用户名: 密码: 验证码:
CXCR4基因沉默对黑色素瘤侵袭和转移影响的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
侵袭和转移是影响黑色素瘤患者生存的首要因素,也是其治疗的最大障碍。SDF-1/CXCR4生物轴作为少数具有点对点精确传导生物信息的生物轴系统之一,在多数肿瘤的侵袭和转移中发挥重要作用。越来越多的研究表明,趋化因子受体CXCR4(Chemokine receptor CXCR4)参与肿瘤侵袭和转移的多个关键环节。本研究利用RNA干扰技术下调趋化因子受体CXCR4基因的表达,探讨CXCR4基因沉默对黑色素瘤及细胞系体外侵袭及转移的影响及机制。设计合成CXCR4特异性短发夹状RNA(shRNA)插入pSilencer载体,转染人高转移性黑色素瘤细胞株MV3,RT-PCR和Western blot检测shRNA对靶基因CXCR4表达的影响。利用Transwell小室模型检测细胞体外侵袭能力,MTT检测细胞增殖状况。通过裸鼠尾静脉瘤细胞注射方法,构建黑色素瘤转移模型,检测CXCR4基因沉默对黑色素瘤转移能力的影响。研究证实,在人转移性黑色素瘤细胞系、人黑色素瘤原发灶及转移组织内均存在CXCR4选择性高表达;实验成功构建并筛选出CXCR4特异性shRNA质粒载体,结果表明,以CXCR4为靶向的shRNA能够有效下调CXCR4基因的表达,降低黑色素瘤细胞增殖、体外侵袭及转移能力。提示CXCR4是黑色素瘤侵袭和转移过程中的重要调控因子,为黑色素瘤的生物治疗提供了新的靶分子并奠定实验基础。
Invasion and metastasis are the main factors to affect the survival of the patients with melanoma. SDF-1/CXCR4 singnaling pathway plays an important role in the invasion and metastasis of many tumors. This study is to construct a CXCR4 specific recombinant plasmid vector and to research its inhibiting effect on invasion capacity in vitro of human melanoma MV3 cell line and its metastasis potential in mude mice. A CXCR4 specific recombinant plasmid vector was constructed and transfected into the cultured MV3 cell line with lipofectamine. RT-PCR and then Western blot were used to detect the mRNA and protein expression of CXCR4. Invasion capability in vitro of the cells was evaluated by Transwell chamber. The cell proliferation capacity was detected by MTT method. The nude mouse model of metastasis was established by injection of MV3 cells into the tail vein. The results showed that both the CXCR4 mRNA and protein expression rate in the CXCR4-shRNA group were significantly lower than that of the control group. CXCR4 silenced with shRNA lead to a significant decrease in the capacity of the invasion and proliferation of melanoma cell in vitro. Moreover, melanoma cells with CXCR4 shRNA permanant transfection had much lower metastatic potential in nude mice than control cells and mock control cells in vivo. The study indicates that CXCR4 shRNA can inhibit the expression of CXCR4 and decrease the invasion and metastatic potential of melanoma, and CXCR4 may be an important factor or therapeutic target of melanoma.
引文
[1] Berwick M. Epidemiology: current trends, risk factors and environmental concers. In: Balch CM, Houghton AN, Sober AJ, Soong S. Cutaneous melanoma, 3rd ed. St Louis: Quality Medical Publishing, 1998, 551-571.
    [2] Wagner JD, Gordon MS, Chuang TY, Coleman JJ 3rd. Current therapy of cutaneous melanoma. Plast Reconstr Surg, 2000, 105(5): 1774-1799; quiz 1800-1801.
    [3] Ries LAG, Melbert D, Krapcho M, et al. EER Cancer Statistics Review, 1975-2005, National Cancer Institute.
    [4] Jemal A, Devesa SS, Hartge P, Tucker MA. Recent trends in cutaneous melanoma incidence among Whites in the United States. J Natl Cancer Inst 2001, 93: 678–683.
    [5]李荟元.恶性黑色素瘤的最新动态.中国美容医学, 2008, 17(1): 135-138.
    [6]郑江红,林子豪.皮肤恶性黑色素瘤治疗的进展.中华整形外科杂志, 2003, 19(1): 62-64.
    [7] Tsao H, Sober AJ. Melanoma treatment update. Dermatol Clin, 2005, 23(2): 323-333.
    [8] Meyers ML, Balch CM. Diagnosis and treatment of metastatic melanoma. In: Balch CM, Houghton AN, Sober AJ, Soong S. Cutaneous melanoma, 3rd ed. St Louis: Quality Medical Publishing, 1998. 325-372.
    [9] Watt AJ, Kotsis SV, Chung KC. Risk of melanoma arising in large congenital melanocytic nevi: a systematic review. Plast Reconstr Surg, 2004, 113(7): 1968-1974.
