉,关文雅.土壤质地对遥感监测干旱的影响.河南气象, 1999, (3): 28 - 29
    13.党萍莉,肖俊璋.土壤质地对玉米氮肥利用率的影响.陕西农业科学, 1992,(2): 9 - 11.
    14.傅玮东.终霜和春季低温冷害对新疆棉花播种期的影响.干旱区资源与环境. 2001, 15(2): 38 - 43.
    15.傅玮东,李新建,黄慰军.新疆棉花播种-开花期低温冷害的初步判断.中国农业气象, 2007, 28(3): 344 - 346.
    16.高峰.世界棉花生产与进出口贸易概览.中国棉花, 2006, 33(7): 7 - 9.
    17.何维.基于ASAR和生长模拟模型的水稻长势监测研究(博士学位论文).中国林业科学研究院, 2007.
    18.侯振安,王炜,郭琛,邸书新,冶军.不同土壤肥力棉田氮肥适宜用量研究.新疆农业科学, 2004, 41(专刊): 121 - 124.
    19.侯秀玲,张炎,王晓静,李磐,盛建东.新疆超高密度棉田氮肥运筹对产量和氮肥利用的影响.棉花学报, 2006, 18(5): 273 - 278.
    20.侯文广,江聪世,熊庆文,陈继祥.基于GIS的土壤质量评价研究.武汉大学学报(信息科学版),2003, 28(1): 60 - 64.
    21.黄乐珊,李红,孙泽昭.棉花产业在新疆区域经济中的地位.新疆农业科学, 2006, 43(S1): 38 - 41.
    22.黄敬峰,王秀珍.新疆棉花物候与气候条件研究.干旱区资源与环境, 1999, 13(2): 90 - 95.
    23.黄勇,杨青华,李潮海,马二培,刘缓缓.不同质地土壤对高油玉米产量和品质的影响.玉米科学, 2006, 15(2): 71 - 74.
    24.胡月明,吴谷丰,江华,张馨远,徐剑波,李华兴.基于GIS与灰关联综合评价模型的土壤质量评价.西北农林科技大学学报(自然科学版), 2001, 29(4): 39 - 43.
    25.胡春胜.土壤质量诊断与评价理化指征及其应用.中国生态农业学报, 1999, 7(3): 16 - 18.
    26.胡月明,吴谷丰,江华,张馨远,徐剑波,李华兴.基于GIS与灰关联综合评价模型的土壤质量评价.西北农林科技大学学报(自然科学版), 2001, 29(4): 39 - 43.
    27.韩巧霞,郭天财,高松洁,阎凌云,方保廷.不同质地土壤冬小麦灌浆期籽粒蛋白质和淀粉含量变化动态.河南农业科学, 2004, (6): 11 - 13.
    28.韩巧霞,郭天财,王化岑,王永华,阎凌云.不同土壤质地条件下小麦旗叶全氮和籽粒蛋白质含量的变化.麦类作物学报, 2007, 27(4): 677 - 681.
    29.韩巧霞,郭天财,王化岑,刘万代,王永华.土壤质地对冬小麦旗叶可溶性蛋白含量及籽粒干物质积累动态的影响.河南农业科学, 2006, (12): 20 - 23.
    30.韩光一.试论棉花密矮早栽培量化指标.新疆农垦科技, 1996, (6): 5 - 6.
    31.付庆瑛.对我国土壤质地分类的管见.土壤, 1987, (4): 212 - 214.
    32.解文艳,樊贵盛.土壤质地对土壤入渗能力的影响.太原理工大学学报,2004, 35(5): 537 - 540.
    33.蒋玉衡.土壤质地野外鉴别法.新农业, 1980, (13): 32.
    34.江东,王乃斌,杨小唤,刘红辉. NDVI曲线与农作物长势的时序互动规律.生态学报, 2002, 22(2): 247 - 253.
    35.贾玉玲.棉花超高密度栽培试验与示范.新疆农业大学学报, 2004, 27(4): 60 - 62.
    36.焦黎,王勇辉,张高,樊洁.艾比湖湖区土壤质地测定及其分析.新疆师范大学学报(自然科学版), 2007, 26(1): 74 - 77.
    37.方学良.不同质地土壤的温度状况对冬小麦生长的影响.土壤肥料, 1983, (4): 14 - 16.
    38.廖楚江,王长耀,李红,杨朋润.基于地质统计学影像纹理的石河子地区化控期棉花长势监测.农业工程学报, 2006, 22(8):135 - 139.
