用户名: 密码: 验证码:
中国农业氧化亚氮排放及减排潜力研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人类活动引起的温室气体浓度的增加是气候变化的主要原因之一。我国是农业大国,农业不仅提供了生产和生活资料,也是N2O的重要排放源。因此研究我国农业N2O排放量及其未来变化趋势,对于正确认识农业对气候变化的贡献具有重要的意义。本文首先研究了IPCC温室气体清单编制方法以及CO2浓度升高对农田N2O排放的影响,然后利用GAINS模型和“牲畜和粮食产量动态模型”模拟了不同情景下我国农业N2O排放以及农田N2O减排潜力。主要得出以下结论:
     (1)通过对比分析《2006年IPCC指南》与《1996年IPCC指南》和《2000年IPCC指南》的不同,总结了《2006年IPCC指南》的新特点。粪便管理中除了液体/泥肥和用厚铺垫的家牛和猪的排放因子以外,其他排放因子都低于1996年和2000年的排放因子。管理土壤中N2O直接排放因子(EF1)由0.0125变为0.01 kg N2O-N/kg N。氮的淋溶和径流的排放因子(EF5)由0.025变为0.0075 kg N2O-N/(kg N淋溶和径流)。同时根据排放源的重要性和数据的可获得性,给出了三层估算N2O排放量的计算方法。《2006年IPCC指南》对活动水平数据和国家特定排放因子的要求越来越高,因此我国需进一步加强农业N2O排放因子的研究,逐步建立国家温室气体清单数据统计系统,将《2006年IPCC指南》要求的所有数据纳入国家数据统计系统之中。
     (2)CO2浓度升高抑制了农田N2O排放,随着氮肥施用量的增加,CO2的抑制作用逐渐减弱。常规氮肥处理和无氮肥处理的CO2抑制作用显著,而低氮肥处理的CO2抑制作用不显著。同时CO2浓度升高降低了氮肥施用导致的农田N2O排放,但是差异不显著。
     (3)2000到2030年间,由于动物养殖数量和氮肥用量的增加,我国农业N2O排放呈递增的趋势。在INMIC_中情景下,2000年我国农业N2O排量为1533 kt,到2030年N2O排放量增长了31%。其中农田作为我国农业N2O的最大排放源,占农业N2O排放量的80%。到2030年,INMIC_中情景下的农田N2O排放量为1258 kt,增长了37%,而粪便管理系统中的N2O排放量只增加了3%。就区域分布而言,我国农业N2O排放主要集中在山东、河南、四川、河北、江苏、湖南、云南、安徽等省。
     (4)在分析了减排措施的效果、成本以及在我国的适应性基础上,用GAINS模型模拟了减少氮肥施用量、优化施肥、使用硝化抑制剂和精准农业四种减排措施的农田N2O减排潜力。到2030年通过氮肥的深施、混施等方式,我国可以减少氮肥用量1900 kt N,节约成本78亿元,减少N2O排放85 kt。通过施用长效肥料、缓效肥料等优化施肥措施,2030年可以减少氮肥1580 kt N,节约成本65亿元,减少N2O排放70 kt。但是减少氮肥施用量和优化施肥没有改变农田N2O排放增长的趋势。而通过使用硝化抑制剂可以明显降低农田N2O排放,在2015年左右农田N2O排放达到峰值,之后逐渐降低,到2030年减排效果为320 kt N2O。精准农业是未来农业的发展目标,但是资金和技术的投入暂时无法定量估价,通过发展精准农业,2030年可以减少140 kt N2O排放。
Increase in greenhouse gas emissions resulted by human activities is one of the key reasons for climate change. As a big agricultural country, China’s agriculture not only produces food and other commodities, and it is also the main source of N2O emissions. The study of estimation of agricultural N2O emissions in China and its future trends is of great importance for understanding of agriculture's contribution to climate change. This research studied the IPCC Guidelines for National Greeenhouse Gas Inventories and effects of elevated CO2 on N2O emissions from cropland. Applying GAINS model and“Livestock and Crop Production Dynamics model”, agricultural N2O emissions and mitigation potential of N2O emissions from cropland were simulated under different scenarios in China. The main conclusions as follows:
     (1) Through comparative analysis on“1996 IPCC Guidelines”,“2000 IPCC Guidelines”and“2006 IPCC Guidelines”, the new features of“2006 IPCC Guidelines”was summarized as follow. Except emission factors for liquid/slurry and cattle and swine deep bedding, all other emission factors for manure management in“2006 IPCC Guidelines”are lower than those in 1996 and 2000. EF1 for direct N2O emissions from managed soil has changed from 0.0125 to 0.01 kg N2O-N/kg N. EF5 for indirect N2O emissions from N leaching and runoff has changed from 0.025 to 0.0075 kg N2O-N/ (kg N leaching/runoff). Meanwhile based on the importance of sources and the data availability,“2006 IPCC Guidelines”provided a three-tier methodology to estimate N2O emissions. Because of more strictly demand on activity data and country specific emissions factors in the“2006 IPCC Guidelines”, further research on agricultural N2O emission factors is needed in China, and it is necessary to establish a statistical data system for national greenhouse gas inventory gradually and add all of the data required by“2006 IPCC Guidelines”into national statistical systems.
     (2) Elevated CO2 inhibited the N2O emissions from cropland, but the inhibiting effect of elevated CO2 decreased as the N fertilizer increased. The inhibiting effect of elevated CO2 was significant in normal N and zero N treatments, but not significant in low N. There was a decreasing trend of N2O emissions resulted by N fertilizer under elevated CO2, but not significant.
     (3) Because of the increasing livestock and N fertilizers, there is an increasing trend in agricultural N2O emissions from 2000 to 2030. Total agricultural N2O emissions in 2000 are 1533 kt N2O for INMIC_central, with an increase of 31 percent by 2030. N2O emissions from cropland are 1258 kt N2O in 2030 which account for 80% of total agricultural N2O, with an increase of 37 percent. N2O emissions from manure management only increased 3 percent by 2030. Agricultural N2O emissions mainly come from Shandong, Henan, Sichuan, Hebei, Jiangsu, Hunan, Yunnan and Anhui province.