    [10] Rinderknecht M, Detmar M. Tumor lymphangiogenesis and melanoma metastasis.J Cell Physiol, 2008, 216(2): 347-354.
    [11] Tucci MG, Lucarini G, Brancorsini D, et al. Involvement of E-cadherin, beta-catenin, Cdc42 and CXCR4 in the progression and prognosis of cutaneous melanoma. Br J Dermatol. 2007, 157(6): 1212-1216.
    [12] van Kempen LC, Meier F, Egeblad M, et al. Truncation of activated leukocyte cell adhesion molecule: a gateway to melanoma metastasis. Invest Dermatol, 2004, 122(5): 1293-1301.
    [13] Rangaswami H, Kundu GC. Osteopontin stimulates melanoma growth and lung metastasis through NIK/MEKK1-dependent MMP-9 activation pathways. Oncol Rep, 2007, 18(4): 909-915.
    [14] Jakowlew SB. Transforming growth factor-beta in cancer and metastasis. Cancer Metastasis Rev, 2006, 25(3): 435-457.
    [15] Gruber F, Kastelan M, Brajac I, et al. Molecular and genetic mechanisms in melanoma. Coll Antropol, 2008, 32(2): 147-152.
    [16] Slettenaar VI, Wilson JL. The chemokine network: a target in cancer biology? Adv Drug Deliv Rev, 2006, 58(8): 962-974.
    [17] Ballkwell F. Chemokine biology in cancer. Semin Immunol, 2003, 15: 49.
    [18] Kim J, Mori T, Chen SL, et al. Chemokine receptor CXCR4 expression in patients with melanoma and colorectal cancer liver metastases and the association with disease outcome. Ann Surg, 2006, 244(1): 113-120.
    [19] Scala S, Giuliano P, Ascierto PA, et al. Human melanoma metastases express functional CXCR4. Clin Cancer Res, 2006; 12(8): 2427.
    [20] Liang Z, Yoon Y, Votaw J, et al. Silencing of CXCR4 blocks breast cancer metastasis. Cancer Res, 2005; 65, 967-971.
    [21] Philips RJ, Burdick MD, Lutz M, et al. The stromal derived factor-1/CXCL12-CXC chemokine receptor 4 biological axis in non-small cell lung cancer metastasis. Am J Respir Crit Care Med, 2003, 167: 1676-1686.
    [22] Marchesi F, Monti P, Leone BE, et al. Increased survival, proliferation, and migration in metastatic human pancreatic tumor cells expressing functional CXCR4. Cancer Res, 2004, 64(22): 8420-8427.
    [23]杜岳峰,邢毅飞,曾甫清,陆鹏,刘先艮,肖亚军.人前列腺特异性抗原启动子调控的CXCR4-siRNA逆转录病毒载体的构建及其对前列腺癌细胞的生物学效应.中华肿瘤杂志, 2007, 29(7): 489-494.
    [24]刘辉,周伟平,傅思源,吴孟超.趋化因子受体CXCR4在肝细胞癌中的表达.第二军医大学学报, 2008, 29(11): 1300-1302.
    [25] Hu J, Deng X, Bian X, et al. The expression of functional chemokine receptor CXCR4 is associated with the metastatic potential of human nasopharyngeal carcinoma. Clin Cancer Res, 2005, 11(13): 4658-4665.
    [26] Brummelkamp TR, Bernards R, Agam R. A system for stable expression of short interfering RNAs in mammalian cells. Science, 2002, 296: 550-553.
    [27] Kloc A, Martienssen R. RNAi, heterochromatin and the cell cycle. Trends Genet, 2008, 24(10): 511-517.
    [28] Cartel AL, Kandel ES. RNA interference in cancer. Biomod Eng, 2006, 23(1): 17-34.
    [29] Nguyen T, Menocal EM, Harborth J, et al. RNAi therapeutics: An update on delivery. Curr Opin Mol Ther, 2008, 10: 158-167.
    [30] Pushparaj PN, Aarthi JJ, Manikandan J, Kumar SD. siRNA, miRNA, and shRNA: in vivo applications. J Dent Res, 2008, 87(11): 992-1003.
    [31] Bernards R, Brummelkamp TR, Beijersbergen RL. shRNA libraries and their use in cancer genetics. Nat Methods, 2006, 3(9): 701-716.
    [32] Singer O, Verma IM. Applications of lentiviral vectors for shRNA delivery and transgenesis. Curr Gene Ther, 2008, 8(6): 483-488.
    [33]张孟贤, Kashif Iqbal,于世英.趋化因子受体CXCR4在大肠癌的表达及其临床意义.世界华人消化杂志, 2007, 15: 772-776.
