用户名: 密码: 验证码:
热疗对紫杉醇抑制肺肿瘤细胞的促进作用及其机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肺癌的发病率和死亡率正在迅速上升,在很多发达国家,肺癌的发病率占男性常见恶性肿瘤的第一位,女性常见恶性肿瘤的第二、三位;肺癌的组织学类型也在发生显著变化,腺癌的发病率不断上升。虽然手术治疗、化学治疗、放射治疗、免疫治疗及综合治疗等都取得了长足发展,但在美国肺癌患者5年的生存率仅为15%,欧洲不过是10%,发展中国家则不到8.9%。化疗药物紫杉醇(TAX)抗肿瘤效果显著,取得了较好的临床疗效。肿瘤热疗在肿瘤综合治疗中显示了良好的效果,加热不会增加药物的细胞毒性效应,所以,热疗增加肿瘤细胞对化疗的敏感性受到越来越多的重视,因此,本研究旨在验证热疗促进TAX对肺肿瘤细胞抑制作用的发生及其机制。
     研究方法
     1.热疗与TAX联合应用对肺部细胞生物学特性的影响
     采用人肺腺癌A549细胞、人小细胞肺癌NCI-H446细胞和人呼吸道上皮BEAS-2B细胞,每种细胞分别采用3种方式处理,即对照组、TAX组和43℃+TAX组(见表1);倒置显微镜观察细胞形态,照相记录,噻唑蓝比色法检测细胞增殖率;提取细胞总蛋白,按LDH Kit要求检测LDH活力,划痕实验检测细胞损伤修复能力,荧光Hoechst33342/PI双染法以及提取细胞DNA Ladder检测细胞凋亡。
     2.细胞内重要信号传导通路在热疗与TAX诱导肺肿瘤细胞增殖过程中的作用及其相互关系
     采用人肺腺癌A549细胞和人小细胞肺癌NCI-H446细胞,每种细胞分别采用6种方式处理,即对照组、TAX组、43℃+TAX组(见表1)和SP600125组(43℃+TAX组加入JNK信号转导通路抑制剂SP600125)、wortmannin组(43℃+TAX组加入Akt通路抑制剂wortmannin)、NAC组(43℃+TAX组加入ROS抑制剂NAC);分别检测各组ROS、p-JNK、p-Akt以及Caspase-3等的表达变化,并用流式细胞术检测细胞凋亡率和细胞周期的变化,同时做体内实验的验证。
     3.HSP70在热疗与TAX抑制肺肿瘤细胞作用中的地位
     采用人肺腺癌A549细胞、人小细胞肺癌NCI-H446细胞和人呼吸道上皮BEAS-2B细胞。每种细胞分别采用4种方式处理,即对照组、TAX组、43℃+TAX组和43℃组(见表1);检测各组HSP70的表达变化,同时做体内实验的验证。
     4.GTSP1在热疗与TAX抑制肺肿瘤细胞过程中的作用
     构建重组质粒pcDNA3.0-GSTP1,转染A549细胞,热疗联合TAX处理转染和未转染细胞,倒置显微镜观察细胞形态,照相记录,噻唑蓝比色法检测细胞增殖率,流式细胞术检测各组细胞周期的变化。
     5.统计学分析
     采用SPSS 12.0进行统计分析,统计学处理采用t检验、单因素方差分析,多重比较采用LSD法,构成比的比较采用卡方检验,以α=0.05为检验水准。
     结果
     1.热疗与TAX联合应用对肺部细胞生物学特性的影响
     1.1热疗可以减少TAX对正常细胞的损伤作用(P<0.05),明显增强TAX对肺肿瘤细胞的抑制作用(P<0.05);
     1.2热疗造成肺肿瘤细胞膜损伤,使得大量LDH外漏,所以检测细胞内LDH发现,43℃+TAX组的LDH较对照组和TAX组明显减少(P<0.05);
     1.3划痕后24h,对照组细胞开始向划痕区生长,其余各组划痕区中央均未见细胞生长,且有部分细胞死亡,TAX组细胞存活数目多于43℃+TAX组;划痕后48h,对照组细胞填满划痕区,TAX组细胞部分存活,存在较宽的划痕区,43℃+TAX组细胞大多死亡;
     1.4用Hoechst 33342结合PI染料对细胞进行双染色,在荧光显微镜下观察,呈现低绿色/低红色的是正常细胞,高绿色/低红色的是凋亡细胞,坏死细胞则为低绿色/高红色,对照组细胞呈低绿色和低红色,证明细胞并未发生坏死和凋亡,TAX组细胞则绿色数量增加,红色没有变化,证明已有凋亡发生,43℃+TAX组细胞呈现明显的亮绿色,证明细胞发生了明显的凋亡,而并没有发生坏死;
     1.5 43℃+TAX组细胞其DNA条带出现典型的DNA片段梯带现象(DNA ladder),而对照组细胞未出现DNA梯状条带,TAX组细胞的DNA梯状条带不明显,说明热疗可以诱导肺肿瘤细胞发生凋亡。
     2.细胞内重要信号传导通路在热疗与TAX抑制肺肿瘤细胞过程中的作用及其相互关系
     2.1 ROS产生水平的变化
     荧光法检测各组细胞内ROS,证明热疗可以明显提高细胞内ROS的表达(P<0.05),ROS的增多可以改变细胞内氧化还原水平,损伤细胞膜,作为信号在细胞内传递,引起细胞内信号转导通路的一系列变化。
     2.2 MKK4表达和p-JNK水平的变化
     43℃+TAX组的JNK信号转导通路被激活,产生的MKK4和p-JNK高于对照组和TAX组(P<0.05),SP600125组的p-JNK水平被抑制(P<0.05),wortmannin组二者表达均未见明显变化(P>0.05),NAC组二者的水平均低于43℃+TAX组(P<0.05),说明热疗过程中产生的ROS可以激活JNK信号转导通路。
     2.3 p-Akt水平的变化
     43℃+TAX组的Akt信号转导通路被抑制,p-Akt的水平低于对照组和TAX组(P<0.05),wortmannin组的p-Akt水平完全被抑制(P<0.05),SP600125组的p-Akt水平低于43℃+TAX组(P<0.05),NAC组的p-Akt水平明显高于43℃+TAX组(P<0.05),说明热疗过程中产生的ROS可以抑制Akt通路的活化,同时,JNK信号转导通路的激活影响Akt通路的活化。
     2.4 Caspase-3表达水平的变化
     43℃+TAX组的Caspase-3表达水平高于对照组和TAX组(P<0.05),SP600125组的Caspase-3表达水平低于43℃+TAX组(P<0.05),wortmannin组的Caspase-3表达水平高于43℃+TAX组(P<0.05),NAC组的Caspase-3表达水平完全被抑制(P<0.05),说明热疗诱导的细胞凋亡是ROS通过JNK和Akt 2条通路传给caspase途径而引发的,且ROS、JNK信号转导通路对caspase有活化作用,Akt通路对其有抑制作用。
     2.5细胞凋亡率和细胞周期的变化
     43℃+TAX组G_0/G_1期和G_2/M期细胞增多,S期细胞减少(P<0.05),wortmannin组S期细胞更少(P<0.05),SP600125组和NAC组S期细胞数目增加(P<0.05),G_2/M期细胞减少(P<0.05);43℃+TAX组细胞凋亡率增加(P<0.05),wortmannin组细胞凋亡率进一步增加(P<0.05),而SP600125组和NAC组细胞凋亡率减少(P<0.05)。
     3.HSP70在热疗与TAX抑制肺肿瘤细胞作用中的地位
     对照组和TAX组的HSP70表达水平几乎一致(P>0.05),43℃组和43℃+TAX组的HSP70表达水平均较前两组增加(P<0.05),且43℃+TAX组的HSP70表达水平低于43℃组(P<0.05),说明热疗诱导产生的HSP70,对不同性质的细胞产生不同的效应,热疗联合TAX可能激活和/或抑制其他通路的激活,减弱了HSP70对肺肿瘤细胞的保护作用,但这个现象在正常细胞中没有观察到。
     4.GTSP1在热疗与TAX抑制肺肿瘤细胞过程中的作用
     成功构建pcDNA3.0-GSTP1真核表达载体后,转染A549细胞,获得转染与未转染的两种A549细胞,MTT结果示,GSTP1本身对细胞生长没有影响,转染与未转染细胞增殖率一致(P>0.05),GSTP1能促进化疗药物的代谢,不同浓度TAX作用后,未转染组细胞增殖率低于转染组细胞(P<0.05),43℃热疗联合不同浓度TAX作用后,未转染组细胞增殖率高于转染组细胞(P<0.05);43℃热疗联合TAX作用于转染与未转染细胞,流式细胞仪检测发现,G_0/G_1期和G_2/M期细胞增多,S期细胞减少(P<0.05)。
     结论及创新点
     1.在热疗的作用机制研究中,首次使用人呼吸道上皮BEAS-2B细胞作为研究对象,证明热疗可以减少化疗药物对正常细胞的损伤作用;热化疗联合应用可以明显增加化疗药物对肺肿瘤细胞生长的抑制作用,损伤肺肿瘤细胞膜,抑制肺肿瘤细胞的迁移,诱导肺肿瘤细胞凋亡的发生;
     2.通过使用通路抑制剂证明,热疗可以诱导ROS的产生,继而激活JNK信号转导通路和抑制Akt通路的活化,通过caspase途径诱导细胞凋亡的发生,热疗主要作用于肺肿瘤细胞的S期,并可使肺肿瘤细胞阻滞于G_2/M期,从而促进TAX对肺肿瘤细胞的抑制作用,同时发现,在热疗中,JNK信号转导通路的激活可以调节Akt通路的活化状态,以上结论在体内实验中得到证实;
     3.热疗诱导产生的HSP70,对不同性质的细胞产生不同的效应,热化联合的协同作用可能激活和/或抑制其他通路的激活,减弱了HSP70对肺肿瘤细胞的保护作用,因此比热疗能更好地抑制肺肿瘤细胞的生长,但在正常细胞中尚未观察到这个现象;
     4.首次构建了pcDNA3.0-GSTP1真核表达载体,并在A549细胞中进行表达;GSTP1能促进化疗药物的代谢,导致肺肿瘤细胞对化疗药物的抵抗性增高,热疗可以提高肺肿瘤细胞对化疗药物的敏感性。
The incidence rate of lung cancer was increasing rapidly and in many developed countries,it had already been in the first place in male malignant tumor and the second or third place in female. The histological types of lung cancer changed significantly and the incidence rate of adenocarcinoma went on increasing. Though treatments of lung cancer developed very well, the survival rate of lung cancer was only 15% in USA, 10% in European countries and no more than 8.9% in developing countries. TAX had notable anti-tumor effect. Thermo-therapyplayed an important role in comprehensive treatments of cancer and could not increase cell tocoxic effect, so sensitivity of tumor cells to chemotherapy enhanced by thermotherapy gained more and more attention. This research aimed at enhancement of therapeutic effect of TAX on lung tumor cells and its underlying mechanisms.