     (4) Base on the analysis of the effectiveness, cost and adaptability of mitigation measures in China, the mitigation potential of N2O emissions from cropland was simulated by GAINS model. Through deep or mixed application of nitrogen fertilizer, the use of nitrogen fertilizer can be reduced by 1897 kt in 2030, saving costs of 7.8 billion yuan and reducing 85 kt N2O emissions from cropland. Through the optimized timing of fertilizer application such as long-acting fertilizer or slow fertilizer, it can reduce nitrogen fertilizer more than 1580 kt N, with 6.5 billion yuan saved and 70 kt N2O reductions. However, reducing nitrogen fertilizer and optimized timing of fertilizer application can not change the emission trend. N2O emissions from cropland reach the peak in 2015 by the application of nitrification inhibitors and then decrease, with a mitigation of 320 kt N2O in 2030. Precision farming is the goal of agriculture development, but the input of capital and technology can not be quantitatively evaluated. Total of 140 kt N2O reduction was projected through the adoption of precision farming by 2030.
引文
1. 85-913-04-05攻关课题组.我国农用氮肥氧化亚氮排放量变化趋势预测(1990~2020).农业环境保护, 1994, 13(6): 259~261.
    2.国家统计局.《2005年中国统计年鉴》.北京:中国统计出版社, 2005.
    3.国家统计局.《2008年中国统计年鉴》.北京:中国统计出版社, 2008.
    4.陈冠雄,黄国宏,黄斌,等.稻田甲烷和N2O的排放及养萍和施用的影响.应用生态学报, 1995, 6 (4): 378~382.
    5.陈书涛,黄耀,郑循华.轮作制度对农田氧化亚氮排放的影响及驱动因子.中国农业科学, 2005, 38(10): 2053~2060.
    6.丁洪,蔡贵信,王跃思,等.华北平原几种主要类型土壤的硝化及反硝化活性.农业环境保护, 2001, 20(6): 390~393.
    7.丁洪,王跃思,项虹艳.灰泥土中不同氮肥品种反硝化损失与N2O排放量的差异.生态环境, 2004, l3(4): 643~645.
    8.丁洪,蔡贵信,王跃思.华北平原不同作物-潮土系统中N2O排放量的测定.农业环境保护2001, 20(1): 7~9.
    9.董玉红,欧阳竹,李运生.肥料施用及环境因子对农田土壤CO2和N2O排放的影响.农业环境科学学报, 2005, 24(5): 913~918.
    10.杜睿,吕达仁,王庚辰,等.温度度内蒙古典型草原土壤N2O排放的影响.自然科学进展, 2003, 13(1): 64~68.
    11.封克,殷士学.影响氧化亚氮形成与排放的土壤因素.土壤学进展, 1995, 23(6): 35~40.
    12.高新星,赵立欣.养殖场蓄粪池甲烷排放研究进展及对CDM项目贡献分析.可再生能源2006, 130(6): 73~77.
    13.郭强,赵久然,陈国平,等.长效肥料对提高夏玉米氮肥利用率的研究,北京农业科学, 1998, 16(13): 35~37.
    14.韩定正,胡小光.中国畜禽养殖温室气体排放研究.现代农业, 1999, 12(1): 33~38
    15.扈立家,李天来.我国发展精准农业的问题及对策.沈阳农业大学学报(社会科学版), 2005, 7(4): 400~402.
    16.黄国宏,陈冠雄,韩冰,等.土壤含水量与N2O产生途径研究.应用生态学报, 1999, 10 (1): 53~56.
    17.黄国宏,陈冠雄,吴杰,等.东北典型旱作农田N2O和CH4排放通量研究.应用生态学报, 1995, 6(4): 383~386.
    18.黄国宏,陈冠雄,张志明等.玉米田N2O排放及减排措施研究.环境科学学报, 1998, 18(4): 344~349.
    19.黄耀,蒋静艳,宗良纲,等.种植密度和降水对冬小麦田N2O排放的影响.环境科学, 2001, 22(6): 20~23.
    20.黄耀,焦燕,宗良纲,等.土壤理化特性对麦N2O排放影响的研究.环境科学学报, 2002, 22(5): 599~602.
    22.蒋静艳,黄耀,宗良纲,等.环境因素和作物生长对稻田CH4和N2O排放的影响.农业环境科学学报, 2003, 22(6): 711~714.
    23.焦燕,黄耀.影响农田氧化亚氮排放过程的土壤因素.气候与环境研究, 2003, 8(4): 457~466.
    24.金继运.“精准农业”及其在我国的应用前景.植物营养与肥料学报, 1998, 4(1): 1~7
    25.居辉,熊伟,许吟隆.气候变化对我国小麦产量的影响.作物学报, 2005, 31(10): 1340~1343.
    26.居辉,熊伟,马世铭,等.气候变化与中国粮食安全.学苑出版社,2008.
    27.李长生,肖向明, Frolkin S.,等.中国农田的温室气体排放,第四纪研究, 2003, 23(5): 493~503.
    28.李方敏,樊小林,刘芳.控释肥料对稻田氧化亚氮排放的影响.应用生态学报, 2004, 15(11): 2170~2174.
    29.李曼莉,徐阳春,沈其荣.覆草旱作稻田CH4和N2O的排放.中国环境科学, 2003, 23(6): 579~582.
    30.李亚芹,夏峰.我国发展精准农业的必要性.农机化研究, 2006, 6, 4~6.
    31.刘爱民,封志明.现代精准农业及我国精准农业的发展方向,中国农业大学学报, 2000, 5(2): 20~25.
    32.刘伟明.精准农业及其应用.安徽农学通报, 2005, 11(6): 8, 35.
    33.刘运通,万运帆,林而达,等.施肥与灌溉对春玉米土壤N2O排放通量的影响.农业环境科学学报, 2002, 827(3): 997~1002.
    34.陆日东,李玉娥,石峰,等.不同堆放方式对牛粪温室气体排放的影响.农业环境科学学报, 2008, 27(3): 1235~1241.
    35.陆日东,李玉娥,万运帆,等.温度对奶牛粪便温室气体排放的影响.生态与农村环境学报2008, 24(1): 29~3.
    36.卢树昌,赵淑杰.精准农业在我国现代农业中的发展前景.现代农业, 2001, 2, 15~16.