    39.雷斌,黄乐平,张云生,白灯莎,徐公赦,蔡红梅,常晓春.棉花种衣剂田间筛选研究初报.新疆农业科学, 2005, 42(6): 392 - 394.
    40.林大仪.土壤学实验指导.中国林业出版社,2004,183 - 187.
    41.闵祥军,朱永豪.基于Landsat-TM图像自身的反射率反演方法.遥感技术与应用, 1997, 12(3): 1– 9.
    42.李海鹰,苗放,孔祥生,胡玉枝,李海燕.基于6S模型的土法炼焦污染区TM遥感图像大气校正.内蒙古石油化工, 2006, (6): 140– 144.
    43.李少昆,张旺锋,马富裕,王克如,慕自新.北疆超高产棉花(皮棉2000kg·hm2)生理特性研究.作物学报, 2000, 26(4): 508-512.
    44.李蒙春,李正河,薛兆良,李正尚,罗巨海,段瑞平,刘忠元,季新.不同种植密度对棉花生育动态及产量的影响.新疆农业大学学报, 2002, 25(3): 32 - 35.
    45.李蕾,娄春恒,文如镜,阎建庆.新疆不同密度下棉花N、P吸收及其分配研究.西北农业学报, 1999, 8(1): 37 - 39.
    46.李静,柳钦火,刘强,刘良富,柏军华,李少昆.基于波谱知识的CBERS-02卫星图像棉花像元识别方法研究.中国科学E辑, 2005, 35(增刊): 141 - 155.
    47.李红军,郑力,雷玉平,李春强,周戡.基于EOS/MODIS数据的NDVI与EVI比较研究,地理科学进展, 2007, 26(1): 26 - 32.
    48.李郁竹,钱栓.小麦生长及环境背景的气象卫星遥感监测.遥感信息, 1995, (4): 7 - 11.
    49.李卫国,王纪华,赵春江,童庆禧,刘良云.基于TM影像的冬小麦苗期长势与植株氮素遥感监测研究.遥感应用, 2007, (2): 12 - 15.
    50.刘爱霞,王长耀,刘正军,牛铮.基于RS与GIS的干旱区棉花信息提取及长势监测.地理与地理信息科学, 2003, 19 (4): 101 - 104.
    51.李潮海,李胜利,王群,侯松,荆棘.不同质地土壤对玉米根系生长动态的影响.中国农业科学, 2004, 37(9): 1334 - 1340.
    52.来剑斌,王永平,蒋庆华,王金栋,王全九.土壤质地对潜水蒸发的影响.西北农林科技大学学报(自然科学版), 2003, 31(6): 153 - 157.
    53.李晓斌,孙海燕.不同土壤质地的滴灌点源入渗规律研究.科学技术与工程, 2008, (15): 4292– 4295.
    54.李潮海,王小星,王群,郝四平.不同质地土壤玉米根际生物活性研究.中国农业科学,2007, 40(2): 412 - 418.
    55.刘庆生,刘高焕,赵军.土壤类型、质地和土地类型对土壤盐渍化水平的指示.中国农学通报, 2008, 28(1):297 - 300.
    56.李卫国,李秉柏,王志明,张娅香,黄晓军.作物长势遥感监测应用研究现状和展望.江苏农业科学, 2006, (3): 12 - 15.
    57.李剑萍.气象卫星作物长势监测及产量预报系统.气象科技, 2002, 30(2): 108 - 111.
    58.李蕾,娄春恒,文如镜,谢迪佳.新疆不同密度下棉花干物质积累及其分配规律研究.西北农业学报, 1996, 5(2): 10 - 14.
    59.罗宏海,朱建军,张旺锋,张卫国,徐公赦,郭世民,潘生龙.不同配置方式对棉花冠层结构及产量的影响.新疆农业科学, 2004, 41(4): 240 - 243.
    60.李少昆,王崇桃,张旺锋,汪朝阳.北疆高产棉花根系生长规律的研究Ⅱ栽培措施对根系及地上部生长的影响.石河子大学学报(自然科学版), 1999, 3(S1): 27 - 30.
    61.李敏,龚绍琦.基于GIS的涝渍地土壤质量综合评价.江西农业大学学报(自然科学版), 2004, 26(2): 309 - 303.
    62.李桂林,陈杰,檀满枝,孙志英.基于土地利用变化建立土壤质量评价最小数据集.土壤学报, 2008, 45(1): 16 - 24.
    63.刘世梁,傅伯杰,刘国华,马克明,.我国土壤质量及其评价研究的进展.土壤通报, 2006, 37(1): 137 - 143.