     Methods
     1. Influence of Thermotherapy with TAX on Biological Characteristcs of Lung Cells
     A549, H446 and BEAS-2B cells were used and treated by three methods, which were control group, TAX group and 43℃+TAX group (Table 1), then they were observed and recorded by microscope. MTT assay was adopted to check proliferation rates of cells. LDH checking and wounding-healing assay were carried out. Apoptosis was detected by Hoechst33342/PI and DNA ladder.
     2. Function of Important Signal Transducting Pathways in Therapeutic Effect of Thermotherapy with TAX on Lung Tumor Cells and their Relationships
     A549 and H446 cells were used and treated by six methods, which were control group, TAX group, 43℃+TAX group (Table 1), SP600125 group (43℃+TAX group with SP600-125), wortmannin group (43℃+TAX group with wortmannin) and NAC group (43℃+TAX group with NAC), and then ROS, Phosphorylation of JNK and Akt, Caspase-3 and MKK4 of each group were checked. FCM was used to check changes of apoptosis and cell cycle. Tests in vivo were carried out.
     3. Function of HSP70 in Therapeutic Effect of Thermotherapy with TAX on Lung Tumor Cells
     A549, H446 and BEAS-2B cells were used and treated by four methods, which were control group, TAX group, 43°C+TAX group and 43℃group (Table 1). Western Blotting was used to check changes of HSP70 and tests in vivo were carried out at the same time.
     4. Function of GTSP1 in Therapeutic Effect of Thermotherapy with TAX on Lung Tumor Cells
     The Recombinant Plasmid pcDNA3.0-GSTP1 was constructed and transfected into A549 cells. Transfected cells and non-transfected cells were treated by thermotherapy with TAX, and then observed and recorded by microscope. MTT assay was adopted to check proliferation rates of cells. FCM was used to check cell cycles.
     5. Statistics Analysis
     SPSS 12.0 was adopted. T-Test, ANOVA, Chi-Square Test and LSD were used. P value less than 0.05 was considered statistically significant.
     Results
     1. Influence of Thermotherapy with TAX on Biological Characteristcs of Lung Cells
     1.1 Thermotherapy with TAX can reduce injury of TAX on BEAS-2B cells (P<0.05) and enhance the therapeutic effect of TAX on A549 cells and H446 cells (P<0.05);
     1.2 Thermotherapy can injure cell membrane, which made LDH leak, so LDH in 43℃+TAX group was lower than that in control group and TAX group (P<0.05);
     1.3 24h after nicking, cells in control group began to grow to the nicking area while other groups'cells began to die. 48h after nicking, cells in control group filled in the nicking area, but the nicking areas in other groups'were still very large and cells had almostly died;
     1.4 Cells in control group showed dark green and dark red, cells in TAX group had more green, which told us that apoptosis happened, but in 43℃+TAX group, cells showed bright green to testify obvious apoptosis;
     1.5 DNA electrophoresis showed that DNA in 43℃+TAX group had classical DNA ladder and did not happen in control or in TAX group, which told us thermotherapy can induce cell apoptpsis.
     2. Function of Important Signal Transducting Pathways in Therapeutic Effect of
     Thermotherapy with TAX on Lung Tumor Cells and their Relationships
     2.1 Changes of ROS
     The expression of ROS in the cells of 43℃+TAX group was higher than the others' (P<0.05), which can change cell inner environment, injure cell brane and transduct as signal in cells to change signal trnasducting pathways in cells.
     2.2 Changes of MKK4 and p-JNK
     JNK signal transducting pathway was activated in 43℃+TAX group, so the expression of MKK4 and phosphorylation of JNK were higher than those in control group and TAX group (P<0.05); after SP600125 was added in, phosphorylation of JNK was inhibited (P<0.05); they had no change with wortmannin (P>0.05), after NAC was added in, they was lower than those in 43℃+TAX group (P<0.05), which told us that ROS induced in thermotherapy can activate JNK signal transducting pathway.
     2.3 Changes of p-Akt
     Akt pathway was inhibited in 43℃+TAX group, so phosphorylation of Akt was lower than that in control group and TAX group (P<0.05); after wortmannin was added in, phosphorylation of Akt was inhibited completely (P<0.05), with SP600125, phosphorylation of Akt was lower than that in 43℃+TAX group (P<0.05), after NAC was added in, Phosphorylation of Akt was increased (P<0.05), which showed that ROS induced in thermotherapy can inhibit activation of Akt pathway and activation of JNK signal transducting pathway would regulate activation of Akt pathway.
     2.4 Changes of Caspase-3
     The expression of Caspase-3 in 43℃+TAX group was higher than that in control group and TAX group (P<0.05); after SP600125 was added in, its expression was lower than that in 43℃+ TAX group (P<0.05), after wortmannin was added in, its expression was higher than that in 43℃+ TAX group (P<0.05), after NAC was added in, its expression was inhibited completely (P<0.05). So apoptosis induced by thermothrapy was triggered through JNK signal transducting pathway and Akt pathway to caspase channel and ROS, JNK signal transducting pathway can activate casapase channel, Akt pathway can inhibit its activation.
     2.5 Changes of Apoptosis and Cell Cycle
     The number of cells in G_0/G_1 phase and G_2/M phase increased and those in S phase decreased in 43℃+TAX group (P<0.05). The number of cells in S phase became less after wortmannin was added in (P<0.05) and more after SP600125 and NAC was added in (P<0.05), while those of G_2/M phase in SP600125 group and NAC group became less (P<0.05). The rate of apoptosis in 43℃+ TAX group increased (P<0.05). The rate of apoptosis went on increasing in wortmannin group and decreased in SP600125 group and NAC group (P<0.05).
     3. Function of HSP70 in Therapeutic Effect of Thermotherapy with TAX on Lung Tumor Cells
     The expression of HSP70 in control group and TAX group was almost identical (P>0.05) and that in 43℃+TAX group and 43℃group was higher (P<0.05). Its expression in 43℃+TAX group was lower than that in 43℃group (P<0.05), which showed that HSP70 induced by thermotherapy can protect cells can be inhibited in lung tumor cells by activating or inhibiting some signal transducting pathways, but this phenomenon was not observed in normal cells.
     4. Function of GTSP1 in Therapeutic Effect of Thermotherapy with TAX on Lung Tumor Cells
     The recombinant plasmid was successfully constructed and tramsfected into A549 cells. So transfected and non-transfected cells were obtained. The proliferation rates of transfected and non-transfected cells were consistent (P>0.05) because GSTP1 had no effect on cell proliferation. Putting TAX in different concentrations on transfected and non-transfected cells, proliferation rates of non-transfected cells were lower than those of transfected cells (P<0.05). With thermotherapy, proliferation rates of non-transfected cells were higher than those of transfected cells (P<0.05). Under thermotherapy with TAX, FCM showed that the number of cells in G_0/G and G_2/M phase of transfected cells became more and those in S phase were less
     Conclusion and Innovetions
     1. BEAS-2B cells were used in the research of mechanisms of thermotherapy at the first time and it showed that thermotherapy can decrease injury of chemotherapy on normal cells. Thermotherapy can enhance therapeutic effect of themotherapy on lung tumor cells, injure cell membrane, change cells' ability of migration and induce apoptosis;
     2. Thermotherapy can increase expression of ROS, then activated JNK signal transducting pathway and inhibited the activation of Akt pathway, then induced apoptosis by caspase channel; thermotherapy mainly effected S phase and blocked lung tumor cells in G_2/M phase; activation of JNK signal transducting pathway in thermotherapy can influence activation of Akt pathway, which were all authenticated in vivo;
     3. HSP70 induced by thermotherapy can protect cells, which can be inhibited in lung tumor cells by activating or inhibiting some signal transducting pathways, but this phenomenon was not observed in normal cells;
     4. The recombinant plasmid, pcDNA3.0-GSTP1 and a new cell line had been successfully constructed at the first time; GSTP1 can promote metabolism of chemotherapy drugs, which increased drug-resistence of lung tumor cells, but thermotherapy can increase the sensitivity of lung tumor cells to chemotherapy drugs.