    37.吕烈武,郭彬.精准农业的研究应用现状及其在我国的发展方向.现代农业科, 2008, 21, 338~339
    38.彭克明.主编农业化学总论第二版.北京:农业出版社, 1994, 99~104
    39.气候变化国家评估报告编委会.《气候变化国家评估报告》.北京:科学出版社, 2007
    40.史亦,黄国宏.土壤中反硝化酶活性的变化与N2O排放的关系,应用生态学报, 1999,10(3): 329~331.
    41.苏伟,吕学都,孙国顺.未来气候变化谈判的核心内同级前景展望—“巴厘路线图”解读.气候变化研究进展, 2008, 4(1): 57~60.
    42.苏维瀚,宋文质,张桦.华北典型冬麦区农田氧化亚氮通量. 1992, 11(2), 26~32.
    43.苏正义,韩晓日,李春全,等.氮肥深施对作物产量和氮肥利用率的影响,沈阳农业大学学报, 1997, 28(4): 292~295.
    44.孙志梅,武志杰,陈利军,等.硝化抑制剂的施用效果、影响因素及其评价.应用生态学报, 2008, 19(7): 1611~1618.
    45.汪懋华.“精细农业”发展与工程技术创新.农业工程学报, 1999, 15(1): 1~8.
    46.王铮,郑一萍.全球变化对中国粮食安全的影响分析.地理研究, 2001, 20(3): 282~289.
    47.王少彬,宋文质,孙维瀚,等.冬小麦田氧化亚氮排放.农业环境保护, 1994, 13(5): 210~212.
    48.王智平,杨永辉,张万军,等.减缓大气温室气体的方案和措施.农业环境保护, 1998, 17(4): 151~155.
    49.吴传宇,方文熙.精准农业中的土壤信息采集和平衡施肥.福建农机, 2004, S1, 34~36.
    50.肖志刚,张曙光,么永强,等.精确农业的现状及发展趋势的研究.河北农业大学学报, 2003, 26(S1): 257~259.
    51.谢军飞,李玉娥.不同堆肥处理猪粪温室气体排放与影响因子初步研究.农业环境科学学报, 2003a, 22(1): 56~59.
    52.谢军飞,李玉娥,董红敏,等.堆肥处理蛋鸡粪时温室气体排放与影响因子关系.农业工程学报, 2003b, 19(1):192~195.
    53.刑光熹,蔡祖聪,鹤田治雄,等.土壤水分状况和质地对稻田N2O排放的影响.土壤学报, 2000, 37( 4) : 499~515.
    54.熊伟,居辉,许吟隆,等.两种气候变化情景下中国未来的粮食供给.气象, 2006, 32(1): 36~41.
    55.熊正琴,邢光熹,鹤田治雄.冬季耕作制度对农田氧化亚氮排放的贡献.南京农业大学学报, 2002, 25(4): 49~52.
    56.徐德应.大气CO2增长和气候变化对森林的影响研究进展.世界林业研究, 1994, 7, 26~32.
    57.许宪春.《中国2002年投入产出表》.北京:中国统计出版社出版, 2006.
    58.徐华,邢光熹,蔡祖聪,等.土壤质地对小麦和棉花田N2O排放的影响.农业环境保护, 2000, 19(1): 1~3.
    59.徐可英.国内外精确农业发展现状与对策.中国农业资源与区划, 2002, 2(21): 53~56.
    60.颜晓元,杜丽娟,邢光熹.水分状况对水田土壤N2O排放的影响.土壤学报, 2000, 37(4): 482~489.
    61.杨兰芳,蔡祖聪.施氮和玉米生长对土壤氧化亚氮排放的影响.应用生态学报, 2005, 16(1): 100~104.
    62.杨思河,陈冠雄,林继惠,等.几种木本植物N2O释放与某些生理活动的关系.应用生态学报, 1995, 6(4): 337~340.
    63.姚凤梅,张佳华,孙白妮.气候变化对中国南方稻区水稻产量影响的模拟和分析.气象与环境研究, 2007, 12(5): 659~666.
    64.姚榆芳.中国未来(2005~2050年)社会经济情景研究.中国社会科学院报告.
    65.叶欣,李俊,王迎红.华北平原典型农田土壤氧化亚氮的排放特征.农业环境科学学报, 2005, 24(6): 1186~1191.
    66.于克伟,陈冠雄,杨思河,等.全球变化与我国未来的生存环境.北京:气象出版社, 1996, 116~121.
    67.曾江海,王智平,张玉铭,等.小麦-玉米轮作期土壤排放N2O通量及总量估算.环境科学, 1995, 16(1): 32~36.
    68.张志明,李继云,冯元琦,等.长效碳酸氢铵理化特性及增产机理的研究.中国科学(B辑), 1996, 26 (5): 452~459.
    69.张青海.玉米田迫把方法的比较分析沈阳农业大学学报, 1995, 26(专刊): 52~53.
    70.张玉,武志杰,刘子江,等.玉米施用长效肥料增产效果研究辽宁农业科学, 2000, (1): 22~25.
    71.赵春江,薛绪掌.精准农业技术体系的研究进展与展望.农业工程学报, 2003, 19(4): 7~12.
    72.赵光影,刘景双,王洋.陆地生态系统N2O排放源研究进展.土壤通报, 2008, 39 (5): 1192~1197.
    73.赵振达,张金盛,任顺荣,等.津京旱地土壤氮素平衡国际平衡施肥学术讨论会论文集北京农业出版社, 1989, 62~68.
    74.郑循华,王明星,王跃思,等.稻麦轮作生态系统中土壤湿度对N2O产生与排放的影响.应用生态学报, 1996, 7 (3): 273~279.
    75.郑循华,王明星,王跃思,等.农业废弃物温室气体研究.环境科学, 1998, 19(2): 1~5.
    76.郑循华,王明星.温度对N2O产生和排放的影响.环境科学, 1997, 18(5): 1~5.
    77.郑循华,王明星,王跃思,等.温度对农田N2O产生与排放的影响.环境科学, 1997, 18 (5): 1~5.
    78.中国国家发展和改革委员会.中国应对气候变化国家方案.北京, 2007.
    79.中华人民共和国气候变化初始国家信息通报.北京:中国计划出版社, 2004, 16.