    64.刘世梁,傅伯杰,陈利顶,丘君,吕一河.两种土壤质量变化的定量评价方法比较.长江流域资源与环境, 2003, 12 (5): 422 - 426.
    65.刘小平,邓孺孺,彭晓鹃.基于TM影象的快速大气校正方法.地理科学, 2005, 25(1): 87– 93.
    66.刘世梁,傅伯杰,吕一河,陈利顶,马克明.坡面土地利用方式与景观位置对土壤质量的影响.生态学报, 2003, 23(3): 414 - 419.
    67.刘崇洪.几种土壤质量评价方法的比较.干旱环境监测, 1996, 10(1): 27 - 29.
    68.李毅,邵明安,王文焰,王全九,张建丰,来剑斌.质地对土壤热性质的影响研究.农业工程学报,2003, 19(4): 62 - 65.
    69.刘晓冰,邢宝山, Stephen J. Herbert.土壤质量及其评价指标.农业系统科学与综合研究, 2002, 27(2): 71 - 75.
    70.刘占锋,傅伯杰,刘国华,朱永官.土壤质量与土壤质量指标及其评价.生态学报, 2006, 26(3): 901 - 913.
    71.刘忠成,彭安龙,任伟冬.土壤质地对玉米生育后期叶片衰老的影响.黑龙江科技信息, 2008, (10): 118.
    72.吕月亭.土壤质地与肥力的关系及其改良途径.河北农业科技,2003, (2): 22.
    73.吕建海,陈曦,王小平,包安.大面积棉花长势的MODIS监测分析方法与实践.干旱区地理. 2004, 27(1): 118 - 123.
    74.吕建海,陈曦,王小平,包安明.大面积棉花长势的MODIS监测分析与实践.干旱区地理, 2004, 27(1): 118 - 123.
    75.马黎春,盛建东,蒋平安,汤庆峰.克拉玛依干旱生态农业区土壤质地的空间异质性研究.干旱区地理, 2006, 29(1): 109 - 104.
    76.马顺喜,刘瑾霞.土壤质地田间简便鉴定法.农业科技通讯, 1998, (4): 26.
    77.马富裕,郑重,赵志鸿,王峰,李蒙春.新疆北疆棉花高产群体因素分析及其栽培技术途径.棉花学报, 2002, 14(2): 91 - 94.
    78. Leon Lyles ,John Tatarko,王密侠.风蚀对土壤质地及有机质含量的影响.水土保持科技情报, 1988, (1) : 58 - 60.
    79.蒙继华,吴炳方,李强子.全国农作物叶面积指数遥感估算方法.农业工程学报, 2007, 23(2): 160-167.
    80.宁新柱,邓福军,李吉莲,余渝,谢宏林.棉花高密度栽培配套农艺措施的研究.新疆农业大学学报, 2002, 25(3): 36 - 39.
    81.潘学标,李玉娥.新疆棉花生产区域评估系统研究.中国农业科学, 2003, 36(1): 37 - 43.
    82.彭虓,张树文.基于NDVI与LAI的水稻生长状况研究.遥感技术与应用, 2002, 17 (1): 12 - 16.
    83.裴志远,杨邦杰.多时相归一化植被指数NDVI的时空特征提取与作物长势模型设计.农业工程学报, 2000, 16(5): 20 - 22.
    84.程乾.基于MOD09产品的水稻叶面积指数和叶绿素含量的遥感估算模型.应用生态学报,2006, 17(8): 1453 - 1458.
    85.齐伟,张凤荣,牛振国,黄勤,徐艳.土壤质量时空变化一体化评价方法及其应用.土壤通报, 2003, 34(1): 1 - 5.
    86.邱胜彬,张江辉,刘诚明.浅析土壤质地及结构对潜水蒸发的影响.水土保持研究, 1996, 3(3): 30 - 34.
    87.宋庆平,陈谦,陈红,苟春红.新疆棉田病虫害防治策略与技术展望.中国棉花, 2002, 29(12): 7 - 9.
    88.邵华,石庆华,赵小敏,.基于GIS的江西省耕地土壤质量评价研究江西农业大学学报, 2008, 26(6): 108 - 110.
    89.田耀华,冯玉龙,.微生物研究在土壤质量评估中的应用.应用与环境生物学报, 2008, 14(1): 132 - 137.
    90.田光进,庄大方,刘明亮.近10年中国耕地资源时空变化特征.地球科学进展, 2003, 18(1): 30 - 36.
    91.孙波,赵其国,张桃林,俞慎.土壤质量与持续环境─Ⅲ.土壤质量评价的生物学指标.土壤, 1997, (5): 225 - 234.