    [34]张孟贤,韩娜,于世英,冷彦.趋化性细胞因子受体CXCR4基因沉默对乳腺癌细胞体外侵袭和定向肺转移的影响.中华肿瘤杂志, 2008, 30(5): 325-329.
    [35] Yu K, Zhuang J, Kaminski JM, et al. CXCR4 down-regulation by small interfering RNA inhibits invasion and tubule formation of human testinal microvascular endothelial cells. Biochem Biophys Res Communn, 2007, 358(4): 990-996.
    [36] Di Cesare S, Marshall JC, Fernandes BF, et al. In vitro characterization and inhibition of the CXCR4/CXCL12 chemokine axis in human uveal melanoma cell lines. Cancer Cell Int, 2007, 7: 17.
    [1] Tsao H, Atkins MB, Sober AJ. Management of cutaneous melanoma. N Engl J Med, 2004, 351: 998-1012.
    [2] Balkwill F. The significance of cancer cell expression of the chemokine receptor CXCR4. Semin Cancer Biol, 2004, 14: 171-179.
    [3] Murphy PM. Chemokines and the molecular basis of cancer metastasis. N Engl J Med, 2001, 345: 833-835.
    [4] Muller A, Homey B, Soto H, et al. Involvement of chemokine receptors in breast cancer metastasis. Nature, 2001, 410: 50–56.
    [5] Bachelder RE, Wendt MA, Mercurio AM. Vascular endothelial growth factor promotes breast carcinoma invasion in an autocrine manner by regulating thechemokine receptor CXCR4. Cancer Res, 2002, 62: 7203–7206.
    [6] Balkwill F. Cancer and the chemokine network. Nat Rev Cancer, 2004, 4: 540–550.
    [7] Zlotnik A. Chemokines in neoplastic progression. Semin Cancer Biol 2004, 14: 181–185.
    [8] Richert MM, Vaidya KS, Mills CN, Wong D, Korz W, Hurst DR, Welch DR. Inhibition of CXCR4 by CTCE-9908 inhibits breast cancer metastasis to lung and bone. Oncol Rep, 2009, 21(3): 761-767.
    [9] Kijima T, Maulik G, Ma PC, et al. Regulation of cellular proliferation, cytoskeletal function, and signal transduction through CXCR4 and c-Kit in small cell lung cancer cells. Cancer Res, 2002, 62: 6304–6311.
    [10] Otsuka S, Bebb G. The CXCR4/SDF-1 chemokine receptor axis: a new target therapeutic for non-small cell lung cancer. J Thorac Oncol, 2008, 3(12): 1379-1383.
    [11] Scotton CJ, Wilson JL, Scott K, et al. Multiple actions of the chemokine CXCL12 on epithelial tumour cells in human ovarian cancer. Cancer Res 2002, 62: 5930–5938.
    [12] Koshiba T, Hosotani R, Miyamoto Y, et al. Expression of stromal cell-derived factor 1 and CXCR4 ligand receptor system in pancreatic cancer: a possible role for tumour progression. Clin Cancer Res 2000, 6: 3530–3535.
    [13] Libura J, Drukala J, Majka M, et al. CXCR4-SDF-1 signaling is active in rhabdomyosarcoma cells and regulates locomotion, chemotaxis, and adhesion. Blood 2002, 100: 2597–2606.
    [14] Schrader AJ, Lechner O, Templin M, et al. CXCR4/CXCL12 expression and signalling in kidney cancer. Br J Cancer 2002, 86: 1250–1256.
    [15] Scala S, Ottaiano A, Ascierto PA, et al. Expression of CXCR4 predicts poor prognosis in patients with malignant melanoma. Clin Cancer Res, 2005, 11: 1835-1841.
    [16] Rossi D, Zlotnik A. The biology of chemokines and their receptors. Annu Rev Immunol, 2000, 18: 217-242.
    [17] Bleul CC, Farzan M, Choe H, et al. The lymphocyte chemoattractant SDF-1 is a ligand for LESTR/fusin and blocks HIV-1 entry. Nature, 1996, 382: 829-833.
    [18] Liang Z, Yoon Y, Votaw J, Goodman MM, Williams L, Shim H. Silencing of CXCR4 blocks breast cancer metastasis. Cancer Res, 2005, 65: 967-971.
    [19] Jiang YP, Wu XH, Shi B, et al. Expression of chemokine CXCL12 and its receptor CXCR4 in human epithelial ovarian cancer: an independent prognostic factor for tumor progression. Gynecol Oncol 2006, 103: 226-233.
    [20] Su L, Zhang J, Xu H, et al. Differential expression of CXCR4 is associated with the metastatic potential of human non-small cell lung cancer cells. Clin Cancer Res, 2005, 11: 8273-8280.