    80.朱兆良,文启孝.中国土壤氮素.南京:江苏科学技术出版社, 1992, 303.
    81.朱兆良.农田中氮肥的损失与对策.土壤与环境, 2000, 9(1): 1~6.
    82.邹建文,黄耀,宗良纲,等.稻田CO2、CH4和N2O排放及其影响因素.环境科学学报, 2003, 32(6): 758~764.
    83. Amann M., Bertok I., Borken J., et al. GAINS ASIA-a tool to combat air pollution and climate change simultaneously. Methodology. International Institute for Applied Systems Analysis, 2008Laxenburg, Austria.
    84. Ambus P., Robertson G. P. Fluxes of CH4 and N2O in aspen stands grown under ambient and twice-ambient CO2. Plant Soil, 1999, 209, 1~8.
    85. Ambus P., Christensen S. Spatial and seasonal nitrous oxide and methane fluxes in Danish forest-, grassland-, and agroecosystem. Journal of Environment Quality, 1995, 24(5): 993~1001.
    86. Baggs E. M., Richter M., Hartwig U. A., et al. Nitrous oxide emissions from grass swards during the eighth year of elevated atmospheric pCO2 (Swiss FACE). Global Change Biology, 2003, 9, 1214~1222.
    87. Baggs E. M., REES R., Watson M. Nitrous oxide emission from soils after incorporating crop residues. Soil Use and Management, 2000, 16 (2): 82~87
    88. Bates J. Economic Evaluation of Emission Reductions of Nitrous Oxide and Methane in Agriculture in the EU. Bottom-up Analysis. Culham, AEAT, 2001.
    89. Bedard C., Knowles R. Physiology, biochemistry, and specific inhibitors of CH4, NH4+, and CO oxidation by methanotrophs and nitrifiers. Microbiol. Rev., 1989, 53: 68~84.
    90. Billings S. A., Schaeffer S. M., Evans R. D. Trace N gas losses and N mineralization in Mojave desert soils exposed to elevated CO2. Soil Biology and Biochemistry, 2002, 34, 1777~1784.
    91. Blackmore S. The interpretation of trends from multiple yield maps.Computers and Electronics in Agriculture, 2000, 26, 37~51.
    92. Boeckx P., Xu X., Van Cleemput O. Mitigation of N2O and CH4 emission from rice and wheat cropping systems using dicyandiamide and hydroquinone. Nutrient Cycling in Agroecosystems, 2005, 72 (1): 41~49.
    93. Boehm M. M., Kulshreshtha S., Desjardins R.L., et al. Carbon sequestration and agricultural greenhouse gas emissions in Canada based on CEEMA analyses. Changing Prairie Landscapes, 2000, 32, 159.
    94. Bouwman A. F., Fung I., Matthews E., et al. Global analysis of the potential for N2O production in natural soils, Global Biogeochemical Cycles, 1993, 7(3): 557~597.
    95. Bouwman A. F., Boumans L. J. M. and Batjes, N.H. Emissions of N2O and NO from fertilised fields: Summary of available measurement data. Global Biogeochemistry Cycles, 2002, 16(4): art. No. 1058.
    96. Bouwman A. F., Boumans L. J. M., Batjes N. H. Modeling global annual N2O and NO emissions from fertilised fields. Global Biogeochemistry Cycles, 2002, 16(4): art. No. 1080
    97. Bremner J. M. Sources of nitrous oxide in soils. Nutr. Cycl. Agroecosys. 1997, 49, 7~16.
    98. Bremner J. M., Blackmer A. M. Nitrous oxide emission from soils during nitrification of fertilizer nitrogen. Science, 1978, 199, 295~296.
    99. Bronson K. F., Touchton J. T., Hauck R. D., et al. Nitrogen15 recovery in winter wheat as affected by application timing and dicyandiamide. Soil Science Society of Am erica Journal, 1991, 55: 130~135.
    100. Cai Z., Xing G., Yan X., et al. Methane and nitrous oxide emissions from rice paddy fields as affected by nitrogen fertilizers and water management, Plant Soil, 1997, 196, 7~14
    101. Carey E.V., DeLucia E. H., Ball J. T. Stem maintenance and construction respiration in Pinus ponderosa grown in different concentrations of atmospheric CO2. Tree Physiol, 1996, 16, 125~130.
    102. Carnol M., Hogenboom L, Jach M. E., et al. Elevated atmospheric CO2 in open top chambers increases net nitrification and potential denitrification. Global Change Biology, 2002, 8, 590~598.
    103. Clough T. J., Di H. J., Cameron K.C., et al. Accounting for the utilization of a N2O mitigation tool in the IPCC inventory methodology for agricultural soils. Nutrient Cycling in Agroecosystems, 2007, 78 (1): 1~14.
    104. Couteaux M. M., Mousseau M., Célérier M. L., et al. Iincreased atmospheric CO2 and litter quality: Decomposition of sweet chestnut leaf litter with animal feed webs of different complexities. Olikos, 1991, 61, 54~64.
    105. Culotta E. Will plants profit from high CO2. Science, 1995, 268, 654~656.
    106. Dalal R. C., Wang W. J., Robertson GP, et al. Nitrous oxide emission from Australian agricultural lands and mitigation options: a review. Australian Journal of Soil Research, 2003, 41(2):165~195.
    107. de Jager D., Blok K., Van Brummelen M. Cost-effectiveness of emission-reducing measures for nitrous oxide in the Netherlands. Report M704, ECOFYS, Utrecht, The Netherlands, 1996.
    108. de Klein C. A. M. Review of the N2O emission factor for excreta deposited by grazing animals (EF3PRP) . Paper prepared as part of the 2006 Revised Guidelines for Greenhouse Gas Inventories of IPCC, 2004.
    109. de Klein C. A. M., Ledgard S. F. Nitrous oxide emissions from New Zealand agriculture-key sources and mitigation strategies. Nutrient Cycling in Agroecosystems, 2005, 72 (1): 77~85.
    110. Desjardins R. L., Kulshreshtha S.N., Junkins B., et al. Canadian greenhouse gas mitigation options in agriculture. Nutrient Cycling in Agroecosystems, 2001, 60(1~3): 317~326.