引文
1. Verwaal VJ, van Tinteren H, Ruth SV, et al. Toxicity of cytoreductive surgery and hyperthermic intra-peritoneal chemotherapy. J Surg Oncol, 2004, 85(2): 61-67.
    2. Sneed PK, Stauffer PR, McDermott MW, et al. Survival benefit of hyperthermia in a prospective randomized trial of brachytherapy boost +/- hyperthermia for glioblastoma multiforme. Int J Radial Oncol Biol Phys, 1998,40(2): 287-295.
    3. Bakhshandeh A, Bruns I, Traynor A, et al. Ifosfamide, carboplatin and etoposide combined with 41.8 degrees C whole body hyperthermia for malignant pleural mesothelioma. Lung Cancer, 2003, 39(3): 339-345.
    4. Karasawa K, Muta N, Nakagawa K, et al. Thermoradiotherapy in the treatment of locally advanced non-small cell lung cancer. Int J Radial Oncol Biol Phys, 1994, 30(5): 1171-1177.
    5. 陈忠杰,朱莉,王平.热疗临床应用进展.国外医学肿瘤学分册,2004,31(6):431-433.
    6. 吴皓,董子明,张明五,等.加热与紫杉醇联合应用对人舌癌Tca8113细胞增殖的影响.郑州大学学报(医学版),2005,40(3):414-416.
    7. 张明五,吴皓,吴逸明,等.不同温度下紫杉醇对人肺癌A549细胞抑制效应.中国公共卫生,2006,22(5):550-552.
    8. 张瑞芳,王琳,吴卫东,等.热疗与紫杉醇联合应用对NCI-H446细胞生长和MMP-2表达的影响.郑州大学学报(医学版),2008,
    9. Pletjushkina OY, Fetisova EK. Hydrogen Peroxide Produced Inside Mitochondria Takes Part in Cell-to-Cell Transmission of Apoptotic Signal. Biochemistry (Mosc), 2006, 71(1): 60-67.
    10. Cheng Y, Chang LW, Tsou TC. Mitogen-activated protein kinases mediate arsenic-induced down-regulation of survivin in human lung adenocarcinoma cells. Arch Toxicol, 2006, 80(6): 310-318.
    11. Hamdi M, Kool J, Cornelissen-Steijger P, et al. DNA damage in transcribed genes induces apoptosis via the JNK pathway and the JNK-phosphatase MKP-1. Oncogene, 2005, 24(48): 7135-7144.
    12. Vizio B, Poli G, Chiarpotto E, et al. 4-hydroxynonenal and TGF-betal concur in inducing antiproliferative effects on the CaCo-2 human colon adenocarcinoma cell line. Biofactors, 2005,24(1-4):237-246.
    13. 刘红,张茂林,王静,等.肺癌组织中Akt2、p-Akt蛋白的表达.郑州大学学报(医学版),2007,42(4):674-677.
    14. 赵灵芝,银巍,苏兴文,等.IGF-1经PI3K/Akt依赖性途径保护苯妥英诱导的小脑颗粒神经元凋亡.中国药理学通报,2005,21(1):53-57.
    15. 沈阿丹,邹飞,万为人,等.谷氨酰胺对高温下游泳大鼠SOD、MDA和LDH的影响.解放军预防医学杂志,2005,23(5):344-345.
    16. 孙燕.现代肿瘤学.北京:人民卫生出版社,2001:994.
    17. Pazdur R, Kudelka A P, Kavanagh J, et al. Thetaxoids: pacli-taxel (taxol) and docetaxel (taxotere). Cancer Treat Rev, 1993, 19(4):351-386.
    18. Huang GS, Lopez-Barcons L, Freeze BS, et al. Potentiation of taxol efficacy and by discodermolide in ovarian carcinoma xenograft-bearing mice. Clin Cancer Res, 2006, 12(1):298-304.
    19. Rexer FH. International study on testicular cancer: EORTC 30983: randomized phase Ⅱ/Ⅲ study of Taxol-BEP versus BEP in patients with Intermediate Prognosis Germ Cell Cancer. Urologe A, 2005,44(9):1064-1065.
    20. Jefford M, Kiffer JD, Somers G, et al. Metastatic basal cell carcinoma: rapid symptomatic response to cisplatin and paclitaxel. ANZ J Surg, 2004, 74(8):704-705.
    21. Lena MD, Ramlau R, Hansen O, et al. Phase Ⅱ trial of oral vinorelbine in combination with cisplatin followed by consolidation therapy with oral vinorelbine in advanced NSCLC. Lung Tumor, 2005, 48(1):129-135.
    22. Buccheri G, Ferrigno D, Giordano C, et al. Cisplatin and vinorelbine remains a valid option for the front-line chemotherapy treatment of NSCLC. Antitumor Res, 2004, 24(6):4227-4235.
    23. Giorgio CG, Pappalardo A, Russo A, et al. A phase Ⅱ study of carboplatin and paclitaxel as first line chemotherapy in elderly patients with advanced non-small cell lung tumor (NSCLC). Lung Tumor, 2006, 51(3):357-362.
    24. Chess PR, O'Reilly MA, Sachs F, et al. Reactive oxidant and p42/44 MAP kinase signaling is necessary for mechanical strain-induced proliferation in pulmonary epithelial cells. J Appl physiol, 2005,99(3):1226-1232.
    25. Powell CS, Wright MM, Jackson RM. p38mapk and MEK1/2 inhibition contribute to cellular oxidant injury after hypoxia. Am J Physiol Lung Cell Mol Physiol, 2004, 286(4):826-833.
    26. Zhang X, Shan P, Sasidhar M, et al. Reactive oxygen species and extracellular signal-regulated kinase 1/2 mitogen-activated protein kinase mediate hyperoxia-induced cell death in lung epithelium. Am J Respir Cell Mol Biol, 2003,28(3):305-315.
    27. Michalakis J, Georgatos SD, Romanos J, et al. Micromolar taxol, with or without hyperthermia, induces mitotic catastrophe and cell necrosis in HeLa cells. Tumor Chemother Pharmacol, 2005, 56(6):615-622.
    28. Mohamed F, Marchettini P, Stuart OA, et al. Thermal enhancement of new chemothera-peutic agents at moderate hyperthermia. Ann Surg Oncol, 2003,10(4):463-468.
    29. Othman T, Goto S, Lee JB, et al.Hyperthermic enhancement of the apoptotic and antiproliferative activities of paclitaxel. Pharmacology, 2001, 62(4):208-212.
    30. Rietbroek RC, Katschinski DM, Reijers MH, et al. Lack of thermal enhancement for taxanes in vitro. Int J Hyperthermia, 1997, 13(5):525-533.
    31. Monge OR, Rofstad EK, Kaalhus O. Thermochemotherapy in vivo of a C3H mouse mammary carcinoma: sinigle fraction heat and drug treatment. Eur J Tumor Clin Oncol, 1988,24(10):1661-1669.
    32. Vertrees RA, Das GC, Popov VL, et al. Synergistic interaction of hyperthermia and gemciTable ine in lung tumor. Tumor Biol Ther, 2005, 4(10):1144-1153.
    33. 郝吉庆.恶性淋巴瘤患者血清LDH、β2-微球蛋白测定的临床意义.中国肿瘤临床与康复,2001,8(2):49-50.
    34. 夏洪娇,欧阳良,彭素萍,等.乳酸脱氢酶、碱性磷酸酶等5项血清酶联合检测及意义.中华临床医学杂志,2006,7(4):18-19.
    35. 邱仞之.环境高温与热损伤.北京:军事医学科学出版社,1998:444-449.
    36. Rodriguez LG,Wu X,Guan JL.Wound-healing assay.Methods Mol Biol,2005,294:23-29.
    37. 唐杰,陈龙菊,王军,等.Transwell和Wound healing在细胞迁移中的应用比较.中国临床 解剖学杂志,2007,25(6):687-689.
    38.Si S,Yang J.Effects of KAll gene on growth and invasion of human hepato-cellular carcinoma MHCC97-H cells.World J Gastroenterol,2004,10(14):2019-1023.
    39.Leese CR,Wegener J,Walker SR,et al.Electrical wound-healing assay for cells in vitro.Proc Natl Acad Sci USA,2004,101(6):1554-1559.
    40.Huang C,Rajfur Z,Borchers C,et al.JNK phosphorylates paxillin and regulates cell migration.Nature,2003,424(6945):219-223.
    41.Sablina AA,Chumakov PM,Kopnin BP.Tumor suppressor p53 and its homologue p73a affect cell migration.J Biol Chem,2003,278(30):27362-27371.
    1. 蒋明德,钟显飞,马洪德,等.JNK信号通路在乙醛刺激的肝星状细胞凋亡中的作用.第四军医大学学报,2005,26(10):915-918.
    2. Hamdi M, Kool J, Cornelissen-Steijger P, et al. DNA damage in transcribed genes induces apoptosis via the JNK pathway and the JNK-phosphatase MKP-1. Oncogene, 2005, 24 (48):7135-7144.
    3. Vizio B, Poli G, Chiarpotto E, et al. 4-hydroxynonenal and TGF-betal concur in inducing antiproliferative effects on the CaCo-2 human colon adenocarcinoma cell line. Biofactors, 2005,24(1-4):237-246.
    4. 张宁,狄文.PI3K/Akt转导途径与卵巢癌耐药.国外医学妇产科学分册,2007,34(3):190-193.
    5. Mansouri A, Ridgway LD, Korapati AL, et al. Sustained activation of JNK/p38 MAPK pathways in response to cisplatin leads to Fas ligand induction and cell death in ovarian carcinoma cells. J Biol Chem, 2003, 278(21):19245-19256.