    92.孙微微,胡月明,刘才兴,薛月菊.基于决策树的土壤质量等级研究.华南农业大学学报(自然科学版), 2005, 14(3): 51 - 53.
    93.王群,李潮海,张永恩,郝四平,刘松涛.不同质地土壤夏玉米生育后期叶绿素荧光特性比较研究.安徽农业科学,2006, 34 (21): 5476 - 5479.
    94.王文静,何金环,连艳鲜.土壤质地对小麦SPS、SS活性及其与淀粉合成关系的影响.作物学报, 2008, 34(10): 1836 - 1842.
    95.王群,李潮海,栾丽敏,宋连启,高素玲,刘松涛,韩锦峰.不同质地土壤夏玉米生育后期光合特性比较研究.作物学报, 2005, 31(5): 628 - 633
    96.王茹,张凤荣,王军艳,贾小红,张彩月.潮土区不同质地土壤的养分动态变化研究.土壤通报, 2001, 32(6): 255 - 257.
    97.王庆锁.土壤质地与播种深度对苜蓿出苗率的影响(简报).草地学报, 2001, 9(3): 239 - 243.
    98.王晓丹,倪师军,张成江.成都市土壤质量的模糊综合评价.物探化探计算技术, 2006, 28(1): 46 - 48.
    99.王博文,陈立新.土壤质量评价方法述评.中国水土保持科学, 2006, 4(2): 120 - 126.
    100.王春艳,礒田昭弘,王道龙,李茂松,阮明艳,苏跃.新疆石河子棉区高密条件冠层结构和光分布特征.棉花学报, 2006, 18(4): 223 - 227.
    101.王德保,陈宝行,崔淑文.土地利用动态遥感监测应用研究.测绘通报, 2004, (2): 46 - 49.
    102.汪逢熙,温云书,蔡养廉,陈侍珂.棉花遥感识别的最佳时相及地面模式研究.河南科学, 1990, 8(3): 152 - 159.
    103.王召海.棉花种植面积遥感调查研究.遥感信息, 1999, (1): 27 - 30.
    104.王正兴,刘闯,赵冰茹,刘爱军.利用MODIS增强型植被指数反演草地地上生物量.兰州大学学报(自然科学版), 2005, 41(2): 10 - 16.
    105.王正兴,刘闯,陈文波,林昕. MODIS增强型植被指数EVI与NDVI初步比较.武汉大学学报(信息科学版), 2006, 31(5): 407 - 140.
    106.王长耀,林文鹏.基于MODIS/EVI的冬小麦产量遥感预测研究.农业工程学报, 2005, 21(10): 90 - 94.
    107.王克如,李少昆,宋光杰,陈刚,曹栓柱.新疆棉花高产栽培生理指标研究.中国农业科学, 2002, 35(6): 638 - 644
    108.王延颐.植被指数与水稻长势及产量结构要素关系的研究.国土资源遥感, 1996, 27(1): 56 - 59.
    109.韦全生.新疆棉花可持续发展的探讨.新疆农垦科技, 1999, (1): 7 - 8.
    110.宋巍巍,管东生.五种TM影像大气校正模型在植被遥感中的应用.应用生态学报, 2008, 19(4): 769– 774.
    111.伍育鹏,郧文聚,李武艳.用标准样地进行耕地质量动态监测与预警探讨.中国土地科学, 2006, 20(4): 40 - 45.
    112.吴国梁,崔秀珍.不同土壤肥力和质地对强筋小麦产量和品质的影响.河南职业技术师范学院学报, 2004, 32(4): 1 - 2.
    113.吴世新,周可法,刘朝霞,张琳,乔木,岳健,张雪艳.新疆地区近10年来土地利用变化时空特征与动因分析.干旱区地理, 2005, 28(1): 52 - 58.
    114.吴海平,严泰来,张玮,李柳霞.模板法自动提取遥感图像耕地变化信息的研究.农业工程学报, 2003, 19(6): 159 - 62.
    115.吴炳方,张峰,刘成林,张磊,罗治敏.农作物长势综合遥感监测方法.遥感学报, 2004, 8(6): 498 - 514.
    116.吴素霞,毛任钊,李红军,侯美亭,杨帆.中国农作物长势遥感监测研究综述.中国农学通报, 2005, 21 (3): 139 - 145.
    117.吴炳方,曾源,黄进良.遥感提取植物生理参数LAI/FPAR的研究进展与应用.地球科学进展, 2004, 19(4): 585 - 590.
    118.吴玉堂,丁伟.土壤质地对烤烟叶中钾含量的影响.硅谷, 2008, (16): 3.