    111. Desjardins R. L, Smith W., Grant B., et al. Management strategies to sequester carbon in agricultural soils and to mitigate greenhouse gas emissions, Climatic Change, 2005, 70(1~2): 283~297.
    112. Di H. J., Cameron K. C., Sources of nitrous oxide from 15N-labelled animal urine and urea fertiliser with and without a nitrification inhibitor, dicyandiamide (DCD). Agriculture Ecosystems & Environment, 2008b, 46(1): 76~82.
    113. Di H. J., Cameron K. C., Sherlock R. R. Comparison of the effectiveness of a nitrification inhibitor, dicyandiamide, in reducing nitrous oxide emissions in four different soils under different climatic and management conditions. Soil Use and Management, 2007, 23(1): 1~9.
    114. Dobbie K. E., Mc Taggart I. P., Smith K. A. Nitrous oxide emissions from intensive agricultural systems: Variations between crops and seasons, key driving variables, and mean emission factors. Journal of Geophysical Research, 1999, 104 (21): 26891~26899.
    115. Dong Y., Scharffe D., Qi Y., et al. Nitrous oxide emissions from cultivated soils in the North China Plain, Tellus, Ser. B, 2001, 53, 1~9.
    116. Duncan K. Agricultural practices that reduce greenhouse gases (GHGs), and generate Co-benefits. Environmental Toxicology II, 2008, 110:61~69.
    117. Duxbury J. M. The significance of agricultural sources of greenhouse gases. Fertilizer Research, 1994, 3(2): 151~163.
    118. Entry J. A., Runion G. B., Prior S. A., et al. Influence of CO2 enrichment and nitrogen fertilization on tissue chemistry and carbon allocation in longleaf pine seedlings. Plant Soil, 1998, 200, 3~11.
    119. Ermolieva T., Fischer G., and Van Velthuizen H. Livestock Production and environmental Risks in China: Scenarios to 2030”, FAO/IIASA Research Report, International Institute for Applied Systems Analysis, 2005, Laxenburg, Austria.
    120. Estiarte M., Penuelas J., Kimball B. A., et al. Elevated CO2 effects on stomatal density of wheat and sour orange trees. J Experim Bot, 1994, 45, 1665~1668.
    121. Fang G. Urbanization: A Center of Chinese Economic Growth in the Next Phase, 2001. (Downloadable from http://www.curb.com.cn)
    122. FAO. World agriculture towards 2015/2030. An FAO perspective. ISBN 1-84407-007-7. Earthscan, 2003, London.
    123. Firestone M. K., Davidson E. A. Microbiological basis of NO and N2O production and consumption in soil, in Exchange of trace gases between terrestrial ecosystems and the atmosphere, Andraea MO & Schimel DS (eds). John Wiley & Sons, New York. 1989, 7~21.
    124. Fischer G., Ermolieva T., Ermoliev Y., et al. Risk-adjusted approaches for planning sustainable agricultural development. Stochastic Environmental Research and Risk Assessment, 2008, 1~10.
    125. Fischer G., Ermolieva T., Ermoliev Y., et al. Integrated risk management approaches for planning sustainable agriculture. In: Advances in Studies on Risk Analysis and Crisis Response, C. Huang, C. Frey, J. Feng (eds), Atlantis Press, 2007, Paris, France, pp.
    126. Follett R. F., Shafer S. R., Jawson M. D., et al. Research and implementation needs to mitigate greenhouse gas emissions from agriculture in the USA, Soil & Tillage Research, 2005, 83(1): 159~166.
    127. Freibauer A., Rounsevell M. D. A., Smith P., et al. Carbon sequestration in the agricultural soils of Europe, GEODERMA, 2004, 12(2):11~23.
    128. Freibauer A. Biogenic Greenhouse Gas Emissions from Agriculture in Europe-Quantification and Mitigation. Ph.D. Thesis, Universit?t Hohenheim, Stuttgart, Germany, 2001.
    129. Frye W. W, et al. Dicyandiamide as a nitrification inhibitor in cropproduction in the southeastern USA. Commun. in Soil Sci . Plant Anal. , 1989, 20 (19 &20) : 1969~1999
    130. Gibson A. I., Mitigation Options for Greenhouse Gas Emissions from Agriculture. Ph.D. Thesis, Imperial College of Science, Technology and Medicine, University of London, 2001.
    131. Gale J. J., Freund P. An assessment of the costs and global impact of nitrous oxideabatement measures. In: J. van Ham et al., Eds., Non-CO2 Greenhouse Gases: Scientific Understanding, Control Options and Policy Aspects, pp. 463~468. Millipress, Rotterdam, The Netherlands, 2002.
    132. Gregorich EG., Rochette P., St-Georges P., et al. Tillage effects on N2O emission from soils under corn and soybeans in Eastern Canada. Canadian Journal of Soil Science, 2008, 88(2): 153~161.
    133. Hadi A., Jumadi O., Inubushi K., et al. Mitigation options for N2O emission from a corn field in Kalimantan, Indonesia, Soil Science and Plant Nutrition, 2008a, 54(4): 644~649.
    134. Hendrey G. R., Lipfert F W, Kimball B A, et al. Free-air carbon dioxide enrichment (FACE) facility development.ⅡField tests at Yazoo City, MS, 1987. Report 046, US Department of Energy, Carbon dioxide Research Division, Office of Energy Research, Washington DC, 1988.
    135. Hendrey G. R., Lewin K. F., Nagy J. Free air carbon dioxide enrichment: development, progress. Results. Vegetation, 1993, 104/105:17~31.
    136. Hendriks C. A., de Jager D., Blok K. Emission Reduction Potential and Costs for Methane and Nitrous Oxide in the EU-15. Interim report by order of DGXI, EC, M714, ECOFYS, Utrecht, 1998.
    137. Hiscock K. M., Bateman A. S., Fukada T., et al. The concentration and distribution of groundwater N2O in the Chalk aquifer of eastern England. In: Van Ham, J., Baede, A.P.M., Guicherit, R. and Williams-Jacobse, J.G.F.M. (eds.), Proc. 3rd Internat. Symp. Non-CO2 Greenhouse Gases, Maastricht, The Netherlands, 2002, 5, 185~190.