    [21]张孟贤, Kashiflqbal,于世英.趋化性细胞因子受体CXCR4在大肠癌的表达及其临床意义.世界华人消化杂志, 2007, 15(7): 772-776.
    [22]马向涛,余力伟,张在兴,等.趋化因子受体CXCR4/CXCL12信号转导通路在结直肠癌肝转移中的作用.世界华人消化杂志, 2006, 14: 1566-1570.
    [1] Li,H., Alizadeh,H. and Niederkorn,J.Y. Differential expression of chemokine receptors on uveal melanoma cells and their metastases. Journal Invest Ophthalmol Vis Sci, 2008, 49 (2): 636-643.
    [2] Di Cesare S, Marshall JC, Fernandes BF, et al. In vitro characterization and inhibition of the CXCR4/CXCL12 chemokine axis in human uveal melanoma cell lines. Cancer Cell Int, 2007, 14(7):17.
    [3] Fire A, Xu S, Montomery MK,et a1. Potent and specific genetic in- terference by double-stranded RNA in Caenorhabditis elegans. Nature, 1998, 391: 806-811.
    [4] Zamore PD, Tuschl T, Sharp PA, Bartel DP.RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell, 2000, 101(1): 25-33.
    [5] Bernstein E, Caudy AA, Hammond SM, Hannon GJ. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature, 2001, 18; 409(6818): 363-366.
    [6] Wu-Scharf D, Jeong B, Zhang C,Ceruti H. Transgene and transposon silencing in Chlamydomonas reinhardtii by a DEAH-box RNA helicase. Science, 2000, 290(5494): 1159-1162.
    [7] Nykanen A, Haley B, Zamore PD. ATP requirements and small interfering RNA structure in the RNA interference pathway. Cell, 2001, 107(3): 309-321.
    [8] Martinez J, Patkaniowska A, Urlaub H, Luhrmann R, Tuschl T. Single- stranded antisense siRNAs guide target RNA cleavage in RNAi. Cell, 2002, 6: 110(5): 563-574.
    [9] Nam NH and Parang K.Current targets for anticancer drug discovery Curr Drug Targets, 2003, 4: 159-179.
    [10] Aoki Y, Cioca D, Oidaim H, et al. RNA interference may be more potent than antisense RNA in human cancer cell lines. Clin Exp Pharmacol Physiol, 2003, 30: 96-102.
    [11] Cioca DP, Aoki Y, Kiyosawa K. RNA interference is a functional pathway with therapeutic potential in human myeloid leukemia cell lines. Cancer Gene Ther, 2003, 10:125-133.
    [12] siegmund D, Hadwiger P, Pfizenmaier K, et al. Selective inhibition 0fFLICE-like inhibitory protein expression with interfering RNA oligonudeotides is sufficient to sensitize tumor cells for TRAIL -induced apoptosis. Mol Med, 2002, 8: 725-732.
    [13] TanYT, Tillett DJ, McKay IA. Molecular strategies for overcoming antibiotic resistance in bacteria. Mol Med Today, 2000, 6: 309-314.
    [14] Frmxz DR and Zajtchuk R. Biological termrimn: understanding the threat,,preparation and medical response, Dis Mon, 2002, 48: 493-564.
    [15] Song E, Lee SK, Wang J, et al. RNA interference targeting Fas protects mice from fulminant hepatitis. Nat Med, 2003, 9: 347-351.
    [16] Capodici J, Kariko K, Weissman D. Inhibition 0f HIV-1 infection by small interfering RNA-mediated RNA interference. J Immunol, 2002, 169: 5196-5201.
    [17] Lee Nan Sook, Rossi John J. Control of HIV-1 replication by RNA interference. Virus Research, 2004,102(1): 53-58.
    [18] Gitlin L, Karelsky S, Andino R. Short interfering RNA confers intracellular antiviral immunity in human cells. Nature, 2002, 418: 430-434.
    [19] Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabd- it is elegans. Nature, 1998, 391: 806-811.
    [20] Tuschl T, Zalmore PD, Lehmann R, et al. Targeted mRNA degradation by double-stranded RNA in vitro. Genes & Dev, 1999, 13: 3191-3197.
    [1] Dwinell MB, Eckmann L, Leopard JD, Varki NM, Kagnoff MF. Chemokine receptor expression by human intestinal epithelial cells. Gastroenterology 1999, 117: 359–67.
    [2] Ottaiano A, di Palma A, Napoletano M, et al. Inhibitory effects of anti-CXCR4 antibodies on human colon cancer cells. Cancer Immunol Immunother, 2005, 12: 2234.