    119.武建军,杨勤业.干旱区农作物长势综合监测.地理研究, 2002, 21(5): 593 - 598.
    120.新疆维吾尔自治区林业厅.新疆荒漠化和沙化状况公报,新疆林业,2006,(4):9 - 10、10.
    121.邢世和,黄吉,黄河,毛艳铃.区域耕地质量评价与合理利用对策.土壤通报, 2003, 34(1): 6 - 10.
    122.徐文修,杨媛媛,张巨松.棉田抗暴灾多熟种植模型及其综合效益分析.棉花学报, 2006, 17(3): 160 - 164.
    123.徐春燕,冯学智. TM图像大气校正及其对地物光谱响应特征的影响分析.南京大学学报(自然科学), 2007, 43(3): 309– 317.
    124.香宝,张增祥,布和敖斯尔.基于遥感的农林牧交错带耕地动态变化及管理研究.资源科学, 1999, 21(6):9 - 12.
    125.夏学齐,田庆久,杜凤兰.遥感提取叶面积指数的地形影响分析.遥感信息, 2004, (2): 16 - 19.
    126.许咏梅,王讲利,刘骅.应用综合评分法评价新疆灰漠土土壤质量的研究.土壤通报, 2005,36(4): 465 - 468.
    127.熊东红,贺秀斌,周红艺.土壤质量评价研究进展.世界科技研究与发展, 2005, 27(1): 71 - 75.
    128.杨子山. 2007/2008年度全球棉花供求预测.中国棉花, 2007, (5): 47.
    129.杨媛媛,徐文修,张巨松.冰雹灾害对不同棉花品种(系)生长发育及产量的影响.新疆农业科学2004, 41(6): 402 - 406.
    130.杨邦杰,裴志远,焦险峰,张松岭.基于CBERS-01卫星图像的新疆棉花遥感监测技术体系.农业工程学报, 2003, 19(6): 146 - 149.
    131.杨嘉,郭铌,贾建华.西北地区MODIS/NDVI与MODIS/EVI对比分析.干旱气象, 2007, 25(1): 38 - 43.
    132.杨邦杰,裴志远.农作物长势的定义与遥感监测.农业工程学报, 1999, 15(3): 214 - 218.
    133.杨青华,黄勇,马二培,刘媛媛,李潮海.不同质地土壤对高油玉米子粒灌浆特性及产量的影响.玉米科学, 2007, 15(3):71 - 74.
    134.余涛,田国良.小麦时面积指数、覆盖率之间关系及遥感数值估算.遥感信息, 1993, (2): 19 - 22.
    135.闫凌云,赵喜茹,郭天财,王应君,韩巧霞.土壤质地对冬小麦淀粉组分积累动态及直支比的影响.河南农业科学,2006, (10): 16 - 19.
    136.闫岩,柳钦火,刘强,李静,陈良富,.基于遥感数据与作物生长模型同化的冬小麦长势监测与估产方法研究.遥感学报, 2006, 10(5): 804 - 811.
    137.阎凌云,郭天财,高松洁,王应君,韩巧霞.土壤质地对冬小麦淀粉积累的影响.河南农业科学, 2006, (11) : 26 - 29.
    138.姚军,张有山.土壤质地类型与其基础肥力相关性.北京农业科学, 1998, 16(4): 33 - 34.
    139.姚源松.棉花高密度矮化栽培高产优质的潜力.新疆农业大学学报, 1994, 17(4): 29 - 31.
    140.姚源松.新疆棉花高产优质途径.新疆农业科技, 1993, (1): 15.
    141.赵思峰.新疆盐碱地的综合治理研究.农机化研究, 2006, (9):33 - 34.
    142.张怀志,朱艳,曹卫星,张立桢.棉花产量目标和产量结构的动态知识模型.棉花学报, 2003, 15(5):279 - 283.
    143.张会民,刘红霞.土壤与植物营养实验实习教程.西北农林科技大学出版社, 2004, 17.
    144.张旺锋,王振林,余松烈,李少昆,房建,童文崧.种植密度对新疆高产棉花群体光合作用、冠层结构及产量形成的影响.植物生态学报, 2004, 28(2): 164 - 171.
    145.张旺锋,王振林,余松烈,李少昆,曹连莆,王登伟.氮肥对新疆高产棉花群体光合性能和产量形成的影响.作物学报, 2002, 28(6): 789 - 796.
    146.张巨松,周抑强,陈冰,张权中,贺宾.棉花“矮、密、早”高产栽培调控机理的研究.新疆农业大学学报, 1999, 22(4):283 - 288.