    138. Hiscock K. M., Bateman A. S., Muhlherr I. H., et al. Indirect emissions of nitrous oxide from regional aquifers in the United Kingdom. Environmental Science and Technology, 2003, 37: 3507~3512.
    139. Hitz S., Smith. J. Estimating global impacts from climate change. Global Environmental Change, 2004, 14: 201~218.
    140. Holtan H. L., Dorsch P., Bakken I. R. Comparison of denitrifying communities in organic soils:klnetics 0f N2O reduction, Soil Bio1.Biochem., 2000, 32 (6): 833~843.
    141. Huber D M, Warren H L, Nelson D W and Tsai C Y. Nitrification inhibitors: new tools for food production. BioScience, 1977, 27 (8): 523~529.
    142. Hu S., Chapin III FS, Firestone MK et al. Nitrogen limitation of microbial decomposition in a grassland under elevated CO2. Nature, 2001, 409, 188~191.
    143. Huang J., Zhang L., Li Q., et.al. CHINAGRO project: National and Regional Economic Development Scenarios for China’s Food Economy Projections in the Early 21st Century. 2003, Center for Chinese Agricultural Policy, Chinese Academy of Sciences.
    144. Ineson P., Coward P. A., Hartwig U. A. Soil gas fluxes of N2O, CH4 and CO2 beneath Lolium perenne under elevated CO2: The Swiss free air carbon dioxide enrichment experiment. Plant Soil, 1998, 198, 89~95.
    145. Inubushi K., Cheng W., Aonuma S., et al. Effects of elevated CO2 on CH4 and N2O emissions from paddy field at the rice FACE. Proceedings of FACE 2000, Tsukuba, Japan, June, 2000, p37.
    146. IPCC. Summary for Policymakers. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt,M.Tignor and H.L. Miller (eds.). Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2007a.
    147. IPCC. Summary for Policymakers. In: Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, M.L. Parry, O.F. Canziani, J.P. Palutikof, P.J. van der Linden and C.E. Hanson, Eds., Cambridge University Press, Cambridge, UK, 2007b, 7~22.
    148. IPCC. Summary for Policymakers. In: Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [B. Metz, O.R. Davidson, P.R. Bosch, R. Dave, L.A. Meyer (eds)], Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2007c.
    149. IPCC. Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, Pachauri, R.K and Reisinger, A. (eds)]. IPCC, Geneva, Switzerland, 2007d, 104 pp.
    150. IPCC. 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme, Eggleston H.S., Buendia L., Miwa K., Ngara T. and Tanabe K. (eds). Published: IGES, Japan, 2006.
    151. IPCC. Chapter 4: Agriculture Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories, IPCC/OECD/IEA/IGES, 2000, Hayama, Japan.
    152. IPCC. Chapter 4: Agriculture. Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, IPCC/OECD/IEA, Paris, France, 1997.
    153. Isermann K., Isermann R. Food production and consumption in Germany: N flows and N emissions. Nutrient Cycling in Agroecosystems, 1998, 52(2~3): 289~301.
    154. Janice A., S. Saggar J. S., Nanthi S. B. Assessment of nitrogen losses from urea and an organic manure with and without nitrification inhibitor, dicyandiamide, applied to lettuce under glasshouse conditions, Australian Journal of Soil Research, 2008, 46(6): 535~541.
    155. Jantalia C. P.; dos Santos H. P., Urquiaga S., et al. Crop residue management for lowland rice-based cropping systems in Asia, Advances in Agronomy, 2008, 98: 117~199.
    156. Jawson M. D., Shafer S. R., Franzluebbers A., et al. GRACEnet: Greenhouse gas reduction through agricultural carbon enhancement network, Soil & Tillage Research, 2005, 83 (1): 167~172
    157. Johnson J. M. F., Reicosky D. C., Allmaras R. R., et al. Greenhouse gas contributions and mitigation potential of agriculture in the central USA, Soil & Tillage Research, 2005, 83(1): 73~94.
    158. Kaharabata S. K., Drury C. F., Priesack E., et al. Comparing measured and Expert-N predicted N2O emissions from conventional till and no till corn treatments. Nutrient Cycling in Agroecosystems, 2003, 66(2): 107~118.
    159. Khaik M. A. K. Special issue: atmospheric nitrous oxide. Chemosphere-Global Change Science, 2000, 2, 233.
    160. Korner C., Arnone J. A. Responses to elevated carbon dioxide in enclosed artificial tropical ecosystems.Science, 1992, 257, 1672~1675.
    161. Lander C. H., Moffitt D., Alt K. Nutrients available from livestock manure relative to crop growth requirements. Resource Assessment and Strategic Planning Working paper 98~100, 1998, USDA Natural Resource Conservation Service. http://www.nhq.nrcs.usda.gov/land/pubs/.
    162. Lewin K F., Hendrey G. R., Kolber Z. Brookhaven National Laboratory free~air carbon dioxide enrichment facility. Crit Rev Plant Sci, 1992, 11: 135~141.
    163. Lewis H., Ziska J., Bunce A.Predicting the impact of changing CO2 on crop yields: some thought s on food. New Phytologist, 2007, 175: 607~618.
    164. Li C., Zhuang Y., Cao M., et al. Comparing a process-based agro-ecosystem model to the IPCC methodology for developing a national inventory of N2O emissions from arable lands in China. Nutrient Cycling in Agroecosystems, 2001, 60: 159~175.
    165. Li C. S., Frolking S., Xiao X. M., et al. Modeling impacts of farming management alternatives on CO2, CH4, and N2O emissions: A case study for water management of rice agriculture of China. Global Biogeochemical Cycles, 2005, 19(3), GB3010.
    166. Li Y. E., Lin E. D. Emissions of N2O, NH3 and NOx from fuel combustion, industrial processes and the agricultural sectors in China. Nutrient Cycling in Agroecosystems, 2000, 57, 99~106
    167. Liang B. C., Wang X. L. and Ma B. L. Maize root-induced change in soil organic pools. Soil Sci. Soc. Am. J., 2002, 66, 845~847.
    168. Lima M. A., Campanhola C. Greenhouse gas emission from livestock in Brazil. Greenhouse Gases and Animal Agriculture, Proceedings, 2002, 35~39.