    6. Madge LA, Pober JS. A phosphaddylinositol 3-kinase/AKT pathway, actived by tumor necrosis factor or interleukine-1, inhibits apo ptosis but does not activate NFkappaB in human endothelial cell. J Biol Chem, 2000,27(5):15458-15465.
    7. Lee YH, Giraud J, Davis RJ, et al. C-JUN N-terminal kinase (JNK) mediates feedback inhibition of the insulin signaling cascade. J Biol Chem, 2003,27(8):2896-2902.
    8. Yuan ZQ, Feldman RI, Sussman GE, et al. Akt2 inhibition of cisplatin-induced JNK/p38 and Bax activation by phosphorylation of ASK1: implication of Akt2 in chemoresistance. J Biol Chem, 2003, 278(26):23432-23440.
    9. 刘云峰,杨川,程桦,等.高糖诱导人内皮细胞凋亡及其JNK、Akt信号途径的作用机制.基础医学与临床,2005,25(2):163-168.
    10. Cho SD, Li G, Hu H, et al. Involvement of c-Jun N-terminal kinase in G_2/M arrest and caspase mediated apoptosis induced by sulforaphane in DU145 prostate tumor cells. Nutr Tumor, 2005, 52(2):213-224.
    11. Hirano H, Tabuchi Y, Kondo T, et al. Analysis of gene expression in apoptosis of human lymphoma U937 cells induced by heat shock and the effects of α-Phenyl N-tert- butylnitrone (PBN) and its derivatives. Apoptosis, 2005, 10(2):331-340.
    12. Moriyama-Gonda N, Igawa M, Shiina H, et al. Decreased survival of prostate tumor cells in vitro by combined treatment of heat and an antioxidant inhibitor diethyldithiocarbama-te (DDC). Exp Toxicol Pathol, 2003, 55(4):251-256.
    13. Venkataraman S, Wagner BA, Jiang X, et al. Overexpression of manganese superoxide dismutase promotes the survival of prostate tumor cells exposed to hyperthermia. Free Radic Res, 2004, 38(10):1119-1132.
    14. Lambert C, Thews O, Biesalski HK, et al. 2-Methoxyestradiol enhances reactive oxygen species formation and increases the efficacy of oxygen radical generating tumor treatment. Eur J Med Res, 2002, 7(9):404-414.
    15. Hao QL, Fujiwara Y, Kondo T. Mechanism of cell death induction by nitroxide and hyper thermia. Free Radic Biol Med, 2006,40(7):1131-1143.
    16. Moriyama-Gonda N, Igawa M, Shiina H, et al. Modulation of heat-induced cell death in PC-3 prostate tumor cells by the antioxidant inhibitor diethyldithiocarbamate. BJU Int, 2002, 90(3):317-325.
    17. Alexandre J, Batteux F, Nicco C, et al. Accumulation of hydrogen peroxide is an early and crucial step for Paclitaxel-induced tumor cell death both in vitro and in vivo. Int J Tumor, 2006,1(119):41-48.
    18. Niess AM, Passek F, Lorenz I, et al. Expression of the antioxidant stress protein heme oxygenase-1 (HO-1) in human leukocytes. Free Radic Biol Med, 1999,26(1-2):184-192.
    19. 刘红,张茂林,王静,等.肺癌组织中Akt2、p-Akt蛋白的表达.郑州大学学报(医学版),2007,42(4):674-677.
    20. Nakanishi K,Sakamoto M,Yamasaki S,et al.Akt phosphorylation is a risk factor for early disease recurrence and poor prognosis in hepato cellular carcinoma.Cancer,2005,103(2):307-312.
    21. 赵灵芝,银巍,苏兴文,等.IGF-1经PI3K/Akt依赖性途径保护苯妥英诱导的小脑颗粒神经元凋亡.中国药理学通报,2005,21(1):53-57.
    22. 郭祯,刘林蟠,陈曼静.p-AKT和PTEN在Ⅰ型神经纤维瘤病中的表达及意义.肿瘤基础与临床,2007,20(1):27-28.
    23. 夏曙,于世英.抑制PI3k/Akt通路提高Hela细胞化疗效果的实验研究.肿瘤防治研究, 2006,33(3):156-158.
    24. Park CM, Park MJ, Kwak HJ, et al. Ionizing radiation enhances matrix metalloproteinase-2 Secretion and invasion of Glioma cells through src/epidermal growth factor receptor-mediated p38/Akt and phosphatidylinositol 3-kinase/Akt Signaling pathways. Cancer Res, 2006, 66(17): 8511-8519.
    25. 张明五,吴皓,吴逸明,等.不同温度下紫杉醇对人肺癌A549细胞抑制效应.中国公共卫生,2006,22(5):550-552.
    26. 张瑞芳,王琳,吴卫东,等.热疗与紫杉醇联合应用对NCl-H446细胞生长和MMP-2表达的影响.郑州大学学报(医学版),2008,
    27. 席广民,牛瑞芳.PI3K/Akt信号通路阻断在乳腺癌治疗中的作用.中华肿瘤防治杂志,2007,14(3):230-233.
    28. Westfall SD, Skinner MK. Inhibition of phosphatidylinositol 3-kinase sensitizes ovarian cancer cells to carboplatin and allows adjunct chemotherapy treatment. Mol Cancer Ther, 2005,4(11):1764-1771.
    29. Johnson GL, Lapadat R. Mitogen-activated protein kinase pathways mediated by ERK, JNK and p38 protein kinases. Science, 2002, 298(5600):1911-1912.
    30. Deng H, Ravikumar TS, Yang WL. Bone morphogenetic protein-4 inhibits heat-induced apoptosis by modulating MAPK pathways in human colon cancer HCT116 cells. Cancer Lett, 2007,256(2):207-217.
    31. Zhou Y, Wang Q, Evers BM, et al. Signal transduction pathways involved in oxidative stress-induced intestinal epithelial cell apoptosis. Pediatr Res, 2005, 58(6):1192-1197.
    32. Arita Y, Harkness SH, Kazzaz JA, et al. Mitochondrial localization of catalase provides optimal protection from H_2O_2-induced cell death in lung epithelial cells. Am J Physiol Lung Cell Mol Physiol, 2006,290(5):978-986.
    33. Conde de la Rosa L, Schoemaker MH, Vrenken TE, et al. Superoxide anions and hydrogen peroxide induce hepatocyte death by different mechanisms: involvement of JNK and ERK MAP kinases. J Hepatol, 2006,44(5):918-929.
    34. Kamata H, Honda S, Maeda S, et al. Reactive oxygen species promote TNF-α-induced death and sustained JNK activation by inhibiting MAP kinase phosphatases. Cell, 2005, 120(5):649-661.
    35. Chen YR, Wang X, Templeton D, et al. The role of c-JunN-terminal kinase (JNK) in apoptosis induced by ultraviolet Cand gamma radiation. J Biol Chem, 1996, 27(1):31929-31936.
    36. Levresse V, Marek L, Blumberg D, et al. Regulation of platinum-compound cytotoxicity by the c-Jun N-terminal kinaseand c-Jun signaling pathway in small cell lung cancer cells. Mol Pharmacol, 2002, 62(3):689-697.
    37. Mansouri A, Ridgway LD, Korapati AL, et al. Sustainedactivation of JNK/p38 MAPK pathways inresponse to cisplatinleads to Fas ligand induction and cell deat h in ovarian carcinomacells. J Biol Chem, 2003, 27(8):19245-19256.
    38. Minden A, Karin M. Regulation and function of the JNK subgroup of MAP kinases. Biochim Biophys Acta, 1997, 13(33):F85-F104.
    39. Lamb JA, Ventura JJ, Hess P, et al. Jun D mediates survival signaling by the JNK signal transduction pathway. Mol Cell, 2003, 11(6):1479-1489.
    40. Potapova O, Basu S,Mercola D, et al. Protective role for c-Jun in the cellular response to DNA damage. J Biol Chem, 2001, 27(6):28546-28553.
    41. Tournier C, Hess P, Yang DD, et al. Requirement of JNK for stress induced activation of the cytochrome cmediated death pathway. Science, 2000,288(5467):870-874.
    42. Sanchez-Perez I, Murguia J R, Perona R. Cisplatin inducesa persistent activation of JNK that is related to cell death. Oncogene, 1998, 16(4):533-540.
    43. Widmann C, Gibson S, Jarpe MB, et al. Mitogen activated protein kinase: conservation of a three kinase module from yeast to human. Physiol Rev, 1999, 79(1):143-180.
    44. Kyriakis J M, Avruch J. Sounding the alarm: protein kinase cascades activated by stress and inflammation. J Biol, Chem, 1996, 27(1):24313-24316.
    45. 高歌,龙彩遐,高亚南,等.低氧预适应升高小鼠脑内JNK磷酸化水平和蛋白表达.基础医学与临床,2006,26(2):139-142.
    46. 王耀歧,曾因明,王俊科.JNK在沙土鼠脑缺血预处理中的作用及机制.国际麻醉学与复苏杂志,2006,27(4):214-217.
    47. 赵兰峰,郭社卫,安仰原,等.脑缺血预适应大鼠脑内c-Jun氨基末端激酶磷酸化水平和蛋白表达量的改变.中国康复理论与实践,2007,13(7):623-625.
    48. Guan Q H,Pei D S,Zhang Q G, et al.The neuroprotective action of SP600125,a new inhibitor of JNK, on transient brain ischemia/reperfusion induced neuronal death in rat hippocampalCA1 via nuclear and non-nuclear pathways. B rain Res, 2005, 1035(1):51-59.