    [3] Mochizuki H, Matsubara A, Teishima J, et al. Interaction of ligand-receptor system between stromal-cell-derived factor-1 and CXC chemokine receptor 4 in human prostate cancer: a possible predictor of metastasis. Biochem Biophys Res Commun 2004, 320: 656–663.
    [4] Zhang Y, Foudi A, Geay JF, et al. Intracellular localization and constitutive endocytosis of CXCR4 in human CD34+ hematopoietic progenitor cells. Stem Cells 2004, 22: 1015–1029.
    [5] Roland J, Murphy BJ, Ahr B, et al. Role of the intracellular domains of CXCR4 in SDF-1-mediated signaling. Blood, 2003, 101: 399–406.
    [6] Liang Z, Wu T, Lou H, et al. Inhibition of breast cancer metastasis by selective synthetic polypeptide against CXCR4. Cancer Res, 2004, 64: 4302–4308.
    [7] Juarez J, Bendall L, Bradstock K. Chemokines and their receptors as therapeutic targets: the role of the SDF-1/CXCR4 axis. Curr Pharm Des, 2004, 10: 1245–1259.
    [8] Seibert C, Sakmar TP. Small-molecule antagonists of CCR5 and CXCR4: a promising new class of anti-HIV-1 drugs. Curr Pharm Des, 2004, 10: 2041–2062.
    [9] Rubin JB, Kung AL, Klein RS, et al. A small-molecule antagonist of CXCR4 inhibits intracranial growth of primary brain tumours. Proc Natl Acad Sci USA, 2003, 100: 13513–13518.
    [10] Devine SM, Flomenberg N, Vesole DH, et al. Rapid mobilization of CD34+ cells following administration of the CXCR4 antagonist AMD3100 to patients with multiple myeloma and non-Hodgkin's lymphoma. J Clin Oncol, 2004, 22: 1095–1102.
    [11] Takenaga M, Tamamura H, Hiramatsu K, et al. A single treatment with microcapsules containing a CXCR4 antagonist suppresses pulmonary metastasisof murine melanoma. Biochem Biophys Res Commun, 2004, 320: 226–232.
    [12] Mǔller A, Homey B, Soto H, et al. Involvement of chemokine receptors in breast cancer metastasis. Nature, 2001, 410: 50-56.
    [1] Cotignola J, Roy P, Patel A et al. Functional polymorphisms in the promoter regions of MMP2 and MMP3 are not associated with melanoma progression. J Negat Results Biomed, 2007, 24; 6: 9.
    [2] Qin L, Liao L, Redmond A, Young L, Yuan Y, Chen H, O'Malley BW, Xu J. The AIB1 oncogene promotes breast cancer metastasis by activation of PEA3-mediated matrix metalloproteinase 2 (MMP2) and MMP9 expression. Mol Cell Biol, 2008, 28(19): 5937-5950.
    [3] Mendes O, Kim HT, Lungu G, Stoica G. MMP2 role in breast cancer brain metastasis development and its regulation by TIMP2 and ERK1/2. Clin Exp Metastasis, 2007, 24(5): 341-351.
    [4]康恺,李运曼,蒋轶,方伟蓉.三种黑色素瘤动物模型的建立.药学进展, 2006, 30(6): 326-330.
    [5] Mendes O, Kim HT, Stoica G. Expression of MMP2, MMP9 and MMP3 in breast cancer brain metastasis in a rat model. Clin Exp Metastasis, 2005, 22(3): 237-246.
    [6] Castellone MD, Guarino V, De Falco V, et al. Functional expression of the CXCR4 chemokine receptor is induced by RET/PTC oncogenes and is a common event in human papillary thyroid carcinomas. Oncogene, 2004, 23: 5958-5967.
    [7] Libura J, Drukala J, Majka M, et al. CXCR4-SDF-1 signaling is active in rhabdomyosarcoma cells and regulates locomotion, chemotaxis, and adhesion. Blood, 2002, 100: 2597-2606.
    [8] Taichman RS, Cooper C, Keller ET, Pienta KJ, Taichman NS, McCauley LK. Use of the stromal cell-derived factor-1/CXCR4 pathway in prostate cancer metastasis to bone. Cancer Res, 2002, 62:1832-1837.
    [9] Zeelenberg IS, Ruuls-Van Stalle L, Roos E. The chemokine receptor CXCR4 is required for outgrowth of colon carcinoma micrometastases. Cancer Res, 2003, 63: 3833–3839.
    [10] Robledo MM, Bartolome RA, Longo N, et al. Expression of functional chemokine receptors CXCR3 and CXCR4 on human melanoma cells. J Biol Chem, 2001, 276: 45: 98-105.
    [11] Bartolome RA, Galvez BG, Longo N, et al. Stromal cell-derived factor-1 promotes melanoma cell invasion across basement membranes involving stimulation of membrane-type 1 matrix metalloproteinase and Rho GTPase activities. Cancer Res, 2004, 64: 2534-2543.