    169. Linzmeier W., Gutser R., SchmidhalterU. Nitrous oxide emission from soil and from a nitrogen-15-labelled fertilizer with the new nitrification inhibitor 3, 4-dimethylpyrazole phosphate (DMPP). Biology and Fertility of Soils, 2001, 34, 103~108.
    170. Liu J. D., Zhou X. J., Chen D. L., et al. Simulation of temporal and spatial change of N2O emissions in the Yangtze River Delta, Journal of Environmental Sciences-China, 2005, 17(4): 686~690.
    171. Liu S., Zhang M. Scenario Analysis of Urbanization and Rural-Urban Migration in China. IIASA Interim Report IR-03-036, International Institute for Applied Systems Analysis, Laxenburg, Austria, 2003.
    172. Lu Y., Huang Y., Zou J., et al. An inventory of N2O emissions from agriculture in China using precipitation-rectified emission factor and background emission. Chemosphere, 2006, 65, 1915~1924.
    173. Macadam X. M. B., del Prado A., Merino P., et al. Dicyandiamide and 3, 4-dimethylpyrazole phosphate decrease N2O emissions from grassland but dicyandiamide produces deleterious effects in clover. Journal of Plant Physiology, 2003, 160, 1517~1523.
    174. Majumdar D. Suppression of nitrification and N2O emission by karanjin-a nitrification inhibitor prepared from karanja (Pongamia glabra Vent. Chemosphere, 2002, 47(8): 845~850.
    175. Martikainen P. J., Boer W. D. Nitrous oxide production and nitrification in acidic soil from a dutch coniferous forest. Soil Boil. Biochem., 1993, 25(3): 343~347.
    176. Meijide A., Diez J. A., Sanchez Martin L., et al. Nitrogen oxide emissions from an irrigated maize crop amended with treated pig slurries and composts in a Mediterranean climate. Agriculture, Ecosystems and Environment, 2007, 121, 383~394.
    177. Menendez S., Merino P., Pinto M., et al. 3, 4~dimethylpyrazol phosphate effect on nitrous oxide, nitric oxide, ammonia, and carbon dioxide emissions from grasslands. Journal of Environmental Quality, 2006, 35, 973~981.
    178. Mosier A. R., Duxbury J. M., Freney J. R., et al. Assessing and mitigating N2O emissions from agricultural soils. Climatic Change, 1998, 40(1): 7~38.
    179. Mosier A. R., Pendall E., Morgan J. A. Effect of water addition and nitrogen fertilization on the fluxes of CH4, CO2, NOx, and N2O following five years of elevated CO2 in the Colorado Shortgrass Steppe. Atmos. Chem. Phys., 2003, 3, 1703~1708.
    180. Mummey D. L., Smith J. L., Bluhm G. Assessment of alternative soil management practices on N2O emissions from US agriculture. Agriculture Ecosystems & Environment, 1998, 70 (1): 79~87.
    181. Novoa R., Tejeda H. R. Evaluation of the N2O emissions from N in plant residues as affected by environmental and management factors. Nutrition Cycle Agroecosyst, 2006.
    182. Oenema O., Wrage N., Velthof G. L., et al. Trends in global nitrous oxide emissions from animal production systems, Nutrient Cycling in Agroecosystems, 2005, 72(1): 51~65.
    183. Ottman M. J., Kimball B. A., Pinter P. J., et al. Elevated CO2 effects on sorghum growth and yield at high and low soil water content. New Phytol., 2001, 150, 261~273.
    184. Parton W. J., Mosier A. R., Ojima D. S., et al. Generalized model for N2 and N2O production from nitrification and denitrification. Global Biogeochemical Cycles, 1996, 10, 401~412.
    185. Pleijel H., Sild J., Danielsson H., et al. Nitrous oxide emissions from a wheat field in response to elevated carbon dioxide concentration and open~top chamber enclosure. Environmental pollution, 1998, 102, 167~171.
    186. Reay D. S., Smith K. A., Edwards A. C., et al. Indirect nitrous oxide emissions: revised emission factors. Environmental Sciences, 2005, 2, 153~158.
    187. Reay D. S., Smith K. A., Edwards A. Nitrous oxide in agricultural drainage waters following field fertilisation. Water Air Soil Pollution: Focus, 2004, 4, 437~451.
    188. Robert W., Sandy E., Neale H., Stephanie Parkyn and John Quinn. Climate change mitigation for agriculture: water quality benefits and costs, 2008, 58(11): 2093~2099.
    189. Robinson D., Conroy J. P. A possible plant~mediated feedback between elevated CO2, denitrification and the enhanced greenhouse effect. Soil Biology and Biochemistry, 1999, 31, 43~53.
    190. Rosenweig G. E., Parry M. I. Potential impact of climate change on food supply. Nature, 1994, 367: 133~138.
    191. Sakai H., Yagi K., Kobayashi K., et al. Rice carbon balance under elevated CO2. New Phytol, 2001, 150, 241~249.
    192. Sawamoto T., Nakajima Y., Kasuya M., et al. Evaluation of emission factors for indirect N2O emission due to nitrogen leaching in agro-ecosystems. Geophysical Research Letters. 2005, 32(3): doi: 10.1029/2004GL021625.
    193. Skiba U., Fowler D., Smith K. A. Nitric oxide emissions from agricultural soils in temperate and tropical climates: sources, controls and mitigation options. Nutrient Cycling in Agroecosystems, 1997, 48(1~2): 139~153.
    194. Smith D. L., Almaraz J. J. Climate change and crop production: contributions, impacts, and adaptations. Canadian Journal of Plant Pathology-Revue Canadienne De Phytopathologie, 2004, 26(3): 253~266.
    195. Smith K. A., McTaggart I. P., Tsuruta H. Emissions of N2O and NO associated with nitrogen fertilization in intensive agriculture, and the potential for mitigation. Soil Use and Management, 1997, 13(4): 296~304.
    196. Smith K. A., Conen F. Impacts of land management on fluxes of trace greenhouse gases. Soil Use Manage., 2004, 20, 255~263.
    197. Smith L. C., de Klein, C. A. M., Catto W. D. Effect of dicyandiamide applied in a granular form on nitrous oxide emissions from a grazed dairy pasture in Southland, New Zealand. New Zealand Journal of Agricultural Research, 2008a, 51(4): 387~396.