    49. Wang YQ, Li J, Cao H, et al. The expression and role of ERK and JNK in cerebral ischemic preconditioning in gerbil. Chin Pharmacol Bull, 2006,22(3):337-340.
    50. 郭付有,宋来君,冯祖荫,等.磷酸化JNK与磷酸化c-Jun在多形性胶质母细胞瘤中的表达及意义.中国综合临床,2007,23(5):431-433.
    51. Mong PY, Petrulio C, Kaufman HL, et al. Activation of Rho kinase by TNF- α is required for JNK activation in human pulmonary microvascular endothelial cells. J Immunol, 2008, 180(1):550-558
    52. Inaba H, Nagaoka Y, Kushima Y, et al. Comparative examination of anti-proliferative activities of (-)-epigallocatechin gallate and (-)-epigallocatechin against HCT116 colorectal carcinoma cells. Biol Pharm Bull, 2008, 31(1):79-84.
    53. Wong TH, Tekant Y, Ngoi SS, et al. The surgical treatment of squamous cell carcinoma of the oesophagus in Singapore. Ann Acad Med Singapore, 1990, 19(6):807-810.
    54. Jorritsma JB, Konings AW. The occurrence of DNA strand breaks after hyperther-mic treatments of mammalian cells with and without radiation. Radiat Res, 1984, 98(1):198-208.
    1. Kato K, Shimazaki K, Kamiya T, et al. Differential effects of sublethal ischemia and chemical preconditioning with 3-nitropropionic acid on protein expression in gerbil hippocampus. Life Sci, 2005, 77(23):2867- 2878.
    2. Nishi S, Taki W, Uemura Y, et al. Ischemic tolerance due to the induction of HSP70 in a rat ischemic recirculation model. Brain Res, 1993, 615(2):281-288.
    3. Joshi G, Perluigi M, Sultana R, et al. In vivo protection of synaptosomes by ferulic acid ethyl ester (FAEE) from oxidative stress mediated by 2, 2-azobis (2-amidino-propane) dihydrochloride (AAPH) or Fe(2+)/H(2)O(2): insight into mechanisms of neuro-protection and relevance to oxidative stress-related neuro degenerative disorders. Neurochem Int, 2006, 48(4):318-327.
    4. Kazuhiko N, Thaddeus S, Nowak JR. Time Course and Cellular Distribution of Hsp27 and Hsp72 Stress Protein Expression in a Quantitative Gerbil Model of Ischemic Injury and Tolerance: Thresholds for Hsp72 Induction and Hilar Lesioning in the Context of Ischemic Preconditioning. J Cereb Blood Flow Metab, 2004,24(2):167-178.
    5. Himda T, Tounai H, Hayakawa N, et al. Postichemic alterations of BDNF, NGF, HSP70 and Ubiquitin Immunoreactivity in the Gerbil Hippocampus: Pharmacological Approach. Cell Mol Neurobiol, 2007, 27(2):229-250.
    6. Ciechanover A, Orian A, Schwartz AL. Ubiquitin-mediated proteolysis: biological regulation via destruction. Bioessays, 2000, 22(4):442-451.
    7. Aigang L, Rui QR, Joseph C, et al. 17-β-Estradiol induces Heat shock proteins in brainar-teries and potent at esischemic heat shock protein induction in glia and neurons. J Cereb Blood Flow Metab, 2002, 22:183-195.
    8. Bertrand N, Sir(?)n AL, TworekD, et al. Differential expression of HSC73 and HSP72 mRNA and protein between young and adult gerbil safiter transient cerebra- lischemia; Relation to neuronal vulnerability. J Cereb Blood Flow Metab, 2000, 20(7):1056-1065.
    9. Suzuki T, Usuda N, Murata S, et al. Presence of molecular chaperones, heat shock cognate (Hsc) 70 and heat shock protein (Hsp) 40, in the post synaptic structure of rat brain. Brain Res, 1999, 816(1):99-110.
    10. Tobaben S, Thakur P, Fernandez-Chacon R, et al. A trimetric protein complex functions as a synaptic chaperone machine. Neuron, 2001, 31(6):987-999.
    11. Franklin JL, Johnson EM. Control of neuronal siz homeostasis by trophic factor-Mediated coupling of protein degeneration to protein synthesis. Cell, 2000, 142(5):1313-1324.
    12. 张琴,王钜,杜小燕.热休克蛋白在沙鼠脑缺血后表达的研究进展.实验动物与比较医学,2007,27(2):145-148.
    13. 崔彦,董家鸿.HSP70生物学特性及在原发性肝癌中的表达意义.中华肝胆外科杂志,2005,11(8):571-573.
    14. 刘瑞芳,赵安芳,陈兰英,等.HSP70基因在人胃癌、宫颈癌中高表达和癌变关系的研究.平顶山工学院学报,2004,13(3):62-63.
    15. 张江兰,陈秀玲,薄爱华,等.HSP27和HSP70在膀胱癌中的表达和意义.张家口医学院学报,2004,21(1):22-24.
    16. 杨淑芝,陈海燕,韩德民,等.喉癌组织HSP70的检测.中国耳鼻咽喉颅底外科杂志,2003,9(1):51-52.
    17. 门可,王霞,周宏超,等.血清中HSP70定量检测方法的建立.第四军医大学学报,2001,22(20):1835-1837.
    18. 郑顺友,朱翌,丁熙,等.口腔癌中HSP70表达和临床的关系.浙江临床医学,2007,9(6):731-732.
    19. 肖红,王泉云,廖刃,等.氯胺酮咪唑安定对感染性休克大鼠血清肿瘤坏死因子α及心肌热休克蛋白70表达的影响.临床麻醉学杂志,2001,17(9):491-493.
    20. Yanaka A. Role of heat shock proteins in gastric mucosal protection. Nippon Rinsho, 2007, 65(10):1890-1895.
    21. Polla BS, Kantengwa S, Francois D, et al. Mitochondria are selective targets for the protective effects of heat shock against oxidative injury. Proc Natl Acad Sci USA, 1996, 93(13):6458-6463.
    22. Yamamoto Y, Kume M, Yamaoka Y, et al. Implications of heat shock proteins during liver surgery and liver perfusion. Recent Results Cancer Res, 1998,147:157-172.
    23. Delogu G, SignoreM, Mechelli A, et al. Heat shock proteins and their role in heart injury. Curr Op in Crit Care, 2002, 8(5):411-416.
    24. 夏经钢,曲杨,华琦,等.左旋卡尼汀对心肌缺血/再灌注损伤的抗氧化作用.首都医科大学学报,2008,29(1):78-79.
    25. 张丽,王丽娜,王万辉.热休克蛋白70在老年性白内障晶状体上皮细胞的表达及意义.中国中医眼科杂志,2008,18(1):1-4.
    26. Lachapelle G, Radicioni SM, Stankiewicz AR. Acute acidification or amiloride treatment suppresses the ability of Hsp70 to inhibit heat-induced apoptosis. Apoptosis, 2007, 12 (8):1479-1488.
    27. Stankiewicz AR, Lachapelle G, Foo CP, et al. Hsp70 Inhibits Heat-induced Apoptosis Upstream of Mitochondria by Preventing Bax Translocation. J Biol Chem, 2005, 280 (46):38729-38739.
    28. 石永进,虞积仁,岑溪南,等.热疗促进HSP70表达对免疫效应细胞杀伤肿瘤的影响.北京大学学报,2005,37(2):175-178.
    29. Kabir AM, Clark JE, Tanno M, et al. Cardioprotection initiated by reactive oxygen species is dependent on the activation of PKCepsilon. Am J Physiol Heart Circ Physiol, 2006, 291(4): H1893-H1899.
    30. Pezzato E, Sartor L, Dell'Aica I, et al. Prostate carcinoma and green tea: PSA-triggered basement membrane degradation and MMP-2 activation are inhibited by (-) epigallocatechin-3-gallate. Int J Tumor, 2004,112(5):787-792.
    31. Moriyama-Gonda N, Igawa M, Shiina H, et al. Modulation of heat-induced cell death in PC-3 prostate tumor cells by the antioxidant inhibitor diethyl dithiocarbamate. BJU Int, 2002, 90(3):317-325.
    32. 李航宇,孔凡民,董明,等.HSP70和JNK信号转导通路在肝癌组织中的表达及意义.中国组织化学与细胞化学杂志,2006,15(3):240-245.
    33. Moroi Y, Mayhew M, Trcka J, et al. Induction of cellular immunity by immuni- zation with novel hybrid peptides complexed to heat shock protein 70. Proc Natl Acad Sci USA, 2000, 97(7):3485-3490.
    34. Srivastava PK. Immunotherapy for human cancer using heat shock protein peptide complexes. Curr Oncol Rep, 2005, 7(2):104-108.
    35. Huang S, J iang Y, Li Z, et al. Apoptosis signaling pathway in T cells is composed of ICE/Ced-3 family proteases and MAP kinase 6b. Immunity, 1997, 6(6):739-749。
    36.Chen YN,Cheng CC,Chen JC,et al.Norcantharidin-induced apoptosis is via the ext racellular signal-regulated kinase and c-Jun-NH2-terminal kinase signaling pathways in human hepatoma Hep G2 cells.Br J Pharmacol,2003,140(3):461-470.
    37.Hu W,Wu W,Yeung SC,et al.Increased expression of heat shock protein 70 in adherent ovarian cancer and mesothelioma following treatment with manumycin,a farnesyl transferase inhibitor.Anticancer Res,2002,22(2A):665-672.