    [12] Murakami T, Maki W, Cardones AR, et al. Expression of CXC chemokine receptor-4 enhances the pulmonary metastatic potential of murine B16 melanoma cells. Cancer Res, 2002,; 62: 7328–7334.
    [13] Germanov E, Berman JN, Guernsey DL. Current and future approaches for the therapeutic targeting of metastasis. Int J Mol Med, 2006, 25: 573-587.
    [14]汪砥,刘蓓,李跃辉,周国华,谢平丽,李官成,胡锦跃.转染异种CXCR4基因下调黑色素瘤的致瘤性.医学临床研究, 2007, 24(10): 1677-1679.
    [15]程广印,李彬,王文峰,孙宪丽,李辽青,高飞.整合素β1、MMP2、MMP9与脉络膜黑色素瘤侵袭转移的关系之探讨.眼科研究, 2007; 25(2): 109-112.
    [16] BartoloméRA, Ferreiro S, Miquilena-Colina ME, et al. The chemokine receptor CXCR4 and the metalloproteinase MT1-MMP are mutually required during melanoma metastasis to lungs. Am J Pathol, 2009, 174(2): 602-612.
    [17] Schutyser E, Su Y, Yu Y, et al. Hypoxia enhances CXCR4 expression in human microvascular endothelial cells and human melanoma cells. Eur Cytokine Netw, 2007, 18(2): 59-70.
    [18] Longo-Imedio MI, Longo N, Trevi?o I, Lázaro P, Sánchez-Mateos P. Clinical significance of CXCR3 and CXCR4 expression in primary melanoma. Int J Cancer, 2005, 117(5): 861-865.
    [19] Zhang T, Somasundaram R, Berencsi K, et al. CXC chemokine ligand 12 (stromal cell-derived factor 1 alpha) and CXCR4-dependent migration of CTLs toward melanoma cells in organotypic culture. J Immunol, 2005, 174(9): 5856-5863.
    [20] Scala S, Ottaiano A, Ascierto PA, et al. Expression of CXCR4 predicts poor prognosis in patients with malignant melanoma. Clin Cancer Res,2005, 11(5): 1835-1841.
    1 Chung ES, Sabel MS, Sondak VK. Current state of treatment for primary cutaneous melanoma. Clin Exp Med, 2004, 4(2): 65-77.
    2 Garbe C, Eigentler TK. Diagnosis and treatment of cutaneous melanoma: state of the art 2006. Melanoma Res, 2007, 17(2): 117-127.
    3 Kohya N, Kitajima Y, Jiao W, Miyazaki K. Effects of E-cadherin transfection on gene expression of a gallbladder carcinoma cell line: repression of MTS1/S100A4 gene expression. Int J Cancer, 2003, 104(1): 44-53.
    4 Bakalian S, Marshall JC, Faingold D, et al. Expression of nm23-H1 in uveal melanoma. Melanoma Res, 2007, 17(5): 284-290.
    5 Prochownik EV. c-Myc: linking transformation and genomic instability. Curr Mol Med, 2008, 8(6): 446-458.
    6 Gao L, Feng Y, Bowers R, Becker-Hapak M, Gardner J, Council L, Linette G, Zhao H, Cornelius LA. Ras-associated protein-1 regulates extracellular signal-regulated kinase activation and migration in melanoma cells: two processes important to melanoma tumorigenesis and metastasis. Cancer Res, 2006, 66(16): 7880-7788.
    7 Ebralidze A, Tulchinsky E, Grigorian M, Afanasyeva A, Senin V, Revazova E, Lukanidin E. Isolation and characterization of a gene specifically expressed in different metastatic cells and whose deduced gene product has a high degree of homology to a Ca2+-binding protein family. Genes Dev, 1989, 3(7): 1086-1093.
    8 Lakshmi MS, Parker C, Sherbet GV. Expression of the transmembrane glycoprotein CD44 and metastasis associated 18A2/MTS1 gene in B16 murine melanoma cells. Anticancer Res, 1997, 17(5A): 3451-3455.
    9 Calipel A, Lefevre G, Pouponnot C, Mouriaux F, Eychène A, Mascarelli F. Mutation of B-Raf in human choroidal melanoma cells mediates cell proliferation and transformation through the MEK/ERK pathway. J Biol Chem, 2003, 24; 278(43): 42409-42418.
    10 Pencil SD, Toh Y, Nicolson GL. Candidate metastasis-associated genes of the rat 13762NF mammary adenocarcinoma. Breast Cancer Res Treat, 1993, 25(2): 165-174.