    198. Smith L. C., de Klein, C. A. M., Monaghan R. M., et al. The effectiveness of dicyandiamide in reducing nitrous oxide emissions from a cattle-grazed, winter forage crop in Southland, New Zealand. Australian Journal of Experimental Agriculture, 2008b, 48(1~2):160~164.
    199. Soussana J. F., Loiseau P., Vuichard N., et al. Carbon cycling and sequestration opportunities in temperate grasslands. Soil Use and Management, 2004, 20(Suppl. S): 219~230.
    200. Stehfest E., Bouwman L. N2O and NO emission from agricultural fields and soils under natural vegetation: summarizing available measurement data and modeling of global annual emissions. Nutrition Cycle. Agroecosyst, 2006, 74: 207~228.
    201. Swezey A. N. L., Tumer G. O. Crop experiments on the effect of 2-chloro-6-trichloromethyl)-pyridine for the control of nitrification of ammonium and urea fertilizer. Agron. J., 1962, 54, 532~535.
    202. Teepe R., Brumme R., Beese F. Nitrous oxide emission from frozen soils under agriculrural, fallow and forest land. Soil Biology and Biochemistry, 2000, 32:1897~1810.
    203. Toth F., Cao G., Hizsnyik E. Regional Population Projections for China. IIASA Interim Report IR-03-042. International Institute for Applied Systems Analysis, Laxenburg, Austria, 2003
    204. Vallejo A., Skiba U. M., Garcia-Torres L., et al. Nitrogen oxides emission from soils bearing a potato crop as influenced by fertilization with treated pig slurries and composts. Soil Biology and Biochemistry, 2006, 38, 2782~2793.
    205. van Groenigen J. W., Schils R. L. M., Velthof G. L., et al. Mitigation strategies for greenhouse gas emissions from animal production systems: synergy between measuring and modelling at different scales, Australian Journal of Experimental Agriculture, 2008, 48(1~2): 46~53
    206. Vilsmeier K. Turnover of 15N ammonium sulfate with dicyandiamide under aerobic and anaerobic soil conditions. Fertilizer Research, 1991, 29, 191~196.
    207. Weber M. A. N2O Emissions from Wheat Ecosystems under Elevated Atmospheric CO2 (M.S. Thesis). University of Arizona, Tucson, Arizona, USA, 1997.
    208. Weiske A., Benckiser G., Ottow J. C. G. Effect of the new nitrification inhibitor DMPP in comparison to DCD on nitrous oxide (N2O) emissions and methane (CH4) oxidation during 3 years of repeated applications in field experiments. Nutrient Cycling in Agroecosystems, 2001a, 60 (1~3): 57~64.
    209. Weiske A., Benckiser G., Herbert T., et al. Influence of the nitrification inhibitor 3, 4-dimethylpyrazole phosphate (DMPP) in comparison to dicyandiamide (DCD) on nitrous oxide emissions, carbon dioxide fluxes and methane oxidation during 3 years of repeated application in field experiments. Biology and Fertility of Soils, 2001b, 34(2): 109~117.
    210. Weiske A., Vabitsch A., Klemedtsson A. K., Olesen J.O., Schelde K. GHG mitigation measures at the level of dairy production units and their ecological, economic and social consequences. MIDAIR deliverable Report No. 6.1, Institute for Energy and Environment, Leipzig, 2004.
    211. Wilson C. E. Dicyandiamide influence on uptake of preplant-applied fertilizer nitrogen by rice. Soil Sci. Soc. Am. J, 1990, 54, 1157~1161.
    212. Winiwarter W. The GAINS Model for Greenhouse Gases-Version 1.0: Nitrous Oxide. IIASA Interim Report IR-05-55. International Institute for Applied Systems Analysis, 2005, Laxenburg, Austria.
    213. Wolt J. D. A meta-evalution of nitrapyrin agronomic and environmental effectiveness with emphasis on corn production in the Midwestern USA. Nutrient Cycling in Agroecosystems, 2004, 69, 23~41.
    214. Xing G. N2O emission from cropland in China, Nutr. Cycl. Agroecosyst., 1998, 52, 249~254.
    215. Xiong Z., G. Xing H., Tsuruta G., et al. Measurement of nitrous oxide emissions froMtwo rice-based cropping systems in China, Nutr. Cycl. Agroecosyst., 2002, 64, 125~133.
    216. Xu X., Boeckx P., Wang Y., et al. Nitrous oxide and methane emission during rice growth and through rice plants: Effect of dicyandiamide and hydroquinone. Biology and Fertility of Soils, 2002, 36, 53~58.
    217. Xu X. K., Zhou LK, van Cleemput O., et al. Fate of urea15N in a soil-wheat system as influenced by urease inhibitor hydroquinone and nitrification inhibitor dicyandiamide. Plant and Soil, 2000, 220, 261~270.
    218. Yang J., Zhang J., Wang Z., et al. Remobilization of carbon reserves in response to water deficit during grain filling of rice. Field Crops Res., 2001, 71:47~55.
    219. Yu H. The Impact of Climate Change to Food Production in China. Beijing: The Science and Technology Publish of Beijing, 1993, 118~127.
    220. Zheng X., Liu C., Han S. Description and application of a model for simulating regional nitrogen cycling and calculating nitrogen flux. Adcance in Atmospheric Sciences, 2008, 25(2): 181~201.
    221. Zheng X., Han S., Huang Y., et al. Re-quantifying the emission factors based on field measurements and estimating the direct N2O emission from Chinese croplands. Global Biogeochem. Cycles, 2004, 18, GB2018, doi: 10.1029/2003GB002167.
    222. Zheng X., Wang M., Wang Y., et al. Impacts of soil moisture on nitrous oxide emission from croplands: a case study on the rice-based agro-ecosystem in Southeast China. Chemosphere~Global Change Sci, 2000, 2, 207~224
    223. Zou J., Huang Y., Zong L., et al. Effects of water regime and straw application in paddy rice season on N2O emission from following wheat growing season. Agric. Sci. Chin., 2003, 2, 68~74.
    224. Zou J., Huang Y., Lu Y. Direct emission factor for N2O from rice-winter wheat rotation systems in southeast China. Atmospheric Environment, 2005, 39: 4755~4765.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700