    38.Kumar Y,Tatu U.Stress protein flux during recovery from simulated ischemia:induced heat shock protein 70 confers cytoprotection by suppressing JNK activation and inhibitory apoptotic cell death.Proteomics,2003,3(4):513-526.
    39.Park HS,Lee JS,Huh SH,et al.Hsp72 functions as a natural inhibitory protein of c-Jun N-terminal kinase.EMBO J,2001,20(3):446-456.
    1. 张铣,刘毓谷.毒理学.第四版,北京:北京医科大学北京协和医科大学联合出版社,1997:61-83.
    2. 夏英,张翠兰.CYP450和GSTP1基因多态性与肿瘤易感性研究进展.中华放射医学与防护杂志,2003,25(5):385-386.
    3. Xia C, Hu J, Ketterer B, et al. The organization of the human GSTP1-1 gene promoter and its response to retinoic acid and cellular redox status. Biochem J, 1996, 313(1):155-161.
    4. Pletjushkina OY, Fetisova EK, Lyamzaev KG, et al. Hydrogen Peroxide Produced Inside Mitochondria Takes Part in Cell-to-Cell Transmission of Apoptotic Signal. Biochemistry (Mosc), 2006, 71(1):60-67.
    5. Arai T, Yasuda Y, Takaya T, et al. Immunohistochemical expression of glutathione Stransferase-P1 in untreated primary non-small-cell lung tumor. Tumor Detect Prev, 2000, 24(3):252-257.
    6. Wang JH, Yao MZ, Zhang ZL, et al. HSF1 blockade-induced tumor thermotolerance abolishment is mediated by JNK-dependent Caspase-3 activation. Biochem Biophys Res Commun, 2004, 321(3):736-745.
    7. J 萨姆布鲁克,DW 拉塞尔.分子克隆实验指南.第三版.北京:科学出版社,2002.
    8. Sambrook J, Fritsch EF, Maniatis T. Molecular cloning: a laboratory manual. 2nd ed. Cold Spring Harbor: Laboratory Pess, 1989.
    9. Brabender J, Lord RV, Wickramasinghe K, et al. Glutathione S-transferase-P1 expression is downregulated in patients with Barrett's esophagus and esophageal adenocarcinoma. J Gastrointest Surg, 2002, 6(3):359-367.
    10. Nelson WG, De Marzo AM, Deeese TL, et al. Preneoplastic prostate lesions: an opportunity for prostate tumor prevention. Ann NY Acad Sci, 2001,12(5):135-144.
    11. 王敏,李延青,袁孟彪.代谢酶基因多态性与结直肠癌易感性.国外医学肿瘤学分册,2004,31(2):148-151.
    12. Antognelli C, Mearini L, Talesa VN, et al. Association of CYP17, GSTP1, and PON1 polymorphisms with the risk of prostate tumor. Prostate, 2005, 63(3):240-251.
    13. Srivastava DS, Mandhani A, Mittal B, et al. Genetic polymorphism of glutathione S-transferase genes (GSTM1, GSTT1 and GSTP1) and susceptibility to prostate tumor in Northern India. BJU Int, 2005, 95(1):170-173.
    14. Lu C, Spitz MR, Zhao H, et al. Association between glutathione S-transferase pi polymorphisms and survival in patients with advanced non-small cell lung carcinoma. Tumor, 2006, 106(2):441-447.
    15. 赵力,彭芳,董兰花,等.非小细胞肺癌中5种耐药因子的表达.浙江中西医结合杂志,2004,14(2):91-92.
    16. Berendsen CL, Peter WH, Scheffer PG, et al. Glutathione S-transferase activity and subunit composition in transitional cell tumor and mucosa of the human bladder. Urology, 1997,49(4):644-651.
    17. 李乐平,孟丹,靖昌庆,等.结直肠癌组织谷胱甘肽S-转移酶π的表达和其血浆水平的关系.肿瘤防治杂志,2005,12(2):95-98.
    18. Calatozzolo C, Gelati M, Ciusani E, et al. Expression of drug resistance proteins Pgp, MRP1, MRP3, MRP5 and GST-pi in human glioma. J Neurooncol, 2005, 74(2):113-121.
    19. 陈萍萍,吴逸明,张朝武.人谷胱甘肽硫转移酶原真核表达载体的构建及序列分析.环境与健康,2003,20(3):144-145.
    20. 何建凡,房师松,程小雯.A型流感病毒基因核酸疫苗的构建与体外表达鉴定.卫生研究,2005,34(4):419-422.
    21. 冯作化.医学分子生物学.第一版.北京:人民卫生出版社,2002:139-161.
    22. 常青,王晓良.细胞色素C线粒体与凋亡.中国药理学通报,2003,19(3):241-244.
    23. Cheng Y, Chang LW, Tsou TC. Mitogen-activated protein kinases mediate arsenic-induced down-regulation of survivin in human lung adenocarcinoma cells. Arch Toxicol, 2006, 80(6):310-318.
    24. Pletjushkina OY, Fetisova EK, et al.Hydrogen Peroxide Produced Inside Mitochondria Takes Part in Cell-to-Cell Transmission of Apoptotic Signal. Biochemistry (Mosc), 2006, 71(1):60-67.
    25. Sauer H, Wartenberg M. Reactive oxygen species as signaling molecules in cardiovascular differentiation of embryonic stem cells and tumor-induced angiogenesis. Antioxid Redox Signal, 2005, 7(11-12):1423-1434.
    26. Alexandra J, Batteux F, Nicco O, et al. Accumulation of hydrogen peroxide is an early and crucial step for paclitaxel-induced tumor cell death both in vitro and in vivo. Int J Tumor, 2006,119(1):41-48.
    27. 何金环,李存法,梁月丽,等.植物细胞活性氧及其胞内信号转导.河南农业科学,2005,59(8):18-20.
    28. 王燕,陈永刚,葛郑增,等.TBT对大鼠肝脏ROS、抗氧化酶和解毒系统酶的影响.中国环境科学,2005,25(4):428-431.
    1. 张铣,刘毓谷.毒理学.第四版,北京:北京医科大学北京协和医科大学联合出版社,1997:61-83.
    2. Cardoso RM, Daniels DS, Bruns CM, et al. Characterization of the electrophile binding site and substrste binding mide of the 26-Kda glutathione S-Transferase from Schistosoma japonicum. Protein, 2003, 51(1):137-136.
    3. Ortega MM, Nascimento H, Melo MB, et al. Polymorphisms of glutathione S-transferase mul (GSTM1) and thetal (GSTT1) genes in multiple myelima. Acta HAEmatol, 2003, 109(2):108-119.
    4. 夏世钧,吴中亮.分子毒理学基础.第三版,武汉:湖北科学技术出版社.2001,28-33.
    5. De Roos AJ, Rothman N, Inship PD, et al. Genetic Polymorphisms in GSTM1, -P1, -T1, and CYP2E1 and the Risk of Adult Brain Tumors Tumor Epidemiol. Biomarkers Prev, 2003,12(1):14-22.
    6. Park SK, Kang D, Noh DY, et al. Reproductive factors, glutathiong s-transferase M1 and T1 genetic polymorphism and breast tumor risk . Breast Tumor Res TREAT, 2003, 78(1):89-96.
    7. Wang Y, Spitz MR, Schabath MB, et al. Association between glutathione s-transferase P1 polymorphism and lung tumor risk in Caucasians: a case-control study. Lung tumor, 2003, 40(1):25-32.
    8. Yuan Xiaojun, Gu Longjun, Zhao Jincai, et al. Gllutathione s-transferase Polymorphism in Han Nationality in Shanghai. Aug, 2003, 5(4):289-293.
    9. 夏英,张翠兰.CYP450和GST基因多态性与肿瘤易感性研究进展.中华放射医学与防护杂志,2003,23(5):385-386.
    10. Xu Q, Lin G, Chen W, et al. Relation between the expression of P-gp and GSTPi in oral and maxillofacial squamous carcinoma and chemoresistance. Zhonghua KouQiang Yi Xue Za Zhi, 2002, 37(2):90-93.
    11. Agianian B, Tucker DA, Schouten A, et al. Strucyure of a prosophila sigma class glutatuione s-transferase reveals a novel active site topography suited for lipid peroxidation products. J Mol Biol, 2003, 326(1):151-165.
    12. Nelson WG, De Marzo AM, Deeese TL, et al. Preneoplastic prostate lesions: an opportunity for prostate tumor prevention. Ann NY Acad Sci, 2001, 12 (5):135-144.
    13. 王怀碧,叶明福,王亚丽等.GSTP1在病变前列腺组织中的表达及意义.局解手术杂志,2004,13(2):73-75.
    14. Nelson WG, De Marzo AM, Deweese TL, et al. The molecular pathogenesis of prostate tumor: Implications for prostate tumor prevention. Urology, 2001, 57(4 suppl 1):39-45.
    15. 马胜林,冯建国,顾琳惠,等.耐药人肺癌细胞模型D6/MVP的建立及其生物学特性.中华肿瘤杂志,2003,25(3):134-136.
    16. 赵力,彭芳,董兰花等.非小细胞肺癌5种耐药因子的表达.浙江中西医结合杂志,2004,14(2):91-92.
    17. 张学武,朴尤,张良和.珍珠梅提取物在大鼠肝脏化学致癌初期对谷胱甘肽S-转移酶的影响.中国中医药科技,2003,10(6):346-348.
    18. 柳忠美,邬凌燕,李彦文.谷胱甘肽S-转移酶在人体肿瘤组织中表达及意义.华南国防医学杂志,2003,17(2):9-11.