    11 Toh Y, Pencil SD, Nicolson GL. Analysis of the complete sequence of the novel metastasis-associated candidate gene, mta1, differentially expressed in mammary adenocarcinoma and breast cancer cell lines. Gene, 1995, 159 (1): 97-104.
    12 Qian H, Yu J, Li Y, et al. RNA interference of metastasis-associated gene 1 inhibits metastasis of B16F10 melanoma cells in a C57BL/6 mouse model. Biol Cell, 2007, 99(10): 573-581.
    13 Jay V, Yi Q, Hunter WS, Zielenska M. p53 expression in uveal malignant melanomas. Pathology, 1996, 28(4): 306-308.
    14 Dummer R, Bergh J, Karlsson Y, et al. Biological activity and safety of adenoviral vector-expressed wild-type p53 after intratumoral injection in melanoma and breast cancer patients with p53-overexpressing tumors. CancerGene Ther, 2000, 7(7): 1069-1076.
    15 Davies H, Bignell GR, Cox C, et al. Mutations of the BRAF gene in human cancer. Nature, 2002, 417(6892): 949-954.
    16 Dong J, Phelps RG, Qiao R, et al. BRAF oncogenic mutations correlate with progression rather than initiation of human melanoma. Cancer Res, 2003, 15; 63(14): 3883-3385.
    17 Steeg PS. Search for metastasis suppressor genes. Invasion Metastasis, 1989, 9(6): 351-359.
    18 Steeg PS, Horak CE, Miller KD. Clinical-translational approaches to the Nm23-H1 metastasis suppressor. Clin Cancer Res,2008, 14(16): 5006-5012.
    19 Leone A, Flatow U, King CR, et al. Reduced tumor incidence, metastatic potential, and cytokine responsiveness of nm23-transfected melanoma cells. Cell, 1991, 65(1): 25-35.
    20 Schwartz MA, McRoberts K, Coyner M, et al. Integrin agonists as adjuvants in chemotherapy for melanoma. Clin Cancer Res, 2008, 14(19): 6193-6197.
    21 Ferrari D, Lombardi M, Ricci R, et al. Dermatopathological indicators of poor melanoma prognosis are significantly inversely correlated with the expression of NM23 protein in primary cutaneous melanoma. J Cutan Pathol, 2007, 34(9): 705-712.
    22 Stahl JM, Cheung M, Sharma A, Trivedi NR, Shanmugam S, Robertson GP. Loss of PTEN promotes tumor development in malignant melanoma. Cancer Res, 2003, 63(11): 2881-2890.
    23 Guldberg P, thor Straten P, Birck A, et al. Disruption of the MMAC1/PTEN gene by deletion or mutation is a frequent event in malignant melanoma. Cancer Res, 1997, 57(17): 3660-3663.
    24 Garraway LA, Widlund HR, Rubin MA, et al. Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma. Nature, 2005, 436(7047): 117-122.
    25 Nakayama T, Ito M, Ohtsuru A, Naito S, Sekine I. Expression of the ets-1 proto-oncogene in human colorectal carcinoma. Mod Pathol, 2001, 14(5): 415-422.
    26 Jean D, Gershenwald JE, Huang S, et al. Loss of AP-2 results in up-regulation ofMCAM/MUC18 and an increase in tumor growth and metastasis of human melanoma cells. J Biol Chem, 1998, 26; 273(26): 16501-16508.
    27 Liotta LA. Tumor invasion and metastasis: getting more basic to come closer to the patient. An interview with Lance A. Liotta. Int J Dev Biol, 2004, 48(5-6): 559-562.
    28 Bennett, D.C. Human melanocyte senescence and melanoma susceptibility genes. Oncogene, 2003, 22(20): 3063-3069.
    29 Chien AJ, Moore EC, Lonsdorf AS, et al. Activated Wnt/beta-catenin signaling in melanoma is associated with decreased proliferation in patient tumors and a murine melanoma model. Proc Natl Acad Sci USA, 2009, 27, 106(4): 1193-198.
    30 McGary EC, Lev DC, Bar-Eli M. Cellular adhesion pathways and metastatic potential of human melanoma. Cancer Biol Ther, 2002, 1(5): 459-465.
    31 Stewart PL, Nemerow GR. Cell integrins: commonly used receptors for diverse viral pathogens. Trends Microbiol, 2007, 15(11): 500-507.
    32 Kuphal S, Bauer R, Bosserhoff AK. Integrin signaling in malignant melanoma. Cancer Metastasis Rev, 2005, 24(2): 195-222.
    33 Harris JE, Nuttall RK, Elkington PT, et al. Monocyte-astrocyte networks regulate matrix metalloproteinase gene expression and secretion in central nervous system tuberculosis in vitro and in vivo. J Immunol, 2007, 15, 178(2): 1199-1207.