    147.张建华,李迎春.棉花主要病害与气象,新疆气象, 1999, 21(6): 42 - 43.
    148.张明伟,周清波,陈仲新,周勇,刘佳,蔡崇法.基于MODISEVI时间序列的冬小麦长势监测.中国农业资源与区划, 2007, 28(2): 29 - 33.
    149.张雪芬,陈怀亮,邹春辉,陈东. GIS支持下的小麦区域化苗情遥感监测应用研究.南京气象学院学报, 1999, 22(1): 116 - 120.
    150.张仁华,孙晓敏,朱治林.叶面积指数的快速测定方法—植被定量遥感的地面标定技术.国土资源遥感, 1998, 35(1): 54 - 60.
    151.张峰,吴炳方,刘成林,罗治敏.利用时序植被指数监测作物物候的方法研究.农业工程学报, 2004 , 20(1): 155 - 159.
    152.张爱民,马晓群.大面积农作物苗情长势的气象卫星遥感统计方法研究.安徽地质, 1997, 7(1): 27 - 29.
    153.张华,张甘霖.土壤质量指标和评价方法.土壤, 2001, (6): 326 - 333.
    154.张鹏飞,田长彦,卞卫国,吕昭智.克拉玛依农业开发区土壤质量评价指标的筛选.干旱区研究, 2004, 21(2): 166 - 170.
    155.张贞,魏朝富,高明,邵景安,秦建成,.土壤质量评价方法进展.土壤通报, 2006, 37(5): 999 - 1006.
    156.张淑英.不同质地土壤的生产特性及改良利用.河北农业科技, 2000, (7): 23.
    157.张振华,杨润亚,蔡焕杰,李庆志.土壤质地、密度及供水方式对点源入渗特性的影响.农业系统科学与综合研究, 2004, 20(2): 81 - 84.
    158.张孝中.黄土高原土壤颗粒组成及质地分区研究.中国水土保持, 2002, (3): 11 - 13.
    159.张心昱,陈利顶.土壤质量评价指标体系与评价方法研究进展与展望.水土保持研究, 2006, 13(3): 30 - 34.
    160.赵振勇,田长彦,马英杰,吕昭智,王平.高密度种植下棉花群体质量主要指标研究.干旱地区农业研究, 2004, 22(3): 9 - 13.
    161.赵其国,孙波,张桃林.土壤质量与持续环境Ⅰ.土壤质量的定义及评价方法.土壤, 1997, (3): 113 - 120.
    162.郑昭佩,刘作新.土壤质量及其评价.应用生态学报, 2003, 14(1): 131 - 134.
    163.宗月香.浑善达克沙地气候因子与土壤质地相关性初探.内蒙古大学学报(自然科学版), 2003, 34(3): 334 - 336.
    164. Abd El Kader Douaoui, HervéNicolas, Christian Walter. Detecting salinity hazards within a semiarid context by means of combining soil and remote-sensing data. Geoderma, 2006, 134: 217 - 230
    165. Al-Abbas, Swain H. H., Baumgardner M. F. Relating organicmatter and clay content to the multispectral radiance of soil. Soil Science, 1972, 114: 477 - 485.
    166. AliKerem Saysel. A dynamic model of salinization on irrigated lands. Ecological Modelling, 2001, 13(9): 177 - 199.
    167. Alchanatis V, Ridel L, Hetzroni A, Yaroslavsky L. Weed detection in multi-spectral images of cotton fields. Computers and Electronics in Agriculture, 2005, 47: l243 - 260.
    168. Bai J H, Li S K, Wang K R, Sui X Y, Chen B, Wang F Y. Estimating Aboveground Fresh Biomass of Different Cotton Canopy Types with Homogeneity Models Based on Hyper Spectrum Parameters. Agricultural Sciences in China, 2007, 6(4): 437 - 445.
    169. Bao B. R. M., Sankar T. R. Dwivedi R. S. Spectral behavior of salt-affected soils. Internat ional Journal of Remote Sensing, 1995, 16(12): 2125 - 2136.
    170. Beyene A, Gibbon D, Haile M. Heterogeneity in land resources and diversity in farming practices in Tigray, Ethiopia. Agricultural Systems, 2006, 88: 61 - 74.
    171. Ben-Dor E, Levin N, Singer A, Karnieli A, Braun O, Kidron G J. Quantitative mapping of the soil rubification process on sand dunes using an airborne hyper-spectral sensor. Geoderma, 2005: 1 -21.