    19. Hsu CH, Chen CL, Hong RL, et al. Pnegnostic value of multidrug resistance 1, glutathione-s-transferase-pi and p53 in advanced nosopharyngeal carcinoma treated with systemic chenotherapy. Oncology, 2001, 62(4):305-312.
    20. Liang Geyu, Pu Yuepu, Ying Lihong. Studies of the Genes Related to Lung Tumor Susceptibility in Nanjing Han Population, China. Hereditas, 2004,26 (5):584-588.
    21. 陈萍萍,吴逸明,张朝武.人谷胱甘肽硫转移酶A1真核表达载体的构建及序列分析.环境与健康,2003,20(3):144-145.
    22. Liu Chazhen, Bian Jianchao, Jiang Feng, et al. Study of Relationship between Genetic Polymorphisms of Drug MeTable olizing enzymes and Susceptibility to Hepatocellular Carcinoma. Acta Academine Medicine Jiangxi, 2003,43(2):30-33.
    23. 徐飚,王云飞.谷胱甘肽S-转移酶系基因多态性与非小细胞肺癌患者生存率的关系.复旦学报,2002,29(5):364-367.
    24. 聂立红,王声,胡毅玲.肺癌易感性的分子流行病学研究.中国公共卫生,2002,18(7):791-792.
    1. 郭燕,王万辉.促红细胞生成素对急性高眼压大鼠视网膜的保护作用.国际眼科杂志,2007,7(3):688-891.
    2. 陈丽莉,肖亚梅,刘文彬,等.ERK/JNK在黄鳝雌、雄发育阶段生殖腺中的表达和定位.动物学报,2007,53(2):325-331.
    3. 方乐堃,曾宇慧,杨惠玲.PI3K/Akt/mTOR信号传导通路与泌尿系统肿瘤.国际内科学杂志,2007,34(9):509-513.
    4. 娄可心,刘宁波,彭韬,等.选择性环氧合酶抑制剂celecoxib对血管平滑肌细胞的增殖抑制、凋亡诱导作用和分子机制.南京医科大学学报(自然科学版),2007,27(6):530-533.
    5. 徐全胜,张家明,李宾公,等.辛伐他汀对冠心病患者内皮祖细胞增殖的影响及其机制初步探讨.心血管康复医学杂志,2007,16(3):271-274.
    6. 杨周,傅晓岚,尚小云,等.激动型抗4_1BB抗体3H3交联促进CD8~+T细胞中Akt激酶活性.细胞与分子免疫学杂志,2007,23(3):223-225.
    7. 刘红,张茂林,王静,等.肺癌组织中Akt2、p-Akt蛋白的表达.郑州大学学报(医学版),2007,42(4):674-677.
    8. Nakanishi K, Sakamoto M, Yamasaki S, et al. Akt phosphorylation is a risk factor for early disease recurrence and poor prognosis in hepato cellular carcinoma. Cancer, 2005, 103(2):307-312.
    9. 郭祯,刘林蟠,陈旻静.p-AKT和PTEN在Ⅰ型神经纤维瘤病中的表达及意义.肿瘤基础与临床,2007,20(1):27-28.
    10. Noske A, Kaszubiak A, Weichert W, et al. Specific inhibition of AKT2 by RNA interference results in reduction of ovarian cancer cell proliferation: Increased expression of AKT in advanced ovarian cancer. Cancer Lett, 2006, 235(1):25-30.
    11. 夏曙,于世英.抑制PI3K/AKT通路提高Hela细胞化疗效果的实验研究.肿瘤防治研究,2006,33(3):156-158.
    12. Dogra C, Changotra H, Wergedal JE, et al. Regulation of phosphatidylinositol 3 kinase (PI3K)/Akt and nuclear factor kappa B signaling pathways in dystrophin deficient skeletal muscle in response to me Chanical stretch. J Cell Physiol, 2006, 1(4):753-759.
    13. 赵灵芝,银巍,苏兴文,等.IGF-1经PI3K/Akt依赖性途径保护苯妥英诱导的小脑颗粒神经元凋亡.中国药理学通报,2005,21(1):53-57.
    14. Hsieh HL, Wu CB, Sun CC, et al. Sphingosine-1- Phosphate Induces COX-2 Expression via PI3K/Akt and p42/p44 MAPK Pathways in Rat Vascular Smooth Muscle Cells. Cell Physiol, 2006, 207(3):757-766.
    15. 李军华,于皆平,于红刚,等.蛋白激酶B、Caspase-9通路活化对胃癌细胞生长及化疗敏感性的影响.中华消化杂志,2006,26(1):2-5.
    16. Lee S, Choi EJ, Jin C, et al. Activation of PI3K/Akt pathway by PTEN reduction and PIK3CA mRNA amplification contributes to cisplatin resistance in an ovarian cancer cell line. Gynecol Oncol, 2005,97(1):26-34.
    17. Villedieu M, Deslandes E, Duval M, et al. Acquisition of chemore- sistance following discontinuous exposures to cisplatin is associated in ovarian carcinoma cells with progressive alteration of FAK, ERK and P38 activation in response to treatment. Gynecol Oncol, 2006,101(3):507-519.
    18. Ohta T, Ohmichi M, Hayasaka T, et al. Inhibition of phosphatidylinositol 3-kinase increases efficacy of cisplatinin invivo ovarian cancer models. Endocrinology, 2006, 147 (4):1761-1769.
    19. Westfall SD, Skinner MK. Inhibition of phosphatidylinositol 3-kinase sensitizes ovarian cancer cells to carboplatin and allows adjunct chemotherapy treatment. Mol Cancer Ther, 2005,4(11):1764-1771.
    20. Wang J, Zhang X, Thomas SM, et al. Chemokine receptor activates Phosphoinositide-3 kinase-mediated invasion and pro survival pathways in head and neck cancer cells independent of EGFR. Oncogene, 2005,24(38):58-59.
    21. 夏铀铀,朱正秋.趋化因子受体CCR7与PI3K/Akt通路在胃癌组织中的表达及意义.实用癌症杂志,2007,22(2):136-139.
    22. Park CM, Park MJ, Kwak HJ, et al. Ionizing radiation enhances matrix metallo-proteinase-2 Secretion and invasion of Glioma cells through src/epidermal growth factor receptor-mediated p38/Akt and phosphatidylinositol 3-kinase/Akt Signaling pathways. Cancer Res, 2006,66(17):8511-8519.
    23. 席广民,牛瑞芳.PI3K/Akt信号通路阻断在乳腺癌治疗中的作用.中华肿瘤防治杂志, 2007, 14(3):230-233.
    24. Tsurutani J, West KA, Sayyah J, et al. Inhibition of the phosphatidyliositol 3 kinase/Akt/ mammalian target of rapamycin pathway but not the MEK/ ERK pathway attenuates laminin mediated small cell lung cancer cellular survival and resistance to imatinib mesylate or chemotherapy. Cancer Res, 2005, 65(18):8423-8432.
    25. Ihle NT, Paine Murrieta G, Berggren MI, et al. The phosphatidylinositol 3 kinase inhibitor PX866 overcomes resistance to the epidermal growth factor receptor inhibitor gefitinib in A549 human non small cell lung cancer xenografts. Mol Cancer Ther, 2005, 4(9):1349-1357.
    26. 王月兰,姚尚龙.磷脂酰肌醇3激酶参与过度机械通气诱导的核因子NFκB激活.临床麻醉学杂志,2005,21(9):623-625.
    27. 张成,孙颖,葛春林,等.磷脂酰肌醇3激酶/蛋白激酶B信号转导通路在胰蛋白酶激活中性粒细胞中的作用.中国医科大学学报,2007,36(1):30-33.
    28. 尹华华,夏浩,程晓刚,等.LPS对小鼠肺组织及RAW264.7细胞Akt蛋白表达及磷酸化的调控.第三军医大学学报,2007,29(3):288-190.
    29. Pengal RA, Ganesan LP, WeiG, et al. Lipopoly saccharide induced production of interleukin 10 is promoted by theserine/threonine kinase Akt. Mol Immunol, 2006,43(10):1557-1564.
    30. Michl P, Downward J. Mechanisms of disease: PI3K/AKT signaling in gastro- intestinal cancers. Z Gastroenterol, 2005,43(10):1133-1139.
    31. Kilic E, Kilic U, Soliz J, et al. Brain derived erythropoietin protects from focal cerebral ischemia by dual activation of ERK1/2 and Akt pathways. FASEB J, 2005, 19(14):2026-2028.
    32. 韩彩萍,胡长林.PI3K/AKT信号通路与脑缺血神经细胞凋亡.国际神经病学神经外科学杂志,2006,33(1):88-91.
    33. Wang YQ, Li J, Cao H, et al. The expression and role of ERK and JNK in cerebral ischemic preconditioning in gerbil. Chin Pharmacol Bull, 2005, 22(3):337-340.
    34. 朱德淼,付晓光.C-jun氨基末端激酶在胃癌组织中的表达.辽宁医学院学报,2007,28(1):26-29.
    35. 骆颖慧,魏雪涛,尚兰琴,等.JNK/SAPK信号转导通路在镉引起的Hormesis中的作用. 毒理学杂志,2007,21(3):190-193.
    36. 王耀岐,李军,曹红,等.ERK和JNK通路在沙土鼠脑缺血预处理中的表达及作用.中国药理学通报,2006,22(3):337-340.
    37. Martin H, Flandez M, Nombela C, et al. Protein phosphatases in MAPK signaling: we keep learning from yeast. Mol Microbiol, 2005, 58(1):6-16.