    34 Emmert-Buck MR, Roth MJ, Zhuang Z, Campo E, Rozhin J, Sloane BF, Liotta LA, Stetler-Stevenson WG. Increased gelatinase A (MMP-2) and cathepsin B activity in invasive tumor regions of human colon cancer samples. Am J Pathol, 1994, 145(6): 1285-1290.
    35 Goldfarb RH, Koelemij R, Muirhead KA, et al. A novel drug delivery system using IL-2 activated NK cells and Zyn-linked doxorubicin. In Vivo, 2000, 14(1): 101-104.
    36 Hofmann UB, Houben R, Br?cker EB, Becker JC. Role of matrix metalloproteinases in melanoma cell invasion. Biochimie. 2005, 87(3-4): 307-314.
    37 de Lorenzo MS, Ripoll GV, Yoshiji H, Yamazaki M, Thorgeirsson UP, Alonso DF, Gomez DE. Altered tumor angiogenesis and metastasis of B16 melanoma in transgenic mice overexpressing tissue inhibitor of metalloproteinases-1. In Vivo,2003, 17(1): 45-50.
    38 Ray S, Chattopadhyay N, Biswas N, Chatterjee A. Regulatory molecules in tumor metastasis. J Environ Pathol Toxicol Oncol, 1999, 18(4): 251-259.
    39 Jill M, RAY, William G. TIMP-2 expression modulates human melanoma cell adhesion and motility. Annals of the NewYork Academy Science, 1994, 732: 233-247.
    40 Valente P, Fassina G, Melchiori A, et al. TIMP-2 over-expression reduces invasion and angiogenesis and protects B16F10 melanoma cells from apoptosis. Int J Cancer, 1998, 75(2):246-253.
    41 Federici C, Brambilla D, Lozupone F, et al. Pleiotropic function of ezrin in human metastatic melanomas. Int J Cancer, 2009 Jan 12. [Epub ahead of print]
    42 Haqq C, Nosrati M, Sudilovsky D, et al. The gene expression signatures of melanoma progression. Proc Natl Acad Sci USA, 2005, 102(17): 6092-6097.
    43 Xu L, Shen SS, Hoshida Y, Subramanian A, Ross K, Brunet JP, Wagner SN, Ramaswamy S, Mesirov JP, Hynes RO. Gene expression changes in an animal melanoma model correlate with aggressiveness of human melanoma metastases. Mol Cancer Res, 2008, 6(5): 760-769.
    44 Brown KM, Macgregor S, Montgomery GW, et al. Common sequence variants on
    20q11.22 confer melanoma susceptibility. Nat Genet, 2008, 40(7): 838-840.
    45 Chin L, Garraway LA, Fisher DE. Malignant melanoma: genetics and therapeutics in the genomic era. Genes Dev, 2006, 20(16): 2149-2182.
    46 Kim M, Gans JD, Nogueira C, Wang A, Paik JH, Feng B, Brennan C, Hahn WC, Cordon-Cardo C, Wagner SN, Flotte TJ, Duncan LM, Granter SR, Chin L. Comparative oncogenomics identifies NEDD9 as a melanoma metastasis gene. Cell, 2006, 125(7): 1269-1281.
    47 Vandercappellen J, Van Damme J, Struyf S. The role of CXC chemokines and their receptors in cancer. Cancer Lett, 2008, 267(2): 226-244.
    48 Waugh DJ, Wilson C. The interleukin-8 pathway in cancer. Clin Cancer Res, 2008, 14(21): 6735-6741.
    49 Luca MR, Bar-Eli M. Molecular changes in human melanoma metastasis. Histol Histopathol, 1998, 13(4): 1225-1231.
    50 Zlotnik A. New insights on the role of CXCR4 in cancer metastasis. J Pathol,2008, 215(3): 211-213.
    51 Lataillade JJ, Domenech J, Le Bousse-Kerdilès MC. Stromal cell-derived factor-1 (SDF-1)\CXCR4 couple plays multiple roles on haematopoietic progenitors at the border between the old cytokine and new chemokine worlds: survival, cell cycling and trafficking. Eur Cytokine Netw, 2004, 15(3): 177-188.
    52 Scala S, Giuliano P, Ascierto PA, et al. Human melanoma metastases express functional CXCR4. Clin Cancer Res, 2006, 12(8): 2427.
    53 Kim J, Mori T, Chen SL, et al. Chemokine receptor CXCR4 expression in patients with melanoma and colorectal cancer liver metastases and the association with disease outcome. Ann Surg, 2006, 244(1): 113-120.
    54 Di Cesare S, Marshall JC, Fernandes BF, et al. In vitro characterization and inhibition of the CXCR4/CXCL12 chemokine axis in human uveal melanoma cell lines. Cancer Cell Int, 2007, 7: 17.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700