    172. Bowers S. A., Hanks R. T. Reflection of radiant energy from soil. Soil Science, 1965, 100: 130 - 138.
    173. Boegh E, H. Broge S N, Hasager C B, Jensen N O, Schelde K, Thomsen A. Airborne multi-spectral data for quantifying leaf area index, nitrogen concentration, and photosynthetic efficiency in agriculture. Remote Sensing of Environment, 2002, (81) :179 - 93.
    174. Bui E. N. V. egetation indicators of salinity in northern Queensland. Austral Ecology, 2003, 28(9): 539 - 552.
    175. Brian D. W., Stephen L. E., Jude H. K. Analysis of time-series MODIS 250 m vegetation index data for crop classification in the U. S. Central Great Plains. Remote Sensing of Environment, 2007, 108(3): 290 - 310.
    176. Christopher J. Clarke, Richard W. Bell. Incorporating geological effects inModeling of revegetation strategies for salt affected landscapes. Environmental Management, 2001, 24(1): 99 - 109.
    177. Dennis Wichelns. An economic model of waterlogging and salinization in arid regions. Ecological Economics, 1999, 30(2): 475 - 491.
    178. Dehaan R. L., Taylor G. R. Field-derived spectra of salinized soils and vegetation as indicators of irrigation induced soil salinization. Remote Sensing of Environment, 2002, 63(2): 406 - 417.
    179. Doraiswamy P C, Hatfield J L, Jackson TJ, Akhmedov B, Prueger J, Stern A. Crop condition and yield simulations using Landsat and MODIS. Remote Sensing of Environment, 2004, 92:548 - 559.
    180. Doraiswamy P C, Hatfield J L, Jackson T J, Akhmedov B, Prueger J, A. Stern. Crop condition and yield simulations using Landsat and MODIS. Remote Sensing of Environment, 2004, 92: 548 - 559
    181. Dwivedi R. S. The selection of the best possible Landsat TM band combination for delineating salt-affected soils. International Journal of Remote Sensing, 1992, 13(11): 2051 - 2058.
    182. Eva Boegh, Soegaarda H, Brogeb N, Hasagerc C B, Jensenc N O, Scheldeb K, Thomsen A. Airborne multi-spectral data for quantifying leaf area index, nitrogen concentration, and photosynthetic efficiency in agriculture. Remote Sensing of Environment, 2002, (81): 179 - 193
    183. Falkenberg N R, Piccinni G, Cothren J T, Leskovar D I, Rush C M. Remote sensing of biotic and abiotic stress for irrigation management of cotton.. Agricultural water management, 2007, 87: 23 - 31.
    184. Gerrit Hoogenboom. Contribution of agrometeorology to the simulation of crop production and its applications. Agricultural and Forest Meteorology, 2000, 103: 137 - 157
    185. Grant R. Cramer. Differential effects of salinity on leaf elongat ion k inet ics of three grass species.Plant and Soil, 2003, 25(3): 233 - 244.
    186. Hongliang Fang, Shunlin Liang, Andres Kuusk. Retrieving leaf area index using a genetic algorithm with a canopy radiative transfer model. Remote Sensing of Environment, 2003, 85: 257 - 270.
    187. Kirkby S. D. Integrating a GIS with an expert system to identify and manage dryland salinization. Applied Geograph, 1996, 16(4): 289 - 303.
    188. Lambert K. Smedema, Karim Shiati. Irrigation and salinity: a perspect ivereview of the salinity hazards of irrigation development in the arid zone. Irrigation and Drainage Systems, 2002, 16(3): 161-174.
    189. Lawless C, Semenov M-A, Jamieson P-D. A wheat canopy model linking leaf area and phenology. Europ. J. Agronomy, 2005, (22): 19 - 32
    190. Liu D S, Kelly M, Gong P. A spatial - temporal approach to monitoring forest disease spread using multi-temporal high spatial resolution imagery. Remote Sensing of Environment, 2006, 101(2): 167 - 180.
    191. Lozano F J, Susana S S, Estanislao L. Assessment of several spectral indices derived from multi-temporal landsat data for fire occurrence probability modeling. Remote Sensing of Environment, 2007, 107(4): 533– 544.
    192. Loyd D. A phonological classification of terrestrial vegetation cover using short wave vegetation index imagery. International Journal of Remote Sensing, 1990, 11(12): 2269 - 2279
    193. Metternicht G. I. Remote sensing of soil salinity potentials and constraints. Remote Sensing of Environment, 2003, 64(5): 1 - 20.
    194. Mutlu Ozdogan, Curtis E. Woodcock. Resolution dependent errors in remote sensing of cultivated areas. Remote Sensing of Environment, 2006, 103(2): 203 - 217.