    38. Kamath R, Jiang Z. C-Abl kinase regulates curcumin induced cell death through activation of JNK. Mol Pharmacol, 2007, 71(1):61-72.
    39. Roos WP, Kaina B. DNA damage-induced cell death by apoptosis. Trends Mol Med, 2006,12(9):440-450.
    40. Nakamura Y, Miyoshi N. Cell death induction by isothiocyanates and their underlying molecular mechanisms. Biofactors, 2006,26(2):123-134.
    41. 蒋明德.JNK信号通路在乙醛刺激的肝星状细胞凋亡中的作用.第四军医大学学报,2005,26(10):915-918.
    42. 强占荣,吴静,周永宁,等.D-氨基葡萄糖衍生物通过JNK信号通路诱导Eca109细胞凋亡.第四军医大学学报,2007,28(7):616-618.
    43. 强占荣,吴静,杨国栋,等.JNK抑制剂对D-氨基葡萄糖衍生物诱导Eca109细胞Caspase-3活化的影响.中国肿瘤临床,2006,33(7):367-370.
    44. 吴静,强占荣,杨国栋,等.SP600125对D-氨基葡萄糖衍生物诱导Eca-109细胞凋亡的影响.中华肿瘤防治杂志,2006,13(14):1056-1059.
    45. 强占荣,吴静,周永宁,等.D-氨基葡萄糖衍生物通过JNK信号通路诱导Eca-109细胞凋亡.第四军医大学学报,2007,28(7):616-618.
    46. 郭连英.JNK/S1APK信号传导通路在榄香烯抗肝癌效应中的作用.中国肿瘤生物学杂志,2005,12(3):205-209.
    47. 肖浩文.氨基末端激酶信号通路在细胞凋亡中的作用.中国公共卫生,2005,21(1):163-171.
    48. Srivastava PK. Immunotherapy for human cancer using heat shock protein- peptide complexes. Curr Oncol Rep, 2005, 7(2):104-108.
    49. 李航宇,孔凡民,董明,等.HSP70和JNK信号转导通路在肝癌组织中的表达及意义.中国组织化学与细胞化学杂志,2006,15(3):240-245.
    50. Molnar J,Yu S,Mzhavia N,et al.Diabetes induces endothelial dysfunction but does not increase neointimal formation in high-fat diet fed C57BL/6J mice. CircRes, 2005, 96(11):1178-1184.
    51. Nguyen MT6,6 Satoh H, Favelyukis S, et al. JNK and tumor necrosis factor-alpha mediate free fatty acid-induced insulin resistance in 3T3-L1 adipocytes. J Biol Chem, 2005, 280 (42):35361-35371.
    52. Bonny C, Borsello T, Zine A. Targeting the JNK pathway as a therapeutic protective strategy fornervous system disease. Rev Neuro, 2005,16(1):57-67.
    53. 蒋明德.肝纤维化发生中的MAPK信号传导通路.第四军医大学学报,2005,26(8):766-768.
    54. 钟显飞,蒋明德,马洪德,等.JNK信号通路对乙醛刺激的大鼠肝星状细胞增殖的影响.第四军医大学学报,2005,26(10):930-933.
    55. 孙浩平,蒋明德,郑淑梅.MAPK反义寡核苷酸对乙醛活化HSC增殖和JNK信号通路的影响.西南国防医药,2007,17(1):43-45.
    56. 高歌,龙彩瑕,高亚南,等.低氧预适应升高小鼠脑内JNK磷酸化水平和蛋白表达.基础医学与临床,2006,26(2):139-142.
    57. Zhang YP, Yao XX, Zhao X. Interleukin-1 beta up-regulates tissue inhibitor of matrix metallopro-teinase-1 mRNA and phosphorylation of c-jun N-terminal kinase and p38 in hepatic stellate cells. World J Gastroe nterol, 2006, 12(9):1392-1396.
    58. 姚希贤,房红梅,王军民.拆方益肝康与药物血清对肝星状细胞PDGF及受体表达的影响.世界华人消化杂志,2005,13(12):1412-1416.
    59. Yao XX, Lv T. Effects of pharmacological serum from normal and liver ibrotic rats on HSCS. World J Gastroenterol, 2005, 11(16):2444-2449.
    60. 张亚平,姚希贤,刘晓玲,等.复方中药益肝康抑制肝星状细胞增殖的作用机制.世界华人消化杂志,2006,14(13):1272-1276.
    61. Ouyang DY, Wang YY. Activation of c-Jun N terminal kinases by ribo-toxic stresses. Cell Mol Immunol, 2005, 2(6):419-425.
    62. 刘智良,徐如祥,姚志彬,等.红藻氨酸致痫后大鼠海马ERK、p38 MAPK和JNK的活性变化.中华神经医学杂志,2006,5(2):137-140.
    63. Guan Q H, Pei D S, Zhang Q G, et al. The neuroprotective action of SP600125, a new inhibitor of JNK, on transient brain ischemia/reperfusion induced neuronal death in rat hippocampalCA1 via nuclear and non-nuclear pathways. B rain Res, 2005, 1035(1):51-59.
    64. 郭付有,宋来君,冯祖荫,等.磷酸化JNK与磷酸化c-Jun在多形性胶质母细胞瘤中的表达及意义.中国综合临床,2007,23(5):431-433.
    65. 高歌,龙彩遐,高亚南,等.低氧预适应升高小鼠脑内YNK磷酸化水平和蛋白表达.基础医学与临床,2006,26(2):139-142.
    66. 王耀歧,曾因明,王俊科.JNK在沙土鼠脑缺血预处理中的作用及机制.国际麻醉学与复苏杂志,2006,27(4):214-217.
    67. 赵兰峰,郭社卫,安仰原,等.脑缺血预适应大鼠脑内c-Jun氨基末端激酶磷酸化水平和蛋白表达量的改变.中国康复理论与实践,2007,13(7):623-625.
    68. 杨倩,周桃峰,吴家幂.脑缺血再灌注后大鼠海马CA1区p-JNK表达和Bax的相关性的实验研究.放射免疫学杂志,2007,20(2):151-153.
    69. 陈宏志,陈卫民.全脑缺血再灌注损伤中JNK及Bim蛋白的表达.中国现代医学杂志,2007,17(7):807-810.
    70. 肖浩文,叶建锋,高宁.维生素E琥珀酸酯诱导白血病细胞凋亡的信号传导机制探讨.广东医学,2006,27(10):1435-1437.
    71. Shoji M, Iwakami N, Takeuchi S, et al. JNK activation is associated with intracellular beta-amyloid accumulation. Brain Res Mol Brain, 2000, 85:221-233.
    72. Zhong Xianfei, JIANG Mingde. Effects of c-Jun N-terminal kinase signaling pathway on cell apoptosis. J Fourth Military Med Uni, 2005,26 (16):1533-1534.
    73. 胡慧,王平,胡亚萍,等.温胆汤改良方对Alzheimer病细胞模型JNK、c-jun磷酸化水平的影响.中华中医药杂志,2008,23(1):56-59.
    74. Kamata H, Honda S, Maeda S, et al. Reactive oxygen species promote TNFα- induced death and sustained JNK activation by inhibiting MAP kinase phosphatases. Cell, 2005, 120(5):649-661.
    75. Mansouri A ,Ridgway LD , Korapati AL ,et al . Sustainedactivation of JNK/p38 MAPK pathways in response to cisplatinleads to Fas ligand induction and cell deat h in ovarian carcinoma cells. J Biol Chem, 2003,27(8):19245-19256.
    76. Minden A, Karin M. Regulation and function of the JNK subgroup of MAP kinases. Biochim Biophys Acta, 1997,13(33):F85-F104.
    77.Potapova O,Basu S,Mercola D,et al.Protective role for c-Jun in the cellular response to DNA damage.J Biol Chem,2001,27(6):28546-28553.
    78.Tournier C,Hess P,Yang DD,et al.Requirement of JNK for stress induced activation of the cytochrome mediated death pathway.Science,2000,288(5467):870-874.
    79.Kyriakis J M,Avruch J.Sounding the alarm:proteinkinase cascades activated by stress and inflammation.J Biol Chem,1996,271(40):24313-24316.
    80.Iordanov MS,Magun BE.Different mechanisms of c-Jun NH (2)-terminal kinase-1(JN Kl) activation by ultraviolet B radiation and by oxidative stressors.J Biol Chem,1999,274(36):25801-25806.
    81.Chen YR,Wang X,Templeton D,et al.The role of c-Jun N-terminal kinase (JNK) in apoptosis induced by ult raviolet C and gamma radiation.Duration of JNK activationmay determine cell death and proliferation.J Biol Chem,1996,271(50):31929-31936.
    82.Wang X,Martindale JL,Liu Y,et al.The cellular response to oxidative stress:Influences of mitogenactivated protein kinase signalling pathways on cell survival.Bio chem J,1998,33(3):291-300.
    83.Mansouri A,Ridgway LD,Korapati AL,et al.Sustainedactivation of JNK/p38 MAPK pathways in response to cisplatinleads to Fas ligand induction and cell death in ovarian carcinoma cells.J Biol Chem,2003,27(8):19245-19256.
    84.Potapova O,Haghighi A,Bost F,et al.The Jun kinase/stress-activated protein kinase pathway functions to regulate DNA repair and inhibition of the pathway sensitizes tumor cells to cisplatin.J Biol Chem,1997,27(2):14041-14044.
    85.Davison K,Mann KK,Waxman S,et al.JNK activation isa mediator of arsenict rioxide induced apoptosis in acute promyelocytic leukemia cells.Blood,2004,10(3):3496-3502.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700