    195. Ning S K, Chang N B, Jeng K Y, Teng Y H. Soil erosion and non-point source pollution impacts assessment with the aid of multi-temporal remote sensing images. Journal of Environmental Management, 2006, 79(1): 88 - 101
    196. Pamela L. Nagler, Edward P. Glenn, T. Lewis Thompson, Alfredo Huete. Leaf area index and normalized difference vegetation index as predictors of canopy characteristics and light interception by riparian species on the Lower Colorado River. Agricultural and Forest Meteorology, 2004, 125(1, 2): 1 - 17
    197. P. M. Hansen, J. K. Schjoerring. Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression. Remote Sensing of Environment, 2003, 86(4): 542 - 553
    198. Roy D P, Lewis P E, Justice C O. Burned area mapping using multi-temporal moderate spatial resolution data bidirectional reflectance model-based expectation approach. Remote Sensing of Environment, 2002, 83(1, 2): 263 - 286.
    199. Ross S L, Joseph F K, Jayantha E, John G L, Dorsey W. Land-cover change detection usingmulti-temporal MODIS NDVI data. Remote Sensing of Environment, 2006, 105(2): 142 - 154.
    200. Richard E-P, Thomas A-K, Lowell J-Z, Daniel S-M. A qualitative simulation model for cotton growth and development. Computers and Electronics in Agriculture, 1998, 20(2): 165 - 183
    201. Shabanov N V, Wang Y, Buermann W, Dong J, Hoffman S, Smith G R, Tian Y, Knyazikhin Y, Myneni R B. Effect of foliage spatial heterogeneity in the MODIS LAI and FPAR algorithm over broadleaf forests. Remote Sensing of Environment, 2003, 85(4): 410 - 423
    202. Sommerfeldt T. G., Thompson.M. D., P ront N. A. Delineation and mapping of soil salinity in southern alberta from landsat Data. Canadian Journal of Remote Sensing, 1985, 10(2): 104-118.
    203. Swain P. H., Davis S. M. RemoteSensing: The Quantitative Approch. McGRAW HILL International Book Company, 1978. 153 - 160.
    204. Taylor G. R., et al. Characterization of saline soils using Airbrone Radar Imagery. Remote Sensing of Environment, 1996, 57(3): 127 - 142.
    205. Weissa J L, Gutzlera D S, Coonrodc J E A, Dahm C N. Long-term vegetation monitoring with NDVI in a diverse semi-arid central New Mexico, USA. Journal of Arid Environments, 2004, 58(2): 249 - 272.
    206. Wang Q, Adiku S, Tenhunen J, Granier A. On the relationship of NDVI with leaf area index in a deciduous forest site. Remote Sensing of Environment, 2005, 94(2): 244 - 255.
    207. Warren B. Cohen, Thomas K. Maiersperger, Stith T. Gower, David P. Turner. An improved strategy for regression of biophysical variables and Land-sat ETM+ data. Remote Sensing of Environment, 2003, 84(4): 561– 571.
    208. Wendroth O, Reutera H, Kersebaum K C. Predicting yield of barley across a landscape: a state-space modeling approach. Journal of Hydrology, 2003, 272(1 - 4): 250 - 263.
    209. Xiao X M, Boles S, Frolking S, Li C S, Babu J Y, Salas W, Moore B. Mapping paddy rice agriculture in South and Southeast Asia using multi-temporal MODIS images. Remote Sensing of Environment, 2006, 100(1): 95 - 113.
    210. Yuhong Tiana, Curtis E. Woodcock, Yujie Wang, Jeff L. Privette. Multiscale analysis and validation of the MODIS LAI product II. Sampling strategy. Remote Sensing of Environment, 2002, 83(3): 431 - 441
    211. Zhan X, Sohlberg R A, Townshend J R G, DiMiceli C, Carroll M L, Eastman J C, Hansen M C, DeFries R S. Detection of land cover changes using MODIS 250 m data. Remote Sensing of Environment, 2002, 83(1 - 2): 336 - 350.
    212. Zhao D L, Reddy K R, Kakani V G, Read J J, Koti S. Canopy reflectance in cotton for growth assessment and lint yield prediction. Europ. J. Agronomy, 2007, 26(3): 335 - 344.
    213. Zheng D L, Rademacher J, Chen J Q, Crow T, Bresee M, Moine J L, Soung-Ryoul Ryu. Estimating aboveground biomass using Landsat 7 ETM+ data across a managed landscape in northern Wisconsin, USA. Remote Sensing of Environment, 2004, 93(3): 402 - 411.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700